blob: 356ce37123fd556d201efc15dce420c3d4f1c245 [file] [log] [blame]
Reid Spencer5f016e22007-07-11 17:01:13 +00001//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/AST.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalVariable.h"
Chris Lattner99e0d792007-07-16 05:43:05 +000021#include "llvm/Support/MathExtras.h"
Reid Spencer5f016e22007-07-11 17:01:13 +000022using namespace clang;
23using namespace CodeGen;
24
25//===--------------------------------------------------------------------===//
26// Miscellaneous Helper Methods
27//===--------------------------------------------------------------------===//
28
29/// CreateTempAlloca - This creates a alloca and inserts it into the entry
30/// block.
31llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
32 const char *Name) {
33 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
34}
35
36/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
37/// expression and compare the result against zero, returning an Int1Ty value.
38llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
Chris Lattnerd4f08022007-08-08 17:43:05 +000039 return ConvertScalarValueToBool(EmitExpr(E), E->getType());
Reid Spencer5f016e22007-07-11 17:01:13 +000040}
41
42/// EmitLoadOfComplex - Given an RValue reference for a complex, emit code to
43/// load the real and imaginary pieces, returning them as Real/Imag.
44void CodeGenFunction::EmitLoadOfComplex(RValue V,
45 llvm::Value *&Real, llvm::Value *&Imag){
46 llvm::Value *Ptr = V.getAggregateAddr();
47
48 llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
49 llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
50 llvm::Value *RealPtr = Builder.CreateGEP(Ptr, Zero, Zero, "realp");
51 llvm::Value *ImagPtr = Builder.CreateGEP(Ptr, Zero, One, "imagp");
52
53 // FIXME: Handle volatility.
54 Real = Builder.CreateLoad(RealPtr, "real");
55 Imag = Builder.CreateLoad(ImagPtr, "imag");
56}
57
58/// EmitStoreOfComplex - Store the specified real/imag parts into the
59/// specified value pointer.
60void CodeGenFunction::EmitStoreOfComplex(llvm::Value *Real, llvm::Value *Imag,
61 llvm::Value *ResPtr) {
62 llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
63 llvm::Constant *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
64 llvm::Value *RealPtr = Builder.CreateGEP(ResPtr, Zero, Zero, "real");
65 llvm::Value *ImagPtr = Builder.CreateGEP(ResPtr, Zero, One, "imag");
66
67 // FIXME: Handle volatility.
68 Builder.CreateStore(Real, RealPtr);
69 Builder.CreateStore(Imag, ImagPtr);
70}
71
72//===--------------------------------------------------------------------===//
73// Conversions
74//===--------------------------------------------------------------------===//
75
76/// EmitConversion - Convert the value specied by Val, whose type is ValTy, to
77/// the type specified by DstTy, following the rules of C99 6.3.
78RValue CodeGenFunction::EmitConversion(RValue Val, QualType ValTy,
79 QualType DstTy) {
80 ValTy = ValTy.getCanonicalType();
81 DstTy = DstTy.getCanonicalType();
82 if (ValTy == DstTy) return Val;
83
84 // Handle conversions to bool first, they are special: comparisons against 0.
85 if (const BuiltinType *DestBT = dyn_cast<BuiltinType>(DstTy))
86 if (DestBT->getKind() == BuiltinType::Bool)
87 return RValue::get(ConvertScalarValueToBool(Val, ValTy));
88
89 // Handle pointer conversions next: pointers can only be converted to/from
90 // other pointers and integers.
91 if (isa<PointerType>(DstTy)) {
92 const llvm::Type *DestTy = ConvertType(DstTy);
93
94 // The source value may be an integer, or a pointer.
95 assert(Val.isScalar() && "Can only convert from integer or pointer");
96 if (isa<llvm::PointerType>(Val.getVal()->getType()))
97 return RValue::get(Builder.CreateBitCast(Val.getVal(), DestTy, "conv"));
98 assert(ValTy->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
Chris Lattnerfa7c6452007-07-13 03:25:53 +000099 return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
Reid Spencer5f016e22007-07-11 17:01:13 +0000100 }
101
102 if (isa<PointerType>(ValTy)) {
103 // Must be an ptr to int cast.
104 const llvm::Type *DestTy = ConvertType(DstTy);
105 assert(isa<llvm::IntegerType>(DestTy) && "not ptr->int?");
106 return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
107 }
108
109 // Finally, we have the arithmetic types: real int/float and complex
110 // int/float. Handle real->real conversions first, they are the most
111 // common.
112 if (Val.isScalar() && DstTy->isRealType()) {
113 // We know that these are representable as scalars in LLVM, convert to LLVM
114 // types since they are easier to reason about.
115 llvm::Value *SrcVal = Val.getVal();
116 const llvm::Type *DestTy = ConvertType(DstTy);
117 if (SrcVal->getType() == DestTy) return Val;
118
119 llvm::Value *Result;
120 if (isa<llvm::IntegerType>(SrcVal->getType())) {
121 bool InputSigned = ValTy->isSignedIntegerType();
122 if (isa<llvm::IntegerType>(DestTy))
123 Result = Builder.CreateIntCast(SrcVal, DestTy, InputSigned, "conv");
124 else if (InputSigned)
125 Result = Builder.CreateSIToFP(SrcVal, DestTy, "conv");
126 else
127 Result = Builder.CreateUIToFP(SrcVal, DestTy, "conv");
128 } else {
129 assert(SrcVal->getType()->isFloatingPoint() && "Unknown real conversion");
130 if (isa<llvm::IntegerType>(DestTy)) {
131 if (DstTy->isSignedIntegerType())
132 Result = Builder.CreateFPToSI(SrcVal, DestTy, "conv");
133 else
134 Result = Builder.CreateFPToUI(SrcVal, DestTy, "conv");
135 } else {
136 assert(DestTy->isFloatingPoint() && "Unknown real conversion");
137 if (DestTy->getTypeID() < SrcVal->getType()->getTypeID())
138 Result = Builder.CreateFPTrunc(SrcVal, DestTy, "conv");
139 else
140 Result = Builder.CreateFPExt(SrcVal, DestTy, "conv");
141 }
142 }
143 return RValue::get(Result);
144 }
145
146 assert(0 && "FIXME: We don't support complex conversions yet!");
147}
148
149
150/// ConvertScalarValueToBool - Convert the specified expression value to a
151/// boolean (i1) truth value. This is equivalent to "Val == 0".
152llvm::Value *CodeGenFunction::ConvertScalarValueToBool(RValue Val, QualType Ty){
153 Ty = Ty.getCanonicalType();
154 llvm::Value *Result;
155 if (const BuiltinType *BT = dyn_cast<BuiltinType>(Ty)) {
156 switch (BT->getKind()) {
157 default: assert(0 && "Unknown scalar value");
158 case BuiltinType::Bool:
159 Result = Val.getVal();
160 // Bool is already evaluated right.
161 assert(Result->getType() == llvm::Type::Int1Ty &&
162 "Unexpected bool value type!");
163 return Result;
164 case BuiltinType::Char_S:
165 case BuiltinType::Char_U:
166 case BuiltinType::SChar:
167 case BuiltinType::UChar:
168 case BuiltinType::Short:
169 case BuiltinType::UShort:
170 case BuiltinType::Int:
171 case BuiltinType::UInt:
172 case BuiltinType::Long:
173 case BuiltinType::ULong:
174 case BuiltinType::LongLong:
175 case BuiltinType::ULongLong:
176 // Code below handles simple integers.
177 break;
178 case BuiltinType::Float:
179 case BuiltinType::Double:
180 case BuiltinType::LongDouble: {
181 // Compare against 0.0 for fp scalars.
182 Result = Val.getVal();
183 llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
184 // FIXME: llvm-gcc produces a une comparison: validate this is right.
185 Result = Builder.CreateFCmpUNE(Result, Zero, "tobool");
186 return Result;
187 }
188 }
189 } else if (isa<PointerType>(Ty) ||
190 cast<TagType>(Ty)->getDecl()->getKind() == Decl::Enum) {
191 // Code below handles this fine.
192 } else {
193 assert(isa<ComplexType>(Ty) && "Unknwon type!");
194 assert(0 && "FIXME: comparisons against complex not implemented yet");
195 }
196
197 // Usual case for integers, pointers, and enums: compare against zero.
198 Result = Val.getVal();
199
200 // Because of the type rules of C, we often end up computing a logical value,
201 // then zero extending it to int, then wanting it as a logical value again.
202 // Optimize this common case.
203 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Result)) {
204 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
205 Result = ZI->getOperand(0);
206 ZI->eraseFromParent();
207 return Result;
208 }
209 }
210
211 llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
212 return Builder.CreateICmpNE(Result, Zero, "tobool");
213}
214
215//===----------------------------------------------------------------------===//
216// LValue Expression Emission
217//===----------------------------------------------------------------------===//
218
219/// EmitLValue - Emit code to compute a designator that specifies the location
220/// of the expression.
221///
222/// This can return one of two things: a simple address or a bitfield
223/// reference. In either case, the LLVM Value* in the LValue structure is
224/// guaranteed to be an LLVM pointer type.
225///
226/// If this returns a bitfield reference, nothing about the pointee type of
227/// the LLVM value is known: For example, it may not be a pointer to an
228/// integer.
229///
230/// If this returns a normal address, and if the lvalue's C type is fixed
231/// size, this method guarantees that the returned pointer type will point to
232/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
233/// variable length type, this is not possible.
234///
235LValue CodeGenFunction::EmitLValue(const Expr *E) {
236 switch (E->getStmtClass()) {
237 default:
238 fprintf(stderr, "Unimplemented lvalue expr!\n");
239 E->dump();
240 return LValue::MakeAddr(llvm::UndefValue::get(
241 llvm::PointerType::get(llvm::Type::Int32Ty)));
242
243 case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
244 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
Anders Carlsson22742662007-07-21 05:21:51 +0000245 case Expr::PreDefinedExprClass:
246 return EmitPreDefinedLValue(cast<PreDefinedExpr>(E));
Reid Spencer5f016e22007-07-11 17:01:13 +0000247 case Expr::StringLiteralClass:
248 return EmitStringLiteralLValue(cast<StringLiteral>(E));
249
250 case Expr::UnaryOperatorClass:
251 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
252 case Expr::ArraySubscriptExprClass:
253 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
Chris Lattner6481a572007-08-03 17:31:20 +0000254 case Expr::OCUVectorElementExprClass:
255 return EmitOCUVectorElementExpr(cast<OCUVectorElementExpr>(E));
Reid Spencer5f016e22007-07-11 17:01:13 +0000256 }
257}
258
259/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
260/// this method emits the address of the lvalue, then loads the result as an
261/// rvalue, returning the rvalue.
262RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
263 ExprType = ExprType.getCanonicalType();
264
265 if (LV.isSimple()) {
266 llvm::Value *Ptr = LV.getAddress();
267 const llvm::Type *EltTy =
268 cast<llvm::PointerType>(Ptr->getType())->getElementType();
269
270 // Simple scalar l-value.
271 if (EltTy->isFirstClassType())
272 return RValue::get(Builder.CreateLoad(Ptr, "tmp"));
273
274 // Otherwise, we have an aggregate lvalue.
275 return RValue::getAggregate(Ptr);
276 }
277
278 if (LV.isVectorElt()) {
279 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
280 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
281 "vecext"));
282 }
Chris Lattner46ea8eb2007-08-03 00:16:29 +0000283
284 // If this is a reference to a subset of the elements of a vector, either
285 // shuffle the input or extract/insert them as appropriate.
Chris Lattner6481a572007-08-03 17:31:20 +0000286 if (LV.isOCUVectorElt())
287 return EmitLoadOfOCUElementLValue(LV, ExprType);
Reid Spencer5f016e22007-07-11 17:01:13 +0000288
289 assert(0 && "Bitfield ref not impl!");
290}
291
Chris Lattner34cdc862007-08-03 16:18:34 +0000292// If this is a reference to a subset of the elements of a vector, either
293// shuffle the input or extract/insert them as appropriate.
Chris Lattner6481a572007-08-03 17:31:20 +0000294RValue CodeGenFunction::EmitLoadOfOCUElementLValue(LValue LV,
Chris Lattner34cdc862007-08-03 16:18:34 +0000295 QualType ExprType) {
296 llvm::Value *Vec = Builder.CreateLoad(LV.getOCUVectorAddr(), "tmp");
297
Chris Lattner6481a572007-08-03 17:31:20 +0000298 unsigned EncFields = LV.getOCUVectorElts();
Chris Lattner34cdc862007-08-03 16:18:34 +0000299
300 // If the result of the expression is a non-vector type, we must be
301 // extracting a single element. Just codegen as an extractelement.
302 if (!isa<VectorType>(ExprType)) {
Chris Lattner6481a572007-08-03 17:31:20 +0000303 unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
Chris Lattner34cdc862007-08-03 16:18:34 +0000304 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
305 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
306 }
307
308 // If the source and destination have the same number of elements, use a
309 // vector shuffle instead of insert/extracts.
310 unsigned NumResultElts = cast<VectorType>(ExprType)->getNumElements();
311 unsigned NumSourceElts =
312 cast<llvm::VectorType>(Vec->getType())->getNumElements();
313
314 if (NumResultElts == NumSourceElts) {
315 llvm::SmallVector<llvm::Constant*, 4> Mask;
316 for (unsigned i = 0; i != NumResultElts; ++i) {
Chris Lattner6481a572007-08-03 17:31:20 +0000317 unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
Chris Lattner34cdc862007-08-03 16:18:34 +0000318 Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
319 }
320
321 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
322 Vec = Builder.CreateShuffleVector(Vec,
323 llvm::UndefValue::get(Vec->getType()),
324 MaskV, "tmp");
325 return RValue::get(Vec);
326 }
327
328 // Start out with an undef of the result type.
329 llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType));
330
331 // Extract/Insert each element of the result.
332 for (unsigned i = 0; i != NumResultElts; ++i) {
Chris Lattner6481a572007-08-03 17:31:20 +0000333 unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
Chris Lattner34cdc862007-08-03 16:18:34 +0000334 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
335 Elt = Builder.CreateExtractElement(Vec, Elt, "tmp");
336
337 llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
338 Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp");
339 }
340
341 return RValue::get(Result);
342}
343
344
Reid Spencer5f016e22007-07-11 17:01:13 +0000345RValue CodeGenFunction::EmitLoadOfLValue(const Expr *E) {
346 return EmitLoadOfLValue(EmitLValue(E), E->getType());
347}
348
349
350/// EmitStoreThroughLValue - Store the specified rvalue into the specified
351/// lvalue, where both are guaranteed to the have the same type, and that type
352/// is 'Ty'.
353void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
354 QualType Ty) {
Chris Lattner017d6aa2007-08-03 16:28:33 +0000355 if (!Dst.isSimple()) {
356 if (Dst.isVectorElt()) {
357 // Read/modify/write the vector, inserting the new element.
358 // FIXME: Volatility.
359 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
360 Vec = Builder.CreateInsertElement(Vec, Src.getVal(),
361 Dst.getVectorIdx(), "vecins");
362 Builder.CreateStore(Vec, Dst.getVectorAddr());
363 return;
364 }
Reid Spencer5f016e22007-07-11 17:01:13 +0000365
Chris Lattner017d6aa2007-08-03 16:28:33 +0000366 // If this is an update of elements of a vector, insert them as appropriate.
Chris Lattner6481a572007-08-03 17:31:20 +0000367 if (Dst.isOCUVectorElt())
Chris Lattner017d6aa2007-08-03 16:28:33 +0000368 return EmitStoreThroughOCUComponentLValue(Src, Dst, Ty);
369
370 assert(0 && "FIXME: Don't support store to bitfield yet");
371 }
Reid Spencer5f016e22007-07-11 17:01:13 +0000372
373 llvm::Value *DstAddr = Dst.getAddress();
374 if (Src.isScalar()) {
375 // FIXME: Handle volatility etc.
376 const llvm::Type *SrcTy = Src.getVal()->getType();
377 const llvm::Type *AddrTy =
378 cast<llvm::PointerType>(DstAddr->getType())->getElementType();
379
380 if (AddrTy != SrcTy)
381 DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy),
382 "storetmp");
383 Builder.CreateStore(Src.getVal(), DstAddr);
384 return;
385 }
386
387 // Don't use memcpy for complex numbers.
388 if (Ty->isComplexType()) {
389 llvm::Value *Real, *Imag;
390 EmitLoadOfComplex(Src, Real, Imag);
391 EmitStoreOfComplex(Real, Imag, Dst.getAddress());
392 return;
393 }
394
395 // Aggregate assignment turns into llvm.memcpy.
396 const llvm::Type *SBP = llvm::PointerType::get(llvm::Type::Int8Ty);
397 llvm::Value *SrcAddr = Src.getAggregateAddr();
398
399 if (DstAddr->getType() != SBP)
400 DstAddr = Builder.CreateBitCast(DstAddr, SBP, "tmp");
401 if (SrcAddr->getType() != SBP)
402 SrcAddr = Builder.CreateBitCast(SrcAddr, SBP, "tmp");
403
404 unsigned Align = 1; // FIXME: Compute type alignments.
405 unsigned Size = 1234; // FIXME: Compute type sizes.
406
407 // FIXME: Handle variable sized types.
408 const llvm::Type *IntPtr = llvm::IntegerType::get(LLVMPointerWidth);
409 llvm::Value *SizeVal = llvm::ConstantInt::get(IntPtr, Size);
410
411 llvm::Value *MemCpyOps[4] = {
412 DstAddr, SrcAddr, SizeVal,llvm::ConstantInt::get(llvm::Type::Int32Ty, Align)
413 };
414
Chris Lattnerbf986512007-08-01 06:24:52 +0000415 Builder.CreateCall(CGM.getMemCpyFn(), MemCpyOps, MemCpyOps+4);
Reid Spencer5f016e22007-07-11 17:01:13 +0000416}
417
Chris Lattner017d6aa2007-08-03 16:28:33 +0000418void CodeGenFunction::EmitStoreThroughOCUComponentLValue(RValue Src, LValue Dst,
419 QualType Ty) {
420 // This access turns into a read/modify/write of the vector. Load the input
421 // value now.
422 llvm::Value *Vec = Builder.CreateLoad(Dst.getOCUVectorAddr(), "tmp");
423 // FIXME: Volatility.
Chris Lattner6481a572007-08-03 17:31:20 +0000424 unsigned EncFields = Dst.getOCUVectorElts();
Chris Lattner017d6aa2007-08-03 16:28:33 +0000425
426 llvm::Value *SrcVal = Src.getVal();
427
Chris Lattner7e6b51b2007-08-03 16:37:04 +0000428 if (const VectorType *VTy = Ty->getAsVectorType()) {
429 unsigned NumSrcElts = VTy->getNumElements();
430
431 // Extract/Insert each element.
432 for (unsigned i = 0; i != NumSrcElts; ++i) {
433 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
434 Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp");
435
Chris Lattner6481a572007-08-03 17:31:20 +0000436 unsigned Idx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
Chris Lattner7e6b51b2007-08-03 16:37:04 +0000437 llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx);
438 Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp");
439 }
440 } else {
441 // If the Src is a scalar (not a vector) it must be updating one element.
Chris Lattner6481a572007-08-03 17:31:20 +0000442 unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
Chris Lattner017d6aa2007-08-03 16:28:33 +0000443 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
444 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
Chris Lattner017d6aa2007-08-03 16:28:33 +0000445 }
446
Chris Lattner017d6aa2007-08-03 16:28:33 +0000447 Builder.CreateStore(Vec, Dst.getOCUVectorAddr());
448}
449
Reid Spencer5f016e22007-07-11 17:01:13 +0000450
451LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
452 const Decl *D = E->getDecl();
453 if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
454 llvm::Value *V = LocalDeclMap[D];
455 assert(V && "BlockVarDecl not entered in LocalDeclMap?");
456 return LValue::MakeAddr(V);
457 } else if (isa<FunctionDecl>(D) || isa<FileVarDecl>(D)) {
458 return LValue::MakeAddr(CGM.GetAddrOfGlobalDecl(D));
459 }
460 assert(0 && "Unimp declref");
461}
462
463LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
464 // __extension__ doesn't affect lvalue-ness.
465 if (E->getOpcode() == UnaryOperator::Extension)
466 return EmitLValue(E->getSubExpr());
467
468 assert(E->getOpcode() == UnaryOperator::Deref &&
469 "'*' is the only unary operator that produces an lvalue");
470 return LValue::MakeAddr(EmitExpr(E->getSubExpr()).getVal());
471}
472
473LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
474 assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
475 const char *StrData = E->getStrData();
476 unsigned Len = E->getByteLength();
477
478 // FIXME: Can cache/reuse these within the module.
479 llvm::Constant *C=llvm::ConstantArray::get(std::string(StrData, StrData+Len));
480
481 // Create a global variable for this.
482 C = new llvm::GlobalVariable(C->getType(), true,
483 llvm::GlobalValue::InternalLinkage,
484 C, ".str", CurFn->getParent());
485 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
486 llvm::Constant *Zeros[] = { Zero, Zero };
487 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
488 return LValue::MakeAddr(C);
489}
490
Anders Carlsson22742662007-07-21 05:21:51 +0000491LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) {
492 std::string FunctionName(CurFuncDecl->getName());
493 std::string GlobalVarName;
494
495 switch (E->getIdentType()) {
496 default:
497 assert(0 && "unknown pre-defined ident type");
498 case PreDefinedExpr::Func:
499 GlobalVarName = "__func__.";
500 break;
501 case PreDefinedExpr::Function:
502 GlobalVarName = "__FUNCTION__.";
503 break;
504 case PreDefinedExpr::PrettyFunction:
505 // FIXME:: Demangle C++ method names
506 GlobalVarName = "__PRETTY_FUNCTION__.";
507 break;
508 }
509
510 GlobalVarName += CurFuncDecl->getName();
511
512 // FIXME: Can cache/reuse these within the module.
513 llvm::Constant *C=llvm::ConstantArray::get(FunctionName);
514
515 // Create a global variable for this.
516 C = new llvm::GlobalVariable(C->getType(), true,
517 llvm::GlobalValue::InternalLinkage,
518 C, GlobalVarName, CurFn->getParent());
519 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
520 llvm::Constant *Zeros[] = { Zero, Zero };
521 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
522 return LValue::MakeAddr(C);
523}
524
Reid Spencer5f016e22007-07-11 17:01:13 +0000525LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
526 // The index must always be a pointer or integer, neither of which is an
527 // aggregate. Emit it.
Chris Lattnerd4f08022007-08-08 17:43:05 +0000528 llvm::Value *Idx = EmitExpr(E->getIdx()).getVal();
Reid Spencer5f016e22007-07-11 17:01:13 +0000529
530 // If the base is a vector type, then we are forming a vector element lvalue
531 // with this subscript.
532 if (E->getBase()->getType()->isVectorType()) {
533 // Emit the vector as an lvalue to get its address.
534 LValue Base = EmitLValue(E->getBase());
535 assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
536 // FIXME: This should properly sign/zero/extend or truncate Idx to i32.
537 return LValue::MakeVectorElt(Base.getAddress(), Idx);
538 }
539
540 // At this point, the base must be a pointer or integer, neither of which are
541 // aggregates. Emit it.
Chris Lattnerd4f08022007-08-08 17:43:05 +0000542 llvm::Value *Base = EmitExpr(E->getBase()).getVal();
Reid Spencer5f016e22007-07-11 17:01:13 +0000543
544 // Usually the base is the pointer type, but sometimes it is the index.
545 // Canonicalize to have the pointer as the base.
Chris Lattnerd4f08022007-08-08 17:43:05 +0000546 QualType BaseTy = E->getBase()->getType();
547 QualType IdxTy = E->getIdx()->getType();
Reid Spencer5f016e22007-07-11 17:01:13 +0000548 if (isa<llvm::PointerType>(Idx->getType())) {
549 std::swap(Base, Idx);
550 std::swap(BaseTy, IdxTy);
551 }
552
553 // The pointer is now the base. Extend or truncate the index type to 32 or
554 // 64-bits.
555 bool IdxSigned = IdxTy->isSignedIntegerType();
556 unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
557 if (IdxBitwidth != LLVMPointerWidth)
558 Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
559 IdxSigned, "idxprom");
560
561 // We know that the pointer points to a type of the correct size, unless the
562 // size is a VLA.
Chris Lattner590b6642007-07-15 23:26:56 +0000563 if (!E->getType()->isConstantSizeType(getContext()))
Reid Spencer5f016e22007-07-11 17:01:13 +0000564 assert(0 && "VLA idx not implemented");
565 return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
566}
567
Chris Lattner349aaec2007-08-02 23:37:31 +0000568LValue CodeGenFunction::
Chris Lattner6481a572007-08-03 17:31:20 +0000569EmitOCUVectorElementExpr(const OCUVectorElementExpr *E) {
Chris Lattner349aaec2007-08-02 23:37:31 +0000570 // Emit the base vector as an l-value.
571 LValue Base = EmitLValue(E->getBase());
572 assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
573
Chris Lattner6481a572007-08-03 17:31:20 +0000574 return LValue::MakeOCUVectorElt(Base.getAddress(),
575 E->getEncodedElementAccess());
Chris Lattner349aaec2007-08-02 23:37:31 +0000576}
577
Reid Spencer5f016e22007-07-11 17:01:13 +0000578//===--------------------------------------------------------------------===//
579// Expression Emission
580//===--------------------------------------------------------------------===//
581
582RValue CodeGenFunction::EmitExpr(const Expr *E) {
583 assert(E && "Null expression?");
584
585 switch (E->getStmtClass()) {
586 default:
587 fprintf(stderr, "Unimplemented expr!\n");
588 E->dump();
589 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
590
591 // l-values.
592 case Expr::DeclRefExprClass:
593 // DeclRef's of EnumConstantDecl's are simple rvalues.
594 if (const EnumConstantDecl *EC =
595 dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
596 return RValue::get(llvm::ConstantInt::get(EC->getInitVal()));
597 return EmitLoadOfLValue(E);
598 case Expr::ArraySubscriptExprClass:
599 return EmitArraySubscriptExprRV(cast<ArraySubscriptExpr>(E));
Chris Lattner6481a572007-08-03 17:31:20 +0000600 case Expr::OCUVectorElementExprClass:
Chris Lattner46ea8eb2007-08-03 00:16:29 +0000601 return EmitLoadOfLValue(E);
Anders Carlsson22742662007-07-21 05:21:51 +0000602 case Expr::PreDefinedExprClass:
Reid Spencer5f016e22007-07-11 17:01:13 +0000603 case Expr::StringLiteralClass:
604 return RValue::get(EmitLValue(E).getAddress());
605
606 // Leaf expressions.
607 case Expr::IntegerLiteralClass:
608 return EmitIntegerLiteral(cast<IntegerLiteral>(E));
609 case Expr::FloatingLiteralClass:
610 return EmitFloatingLiteral(cast<FloatingLiteral>(E));
Chris Lattnerb0a721a2007-07-13 05:18:11 +0000611 case Expr::CharacterLiteralClass:
612 return EmitCharacterLiteral(cast<CharacterLiteral>(E));
Chris Lattner30bf3ae2007-08-03 17:51:03 +0000613 case Expr::TypesCompatibleExprClass:
614 return EmitTypesCompatibleExpr(cast<TypesCompatibleExpr>(E));
Reid Spencer5f016e22007-07-11 17:01:13 +0000615
616 // Operators.
617 case Expr::ParenExprClass:
618 return EmitExpr(cast<ParenExpr>(E)->getSubExpr());
619 case Expr::UnaryOperatorClass:
620 return EmitUnaryOperator(cast<UnaryOperator>(E));
Chris Lattner5e3fbe52007-07-18 18:12:07 +0000621 case Expr::SizeOfAlignOfTypeExprClass:
622 return EmitSizeAlignOf(cast<SizeOfAlignOfTypeExpr>(E)->getArgumentType(),
623 E->getType(),
624 cast<SizeOfAlignOfTypeExpr>(E)->isSizeOf());
Chris Lattnerd07eb3b2007-07-13 20:25:53 +0000625 case Expr::ImplicitCastExprClass:
626 return EmitCastExpr(cast<ImplicitCastExpr>(E)->getSubExpr(), E->getType());
Reid Spencer5f016e22007-07-11 17:01:13 +0000627 case Expr::CastExprClass:
Chris Lattnerd07eb3b2007-07-13 20:25:53 +0000628 return EmitCastExpr(cast<CastExpr>(E)->getSubExpr(), E->getType());
Reid Spencer5f016e22007-07-11 17:01:13 +0000629 case Expr::CallExprClass:
630 return EmitCallExpr(cast<CallExpr>(E));
631 case Expr::BinaryOperatorClass:
632 return EmitBinaryOperator(cast<BinaryOperator>(E));
Chris Lattnerb0a721a2007-07-13 05:18:11 +0000633
634 case Expr::ConditionalOperatorClass:
635 return EmitConditionalOperator(cast<ConditionalOperator>(E));
Chris Lattner94f05e32007-08-04 00:20:15 +0000636 case Expr::ChooseExprClass:
637 return EmitChooseExpr(cast<ChooseExpr>(E));
Reid Spencer5f016e22007-07-11 17:01:13 +0000638 }
639
640}
641
642RValue CodeGenFunction::EmitIntegerLiteral(const IntegerLiteral *E) {
643 return RValue::get(llvm::ConstantInt::get(E->getValue()));
644}
645RValue CodeGenFunction::EmitFloatingLiteral(const FloatingLiteral *E) {
646 return RValue::get(llvm::ConstantFP::get(ConvertType(E->getType()),
647 E->getValue()));
648}
Chris Lattnerb0a721a2007-07-13 05:18:11 +0000649RValue CodeGenFunction::EmitCharacterLiteral(const CharacterLiteral *E) {
650 return RValue::get(llvm::ConstantInt::get(ConvertType(E->getType()),
651 E->getValue()));
652}
Reid Spencer5f016e22007-07-11 17:01:13 +0000653
Chris Lattner30bf3ae2007-08-03 17:51:03 +0000654RValue CodeGenFunction::EmitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
655 return RValue::get(llvm::ConstantInt::get(ConvertType(E->getType()),
656 E->typesAreCompatible()));
657}
658
Chris Lattner94f05e32007-08-04 00:20:15 +0000659/// EmitChooseExpr - Implement __builtin_choose_expr.
660RValue CodeGenFunction::EmitChooseExpr(const ChooseExpr *E) {
661 llvm::APSInt CondVal(32);
662 bool IsConst = E->getCond()->isIntegerConstantExpr(CondVal, getContext());
663 assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst;
664
665 // Emit the LHS or RHS as appropriate.
666 return EmitExpr(CondVal != 0 ? E->getLHS() : E->getRHS());
667}
668
Chris Lattner30bf3ae2007-08-03 17:51:03 +0000669
Reid Spencer5f016e22007-07-11 17:01:13 +0000670RValue CodeGenFunction::EmitArraySubscriptExprRV(const ArraySubscriptExpr *E) {
671 // Emit subscript expressions in rvalue context's. For most cases, this just
672 // loads the lvalue formed by the subscript expr. However, we have to be
673 // careful, because the base of a vector subscript is occasionally an rvalue,
674 // so we can't get it as an lvalue.
675 if (!E->getBase()->getType()->isVectorType())
676 return EmitLoadOfLValue(E);
677
678 // Handle the vector case. The base must be a vector, the index must be an
679 // integer value.
Chris Lattnerd4f08022007-08-08 17:43:05 +0000680 llvm::Value *Base = EmitExpr(E->getBase()).getVal();
681 llvm::Value *Idx = EmitExpr(E->getIdx()).getVal();
Reid Spencer5f016e22007-07-11 17:01:13 +0000682
683 // FIXME: Convert Idx to i32 type.
684
685 return RValue::get(Builder.CreateExtractElement(Base, Idx, "vecext"));
686}
687
Chris Lattnerd07eb3b2007-07-13 20:25:53 +0000688// EmitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
689// have to handle a more broad range of conversions than explicit casts, as they
690// handle things like function to ptr-to-function decay etc.
691RValue CodeGenFunction::EmitCastExpr(const Expr *Op, QualType DestTy) {
Chris Lattnerd4f08022007-08-08 17:43:05 +0000692 RValue Src = EmitExpr(Op);
Reid Spencer5f016e22007-07-11 17:01:13 +0000693
694 // If the destination is void, just evaluate the source.
Chris Lattnerd07eb3b2007-07-13 20:25:53 +0000695 if (DestTy->isVoidType())
Reid Spencer5f016e22007-07-11 17:01:13 +0000696 return RValue::getAggregate(0);
697
Chris Lattnerd4f08022007-08-08 17:43:05 +0000698 return EmitConversion(Src, Op->getType(), DestTy);
Reid Spencer5f016e22007-07-11 17:01:13 +0000699}
700
701RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
Chris Lattnerd4f08022007-08-08 17:43:05 +0000702 llvm::Value *Callee = EmitExpr(E->getCallee()).getVal();
Reid Spencer5f016e22007-07-11 17:01:13 +0000703
704 // The callee type will always be a pointer to function type, get the function
705 // type.
Chris Lattnerd4f08022007-08-08 17:43:05 +0000706 QualType CalleeTy = E->getCallee()->getType();
Reid Spencer5f016e22007-07-11 17:01:13 +0000707 CalleeTy = cast<PointerType>(CalleeTy.getCanonicalType())->getPointeeType();
708
709 // Get information about the argument types.
710 FunctionTypeProto::arg_type_iterator ArgTyIt = 0, ArgTyEnd = 0;
711
712 // Calling unprototyped functions provides no argument info.
713 if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(CalleeTy)) {
714 ArgTyIt = FTP->arg_type_begin();
715 ArgTyEnd = FTP->arg_type_end();
716 }
717
718 llvm::SmallVector<llvm::Value*, 16> Args;
719
720 // FIXME: Handle struct return.
721 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Chris Lattnerd4f08022007-08-08 17:43:05 +0000722 QualType ArgTy = E->getArg(i)->getType();
723 RValue ArgVal = EmitExpr(E->getArg(i));
Reid Spencer5f016e22007-07-11 17:01:13 +0000724
725 // If this argument has prototype information, convert it.
726 if (ArgTyIt != ArgTyEnd) {
727 ArgVal = EmitConversion(ArgVal, ArgTy, *ArgTyIt++);
728 } else {
729 // Otherwise, if passing through "..." or to a function with no prototype,
730 // perform the "default argument promotions" (C99 6.5.2.2p6), which
731 // includes the usual unary conversions, but also promotes float to
732 // double.
733 if (const BuiltinType *BT =
734 dyn_cast<BuiltinType>(ArgTy.getCanonicalType())) {
735 if (BT->getKind() == BuiltinType::Float)
736 ArgVal = RValue::get(Builder.CreateFPExt(ArgVal.getVal(),
737 llvm::Type::DoubleTy,"tmp"));
738 }
739 }
740
741
742 if (ArgVal.isScalar())
743 Args.push_back(ArgVal.getVal());
744 else // Pass by-address. FIXME: Set attribute bit on call.
745 Args.push_back(ArgVal.getAggregateAddr());
746 }
747
Chris Lattnerbf986512007-08-01 06:24:52 +0000748 llvm::Value *V = Builder.CreateCall(Callee, &Args[0], &Args[0]+Args.size());
Reid Spencer5f016e22007-07-11 17:01:13 +0000749 if (V->getType() != llvm::Type::VoidTy)
750 V->setName("call");
751
752 // FIXME: Struct return;
753 return RValue::get(V);
754}
755
756
757//===----------------------------------------------------------------------===//
758// Unary Operator Emission
759//===----------------------------------------------------------------------===//
760
Reid Spencer5f016e22007-07-11 17:01:13 +0000761RValue CodeGenFunction::EmitUnaryOperator(const UnaryOperator *E) {
762 switch (E->getOpcode()) {
763 default:
764 printf("Unimplemented unary expr!\n");
765 E->dump();
766 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
Chris Lattner57274792007-07-11 23:43:46 +0000767 case UnaryOperator::PostInc:
768 case UnaryOperator::PostDec:
769 case UnaryOperator::PreInc :
770 case UnaryOperator::PreDec : return EmitUnaryIncDec(E);
771 case UnaryOperator::AddrOf : return EmitUnaryAddrOf(E);
772 case UnaryOperator::Deref : return EmitLoadOfLValue(E);
773 case UnaryOperator::Plus : return EmitUnaryPlus(E);
774 case UnaryOperator::Minus : return EmitUnaryMinus(E);
775 case UnaryOperator::Not : return EmitUnaryNot(E);
776 case UnaryOperator::LNot : return EmitUnaryLNot(E);
Chris Lattner5e3fbe52007-07-18 18:12:07 +0000777 case UnaryOperator::SizeOf :
778 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
779 case UnaryOperator::AlignOf :
780 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
Reid Spencer5f016e22007-07-11 17:01:13 +0000781 // FIXME: real/imag
782 case UnaryOperator::Extension: return EmitExpr(E->getSubExpr());
783 }
784}
785
Chris Lattner57274792007-07-11 23:43:46 +0000786RValue CodeGenFunction::EmitUnaryIncDec(const UnaryOperator *E) {
787 LValue LV = EmitLValue(E->getSubExpr());
788 RValue InVal = EmitLoadOfLValue(LV, E->getSubExpr()->getType());
789
790 // We know the operand is real or pointer type, so it must be an LLVM scalar.
791 assert(InVal.isScalar() && "Unknown thing to increment");
792 llvm::Value *InV = InVal.getVal();
793
794 int AmountVal = 1;
795 if (E->getOpcode() == UnaryOperator::PreDec ||
796 E->getOpcode() == UnaryOperator::PostDec)
797 AmountVal = -1;
798
799 llvm::Value *NextVal;
800 if (isa<llvm::IntegerType>(InV->getType())) {
801 NextVal = llvm::ConstantInt::get(InV->getType(), AmountVal);
802 NextVal = Builder.CreateAdd(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
803 } else if (InV->getType()->isFloatingPoint()) {
804 NextVal = llvm::ConstantFP::get(InV->getType(), AmountVal);
805 NextVal = Builder.CreateAdd(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
806 } else {
807 // FIXME: This is not right for pointers to VLA types.
808 assert(isa<llvm::PointerType>(InV->getType()));
809 NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
810 NextVal = Builder.CreateGEP(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
811 }
812
813 RValue NextValToStore = RValue::get(NextVal);
814
815 // Store the updated result through the lvalue.
816 EmitStoreThroughLValue(NextValToStore, LV, E->getSubExpr()->getType());
817
818 // If this is a postinc, return the value read from memory, otherwise use the
819 // updated value.
820 if (E->getOpcode() == UnaryOperator::PreDec ||
821 E->getOpcode() == UnaryOperator::PreInc)
822 return NextValToStore;
823 else
824 return InVal;
825}
826
Reid Spencer5f016e22007-07-11 17:01:13 +0000827/// C99 6.5.3.2
828RValue CodeGenFunction::EmitUnaryAddrOf(const UnaryOperator *E) {
829 // The address of the operand is just its lvalue. It cannot be a bitfield.
830 return RValue::get(EmitLValue(E->getSubExpr()).getAddress());
831}
832
833RValue CodeGenFunction::EmitUnaryPlus(const UnaryOperator *E) {
Chris Lattnerd4f08022007-08-08 17:43:05 +0000834 assert(E->getType().getCanonicalType() ==
835 E->getSubExpr()->getType().getCanonicalType() && "Bad unary plus!");
836 // Unary plus just returns its value.
837 return EmitExpr(E->getSubExpr());
Reid Spencer5f016e22007-07-11 17:01:13 +0000838}
839
840RValue CodeGenFunction::EmitUnaryMinus(const UnaryOperator *E) {
Chris Lattnerd4f08022007-08-08 17:43:05 +0000841 assert(E->getType().getCanonicalType() ==
842 E->getSubExpr()->getType().getCanonicalType() && "Bad unary minus!");
843
Reid Spencer5f016e22007-07-11 17:01:13 +0000844 // Unary minus performs promotions, then negates its arithmetic operand.
Chris Lattnerd4f08022007-08-08 17:43:05 +0000845 RValue V = EmitExpr(E->getSubExpr());
Reid Spencer5f016e22007-07-11 17:01:13 +0000846
847 if (V.isScalar())
848 return RValue::get(Builder.CreateNeg(V.getVal(), "neg"));
849
850 assert(0 && "FIXME: This doesn't handle complex operands yet");
851}
852
853RValue CodeGenFunction::EmitUnaryNot(const UnaryOperator *E) {
854 // Unary not performs promotions, then complements its integer operand.
Chris Lattnerd4f08022007-08-08 17:43:05 +0000855 RValue V = EmitExpr(E->getSubExpr());
Reid Spencer5f016e22007-07-11 17:01:13 +0000856
857 if (V.isScalar())
858 return RValue::get(Builder.CreateNot(V.getVal(), "neg"));
859
860 assert(0 && "FIXME: This doesn't handle integer complex operands yet (GNU)");
861}
862
863
864/// C99 6.5.3.3
865RValue CodeGenFunction::EmitUnaryLNot(const UnaryOperator *E) {
866 // Compare operand to zero.
867 llvm::Value *BoolVal = EvaluateExprAsBool(E->getSubExpr());
868
869 // Invert value.
870 // TODO: Could dynamically modify easy computations here. For example, if
871 // the operand is an icmp ne, turn into icmp eq.
872 BoolVal = Builder.CreateNot(BoolVal, "lnot");
873
874 // ZExt result to int.
875 return RValue::get(Builder.CreateZExt(BoolVal, LLVMIntTy, "lnot.ext"));
876}
877
Chris Lattner5e3fbe52007-07-18 18:12:07 +0000878/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
879/// an integer (RetType).
880RValue CodeGenFunction::EmitSizeAlignOf(QualType TypeToSize,
881 QualType RetType, bool isSizeOf) {
882 /// FIXME: This doesn't handle VLAs yet!
883 std::pair<uint64_t, unsigned> Info =
884 getContext().getTypeInfo(TypeToSize, SourceLocation());
885
886 uint64_t Val = isSizeOf ? Info.first : Info.second;
887 Val /= 8; // Return size in bytes, not bits.
888
889 assert(RetType->isIntegerType() && "Result type must be an integer!");
890
891 unsigned ResultWidth = getContext().getTypeSize(RetType, SourceLocation());
892 return RValue::get(llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val)));
893}
894
Reid Spencer5f016e22007-07-11 17:01:13 +0000895
896//===--------------------------------------------------------------------===//
897// Binary Operator Emission
898//===--------------------------------------------------------------------===//
899
900// FIXME describe.
901QualType CodeGenFunction::
902EmitUsualArithmeticConversions(const BinaryOperator *E, RValue &LHS,
903 RValue &RHS) {
Chris Lattnerd4f08022007-08-08 17:43:05 +0000904 QualType LHSType = E->getLHS()->getType(), RHSType = E->getRHS()->getType();
905 LHS = EmitExpr(E->getLHS()), RHS = EmitExpr(E->getRHS());
Reid Spencer5f016e22007-07-11 17:01:13 +0000906
907 // If both operands have the same source type, we're done already.
908 if (LHSType == RHSType) return LHSType;
909
910 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
911 // The caller can deal with this (e.g. pointer + int).
912 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
913 return LHSType;
914
915 // At this point, we have two different arithmetic types.
916
917 // Handle complex types first (C99 6.3.1.8p1).
918 if (LHSType->isComplexType() || RHSType->isComplexType()) {
919 assert(0 && "FIXME: complex types unimp");
920#if 0
921 // if we have an integer operand, the result is the complex type.
922 if (rhs->isIntegerType())
923 return lhs;
924 if (lhs->isIntegerType())
925 return rhs;
926 return Context.maxComplexType(lhs, rhs);
927#endif
928 }
929
930 // If neither operand is complex, they must be scalars.
931 llvm::Value *LHSV = LHS.getVal();
932 llvm::Value *RHSV = RHS.getVal();
933
934 // If the LLVM types are already equal, then they only differed in sign, or it
935 // was something like char/signed char or double/long double.
936 if (LHSV->getType() == RHSV->getType())
937 return LHSType;
938
939 // Now handle "real" floating types (i.e. float, double, long double).
940 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) {
941 // if we have an integer operand, the result is the real floating type, and
942 // the integer converts to FP.
943 if (RHSType->isIntegerType()) {
944 // Promote the RHS to an FP type of the LHS, with the sign following the
945 // RHS.
946 if (RHSType->isSignedIntegerType())
947 RHS = RValue::get(Builder.CreateSIToFP(RHSV,LHSV->getType(),"promote"));
948 else
949 RHS = RValue::get(Builder.CreateUIToFP(RHSV,LHSV->getType(),"promote"));
950 return LHSType;
951 }
952
953 if (LHSType->isIntegerType()) {
954 // Promote the LHS to an FP type of the RHS, with the sign following the
955 // LHS.
956 if (LHSType->isSignedIntegerType())
957 LHS = RValue::get(Builder.CreateSIToFP(LHSV,RHSV->getType(),"promote"));
958 else
959 LHS = RValue::get(Builder.CreateUIToFP(LHSV,RHSV->getType(),"promote"));
960 return RHSType;
961 }
962
963 // Otherwise, they are two FP types. Promote the smaller operand to the
964 // bigger result.
965 QualType BiggerType = ASTContext::maxFloatingType(LHSType, RHSType);
966
967 if (BiggerType == LHSType)
968 RHS = RValue::get(Builder.CreateFPExt(RHSV, LHSV->getType(), "promote"));
969 else
970 LHS = RValue::get(Builder.CreateFPExt(LHSV, RHSV->getType(), "promote"));
971 return BiggerType;
972 }
973
974 // Finally, we have two integer types that are different according to C. Do
975 // a sign or zero extension if needed.
976
977 // Otherwise, one type is smaller than the other.
978 QualType ResTy = ASTContext::maxIntegerType(LHSType, RHSType);
979
980 if (LHSType == ResTy) {
981 if (RHSType->isSignedIntegerType())
982 RHS = RValue::get(Builder.CreateSExt(RHSV, LHSV->getType(), "promote"));
983 else
984 RHS = RValue::get(Builder.CreateZExt(RHSV, LHSV->getType(), "promote"));
985 } else {
986 assert(RHSType == ResTy && "Unknown conversion");
987 if (LHSType->isSignedIntegerType())
988 LHS = RValue::get(Builder.CreateSExt(LHSV, RHSV->getType(), "promote"));
989 else
990 LHS = RValue::get(Builder.CreateZExt(LHSV, RHSV->getType(), "promote"));
991 }
992 return ResTy;
993}
994
995/// EmitCompoundAssignmentOperands - Compound assignment operations (like +=)
996/// are strange in that the result of the operation is not the same type as the
997/// intermediate computation. This function emits the LHS and RHS operands of
998/// the compound assignment, promoting them to their common computation type.
999///
1000/// Since the LHS is an lvalue, and the result is stored back through it, we
1001/// return the lvalue as well as the LHS/RHS rvalues. On return, the LHS and
1002/// RHS values are both in the computation type for the operator.
1003void CodeGenFunction::
1004EmitCompoundAssignmentOperands(const CompoundAssignOperator *E,
1005 LValue &LHSLV, RValue &LHS, RValue &RHS) {
1006 LHSLV = EmitLValue(E->getLHS());
1007
1008 // Load the LHS and RHS operands.
1009 QualType LHSTy = E->getLHS()->getType();
1010 LHS = EmitLoadOfLValue(LHSLV, LHSTy);
Chris Lattnerd4f08022007-08-08 17:43:05 +00001011 RHS = EmitExpr(E->getRHS());
1012 QualType RHSTy = E->getRHS()->getType();
Reid Spencer5f016e22007-07-11 17:01:13 +00001013
1014 // Convert the LHS and RHS to the common evaluation type.
1015 LHS = EmitConversion(LHS, LHSTy, E->getComputationType());
1016 RHS = EmitConversion(RHS, RHSTy, E->getComputationType());
1017}
1018
1019/// EmitCompoundAssignmentResult - Given a result value in the computation type,
1020/// truncate it down to the actual result type, store it through the LHS lvalue,
1021/// and return it.
1022RValue CodeGenFunction::
1023EmitCompoundAssignmentResult(const CompoundAssignOperator *E,
1024 LValue LHSLV, RValue ResV) {
1025
1026 // Truncate back to the destination type.
1027 if (E->getComputationType() != E->getType())
1028 ResV = EmitConversion(ResV, E->getComputationType(), E->getType());
1029
1030 // Store the result value into the LHS.
1031 EmitStoreThroughLValue(ResV, LHSLV, E->getType());
1032
1033 // Return the result.
1034 return ResV;
1035}
1036
1037
1038RValue CodeGenFunction::EmitBinaryOperator(const BinaryOperator *E) {
1039 RValue LHS, RHS;
1040 switch (E->getOpcode()) {
1041 default:
1042 fprintf(stderr, "Unimplemented binary expr!\n");
1043 E->dump();
1044 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
1045 case BinaryOperator::Mul:
1046 EmitUsualArithmeticConversions(E, LHS, RHS);
1047 return EmitMul(LHS, RHS, E->getType());
1048 case BinaryOperator::Div:
1049 EmitUsualArithmeticConversions(E, LHS, RHS);
1050 return EmitDiv(LHS, RHS, E->getType());
1051 case BinaryOperator::Rem:
1052 EmitUsualArithmeticConversions(E, LHS, RHS);
1053 return EmitRem(LHS, RHS, E->getType());
Chris Lattner8b9023b2007-07-13 03:05:23 +00001054 case BinaryOperator::Add: {
1055 QualType ExprTy = E->getType();
1056 if (ExprTy->isPointerType()) {
1057 Expr *LHSExpr = E->getLHS();
Chris Lattnerd4f08022007-08-08 17:43:05 +00001058 LHS = EmitExpr(LHSExpr);
Chris Lattner8b9023b2007-07-13 03:05:23 +00001059 Expr *RHSExpr = E->getRHS();
Chris Lattnerd4f08022007-08-08 17:43:05 +00001060 RHS = EmitExpr(RHSExpr);
1061 return EmitPointerAdd(LHS, LHSExpr->getType(),
1062 RHS, RHSExpr->getType(), ExprTy);
Chris Lattner8b9023b2007-07-13 03:05:23 +00001063 } else {
1064 EmitUsualArithmeticConversions(E, LHS, RHS);
1065 return EmitAdd(LHS, RHS, ExprTy);
1066 }
1067 }
1068 case BinaryOperator::Sub: {
1069 QualType ExprTy = E->getType();
1070 Expr *LHSExpr = E->getLHS();
1071 if (LHSExpr->getType()->isPointerType()) {
Chris Lattnerd4f08022007-08-08 17:43:05 +00001072 LHS = EmitExpr(LHSExpr);
Chris Lattner8b9023b2007-07-13 03:05:23 +00001073 Expr *RHSExpr = E->getRHS();
Chris Lattnerd4f08022007-08-08 17:43:05 +00001074 RHS = EmitExpr(RHSExpr);
1075 return EmitPointerSub(LHS, LHSExpr->getType(),
1076 RHS, RHSExpr->getType(), ExprTy);
Chris Lattner8b9023b2007-07-13 03:05:23 +00001077 } else {
1078 EmitUsualArithmeticConversions(E, LHS, RHS);
1079 return EmitSub(LHS, RHS, ExprTy);
1080 }
1081 }
Reid Spencer5f016e22007-07-11 17:01:13 +00001082 case BinaryOperator::Shl:
Chris Lattnerd4f08022007-08-08 17:43:05 +00001083 LHS = EmitExpr(E->getLHS());
1084 RHS = EmitExpr(E->getRHS());
Reid Spencer5f016e22007-07-11 17:01:13 +00001085 return EmitShl(LHS, RHS, E->getType());
1086 case BinaryOperator::Shr:
Chris Lattnerd4f08022007-08-08 17:43:05 +00001087 LHS = EmitExpr(E->getLHS());
1088 RHS = EmitExpr(E->getRHS());
Reid Spencer5f016e22007-07-11 17:01:13 +00001089 return EmitShr(LHS, RHS, E->getType());
1090 case BinaryOperator::And:
1091 EmitUsualArithmeticConversions(E, LHS, RHS);
1092 return EmitAnd(LHS, RHS, E->getType());
1093 case BinaryOperator::Xor:
1094 EmitUsualArithmeticConversions(E, LHS, RHS);
1095 return EmitXor(LHS, RHS, E->getType());
1096 case BinaryOperator::Or :
1097 EmitUsualArithmeticConversions(E, LHS, RHS);
1098 return EmitOr(LHS, RHS, E->getType());
1099 case BinaryOperator::LAnd: return EmitBinaryLAnd(E);
1100 case BinaryOperator::LOr: return EmitBinaryLOr(E);
1101 case BinaryOperator::LT:
1102 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULT,
1103 llvm::ICmpInst::ICMP_SLT,
1104 llvm::FCmpInst::FCMP_OLT);
1105 case BinaryOperator::GT:
1106 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGT,
1107 llvm::ICmpInst::ICMP_SGT,
1108 llvm::FCmpInst::FCMP_OGT);
1109 case BinaryOperator::LE:
1110 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULE,
1111 llvm::ICmpInst::ICMP_SLE,
1112 llvm::FCmpInst::FCMP_OLE);
1113 case BinaryOperator::GE:
1114 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGE,
1115 llvm::ICmpInst::ICMP_SGE,
1116 llvm::FCmpInst::FCMP_OGE);
1117 case BinaryOperator::EQ:
1118 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_EQ,
1119 llvm::ICmpInst::ICMP_EQ,
1120 llvm::FCmpInst::FCMP_OEQ);
1121 case BinaryOperator::NE:
1122 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_NE,
1123 llvm::ICmpInst::ICMP_NE,
1124 llvm::FCmpInst::FCMP_UNE);
1125 case BinaryOperator::Assign:
1126 return EmitBinaryAssign(E);
1127
1128 case BinaryOperator::MulAssign: {
1129 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1130 LValue LHSLV;
1131 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1132 LHS = EmitMul(LHS, RHS, CAO->getComputationType());
1133 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1134 }
1135 case BinaryOperator::DivAssign: {
1136 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1137 LValue LHSLV;
1138 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1139 LHS = EmitDiv(LHS, RHS, CAO->getComputationType());
1140 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1141 }
1142 case BinaryOperator::RemAssign: {
1143 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1144 LValue LHSLV;
1145 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1146 LHS = EmitRem(LHS, RHS, CAO->getComputationType());
1147 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1148 }
1149 case BinaryOperator::AddAssign: {
1150 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1151 LValue LHSLV;
1152 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1153 LHS = EmitAdd(LHS, RHS, CAO->getComputationType());
1154 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1155 }
1156 case BinaryOperator::SubAssign: {
1157 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1158 LValue LHSLV;
1159 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1160 LHS = EmitSub(LHS, RHS, CAO->getComputationType());
1161 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1162 }
1163 case BinaryOperator::ShlAssign: {
1164 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1165 LValue LHSLV;
1166 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1167 LHS = EmitShl(LHS, RHS, CAO->getComputationType());
1168 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1169 }
1170 case BinaryOperator::ShrAssign: {
1171 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1172 LValue LHSLV;
1173 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1174 LHS = EmitShr(LHS, RHS, CAO->getComputationType());
1175 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1176 }
1177 case BinaryOperator::AndAssign: {
1178 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1179 LValue LHSLV;
1180 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1181 LHS = EmitAnd(LHS, RHS, CAO->getComputationType());
1182 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1183 }
1184 case BinaryOperator::OrAssign: {
1185 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1186 LValue LHSLV;
1187 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1188 LHS = EmitOr(LHS, RHS, CAO->getComputationType());
1189 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1190 }
1191 case BinaryOperator::XorAssign: {
1192 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1193 LValue LHSLV;
1194 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1195 LHS = EmitXor(LHS, RHS, CAO->getComputationType());
1196 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1197 }
1198 case BinaryOperator::Comma: return EmitBinaryComma(E);
1199 }
1200}
1201
1202RValue CodeGenFunction::EmitMul(RValue LHS, RValue RHS, QualType ResTy) {
1203 if (LHS.isScalar())
1204 return RValue::get(Builder.CreateMul(LHS.getVal(), RHS.getVal(), "mul"));
1205
Gabor Greif4db18f22007-07-13 23:33:18 +00001206 // Otherwise, this must be a complex number.
1207 llvm::Value *LHSR, *LHSI, *RHSR, *RHSI;
1208
1209 EmitLoadOfComplex(LHS, LHSR, LHSI);
1210 EmitLoadOfComplex(RHS, RHSR, RHSI);
1211
1212 llvm::Value *ResRl = Builder.CreateMul(LHSR, RHSR, "mul.rl");
1213 llvm::Value *ResRr = Builder.CreateMul(LHSI, RHSI, "mul.rr");
1214 llvm::Value *ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
1215
1216 llvm::Value *ResIl = Builder.CreateMul(LHSI, RHSR, "mul.il");
1217 llvm::Value *ResIr = Builder.CreateMul(LHSR, RHSI, "mul.ir");
1218 llvm::Value *ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
1219
1220 llvm::Value *Res = CreateTempAlloca(ConvertType(ResTy));
1221 EmitStoreOfComplex(ResR, ResI, Res);
1222 return RValue::getAggregate(Res);
Reid Spencer5f016e22007-07-11 17:01:13 +00001223}
1224
1225RValue CodeGenFunction::EmitDiv(RValue LHS, RValue RHS, QualType ResTy) {
1226 if (LHS.isScalar()) {
1227 llvm::Value *RV;
1228 if (LHS.getVal()->getType()->isFloatingPoint())
1229 RV = Builder.CreateFDiv(LHS.getVal(), RHS.getVal(), "div");
1230 else if (ResTy->isUnsignedIntegerType())
1231 RV = Builder.CreateUDiv(LHS.getVal(), RHS.getVal(), "div");
1232 else
1233 RV = Builder.CreateSDiv(LHS.getVal(), RHS.getVal(), "div");
1234 return RValue::get(RV);
1235 }
1236 assert(0 && "FIXME: This doesn't handle complex operands yet");
1237}
1238
1239RValue CodeGenFunction::EmitRem(RValue LHS, RValue RHS, QualType ResTy) {
1240 if (LHS.isScalar()) {
1241 llvm::Value *RV;
1242 // Rem in C can't be a floating point type: C99 6.5.5p2.
1243 if (ResTy->isUnsignedIntegerType())
1244 RV = Builder.CreateURem(LHS.getVal(), RHS.getVal(), "rem");
1245 else
1246 RV = Builder.CreateSRem(LHS.getVal(), RHS.getVal(), "rem");
1247 return RValue::get(RV);
1248 }
1249
1250 assert(0 && "FIXME: This doesn't handle complex operands yet");
1251}
1252
1253RValue CodeGenFunction::EmitAdd(RValue LHS, RValue RHS, QualType ResTy) {
1254 if (LHS.isScalar())
1255 return RValue::get(Builder.CreateAdd(LHS.getVal(), RHS.getVal(), "add"));
1256
1257 // Otherwise, this must be a complex number.
1258 llvm::Value *LHSR, *LHSI, *RHSR, *RHSI;
1259
1260 EmitLoadOfComplex(LHS, LHSR, LHSI);
1261 EmitLoadOfComplex(RHS, RHSR, RHSI);
1262
1263 llvm::Value *ResR = Builder.CreateAdd(LHSR, RHSR, "add.r");
1264 llvm::Value *ResI = Builder.CreateAdd(LHSI, RHSI, "add.i");
1265
1266 llvm::Value *Res = CreateTempAlloca(ConvertType(ResTy));
1267 EmitStoreOfComplex(ResR, ResI, Res);
1268 return RValue::getAggregate(Res);
1269}
1270
Chris Lattner8b9023b2007-07-13 03:05:23 +00001271RValue CodeGenFunction::EmitPointerAdd(RValue LHS, QualType LHSTy,
1272 RValue RHS, QualType RHSTy,
1273 QualType ResTy) {
1274 llvm::Value *LHSValue = LHS.getVal();
1275 llvm::Value *RHSValue = RHS.getVal();
1276 if (LHSTy->isPointerType()) {
1277 // pointer + int
1278 return RValue::get(Builder.CreateGEP(LHSValue, RHSValue, "add.ptr"));
1279 } else {
1280 // int + pointer
1281 return RValue::get(Builder.CreateGEP(RHSValue, LHSValue, "add.ptr"));
1282 }
1283}
1284
Reid Spencer5f016e22007-07-11 17:01:13 +00001285RValue CodeGenFunction::EmitSub(RValue LHS, RValue RHS, QualType ResTy) {
1286 if (LHS.isScalar())
1287 return RValue::get(Builder.CreateSub(LHS.getVal(), RHS.getVal(), "sub"));
1288
1289 assert(0 && "FIXME: This doesn't handle complex operands yet");
1290}
1291
Chris Lattner8b9023b2007-07-13 03:05:23 +00001292RValue CodeGenFunction::EmitPointerSub(RValue LHS, QualType LHSTy,
1293 RValue RHS, QualType RHSTy,
1294 QualType ResTy) {
1295 llvm::Value *LHSValue = LHS.getVal();
1296 llvm::Value *RHSValue = RHS.getVal();
1297 if (const PointerType *RHSPtrType =
1298 dyn_cast<PointerType>(RHSTy.getTypePtr())) {
1299 // pointer - pointer
1300 const PointerType *LHSPtrType = cast<PointerType>(LHSTy.getTypePtr());
1301 QualType LHSElementType = LHSPtrType->getPointeeType();
1302 assert(LHSElementType == RHSPtrType->getPointeeType() &&
1303 "can't subtract pointers with differing element types");
Chris Lattner99e0d792007-07-16 05:43:05 +00001304 uint64_t ElementSize = getContext().getTypeSize(LHSElementType,
Chris Lattnerd2d2a112007-07-14 01:29:45 +00001305 SourceLocation()) / 8;
Chris Lattner8b9023b2007-07-13 03:05:23 +00001306 const llvm::Type *ResultType = ConvertType(ResTy);
1307 llvm::Value *CastLHS = Builder.CreatePtrToInt(LHSValue, ResultType,
1308 "sub.ptr.lhs.cast");
1309 llvm::Value *CastRHS = Builder.CreatePtrToInt(RHSValue, ResultType,
1310 "sub.ptr.rhs.cast");
1311 llvm::Value *BytesBetween = Builder.CreateSub(CastLHS, CastRHS,
1312 "sub.ptr.sub");
Chris Lattner99e0d792007-07-16 05:43:05 +00001313
1314 // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
1315 // remainder. As such, we handle common power-of-two cases here to generate
1316 // better code.
1317 if (llvm::isPowerOf2_64(ElementSize)) {
1318 llvm::Value *ShAmt =
1319 llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
1320 return RValue::get(Builder.CreateAShr(BytesBetween, ShAmt,"sub.ptr.shr"));
1321 } else {
1322 // Otherwise, do a full sdiv.
1323 llvm::Value *BytesPerElement =
1324 llvm::ConstantInt::get(ResultType, ElementSize);
1325 return RValue::get(Builder.CreateSDiv(BytesBetween, BytesPerElement,
1326 "sub.ptr.div"));
1327 }
Chris Lattner8b9023b2007-07-13 03:05:23 +00001328 } else {
1329 // pointer - int
1330 llvm::Value *NegatedRHS = Builder.CreateNeg(RHSValue, "sub.ptr.neg");
1331 return RValue::get(Builder.CreateGEP(LHSValue, NegatedRHS, "sub.ptr"));
1332 }
1333}
1334
Reid Spencer5f016e22007-07-11 17:01:13 +00001335RValue CodeGenFunction::EmitShl(RValue LHSV, RValue RHSV, QualType ResTy) {
1336 llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
1337
1338 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
1339 // RHS to the same size as the LHS.
1340 if (LHS->getType() != RHS->getType())
1341 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
1342
1343 return RValue::get(Builder.CreateShl(LHS, RHS, "shl"));
1344}
1345
1346RValue CodeGenFunction::EmitShr(RValue LHSV, RValue RHSV, QualType ResTy) {
1347 llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
1348
1349 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
1350 // RHS to the same size as the LHS.
1351 if (LHS->getType() != RHS->getType())
1352 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
1353
1354 if (ResTy->isUnsignedIntegerType())
1355 return RValue::get(Builder.CreateLShr(LHS, RHS, "shr"));
1356 else
1357 return RValue::get(Builder.CreateAShr(LHS, RHS, "shr"));
1358}
1359
1360RValue CodeGenFunction::EmitBinaryCompare(const BinaryOperator *E,
1361 unsigned UICmpOpc, unsigned SICmpOpc,
1362 unsigned FCmpOpc) {
1363 RValue LHS, RHS;
1364 EmitUsualArithmeticConversions(E, LHS, RHS);
1365
1366 llvm::Value *Result;
1367 if (LHS.isScalar()) {
1368 if (LHS.getVal()->getType()->isFloatingPoint()) {
1369 Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1370 LHS.getVal(), RHS.getVal(), "cmp");
1371 } else if (E->getLHS()->getType()->isUnsignedIntegerType()) {
1372 // FIXME: This check isn't right for "unsigned short < int" where ushort
1373 // promotes to int and does a signed compare.
1374 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1375 LHS.getVal(), RHS.getVal(), "cmp");
1376 } else {
1377 // Signed integers and pointers.
1378 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1379 LHS.getVal(), RHS.getVal(), "cmp");
1380 }
1381 } else {
1382 // Struct/union/complex
Gabor Greif4db18f22007-07-13 23:33:18 +00001383 llvm::Value *LHSR, *LHSI, *RHSR, *RHSI, *ResultR, *ResultI;
1384 EmitLoadOfComplex(LHS, LHSR, LHSI);
1385 EmitLoadOfComplex(RHS, RHSR, RHSI);
1386
Gabor Greifd5e0d982007-07-14 20:05:18 +00001387 // FIXME: need to consider _Complex over integers too!
1388
Gabor Greif4db18f22007-07-13 23:33:18 +00001389 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1390 LHSR, RHSR, "cmp.r");
1391 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1392 LHSI, RHSI, "cmp.i");
1393 if (BinaryOperator::EQ == E->getOpcode()) {
1394 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1395 } else if (BinaryOperator::NE == E->getOpcode()) {
1396 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1397 } else {
1398 assert(0 && "Complex comparison other than == or != ?");
1399 }
Reid Spencer5f016e22007-07-11 17:01:13 +00001400 }
Gabor Greif4db18f22007-07-13 23:33:18 +00001401
Reid Spencer5f016e22007-07-11 17:01:13 +00001402 // ZExt result to int.
1403 return RValue::get(Builder.CreateZExt(Result, LLVMIntTy, "cmp.ext"));
1404}
1405
1406RValue CodeGenFunction::EmitAnd(RValue LHS, RValue RHS, QualType ResTy) {
1407 if (LHS.isScalar())
1408 return RValue::get(Builder.CreateAnd(LHS.getVal(), RHS.getVal(), "and"));
1409
1410 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1411}
1412
1413RValue CodeGenFunction::EmitXor(RValue LHS, RValue RHS, QualType ResTy) {
1414 if (LHS.isScalar())
1415 return RValue::get(Builder.CreateXor(LHS.getVal(), RHS.getVal(), "xor"));
1416
1417 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1418}
1419
1420RValue CodeGenFunction::EmitOr(RValue LHS, RValue RHS, QualType ResTy) {
1421 if (LHS.isScalar())
1422 return RValue::get(Builder.CreateOr(LHS.getVal(), RHS.getVal(), "or"));
1423
1424 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
1425}
1426
1427RValue CodeGenFunction::EmitBinaryLAnd(const BinaryOperator *E) {
1428 llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
1429
1430 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
1431 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
1432
1433 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1434 Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
1435
1436 EmitBlock(RHSBlock);
1437 llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
1438
1439 // Reaquire the RHS block, as there may be subblocks inserted.
1440 RHSBlock = Builder.GetInsertBlock();
1441 EmitBlock(ContBlock);
1442
1443 // Create a PHI node. If we just evaluted the LHS condition, the result is
1444 // false. If we evaluated both, the result is the RHS condition.
1445 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
1446 PN->reserveOperandSpace(2);
1447 PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
1448 PN->addIncoming(RHSCond, RHSBlock);
1449
1450 // ZExt result to int.
1451 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "land.ext"));
1452}
1453
1454RValue CodeGenFunction::EmitBinaryLOr(const BinaryOperator *E) {
1455 llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
1456
1457 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
1458 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
1459
1460 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1461 Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
1462
1463 EmitBlock(RHSBlock);
1464 llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
1465
1466 // Reaquire the RHS block, as there may be subblocks inserted.
1467 RHSBlock = Builder.GetInsertBlock();
1468 EmitBlock(ContBlock);
1469
1470 // Create a PHI node. If we just evaluted the LHS condition, the result is
1471 // true. If we evaluated both, the result is the RHS condition.
1472 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
1473 PN->reserveOperandSpace(2);
1474 PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
1475 PN->addIncoming(RHSCond, RHSBlock);
1476
1477 // ZExt result to int.
1478 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "lor.ext"));
1479}
1480
1481RValue CodeGenFunction::EmitBinaryAssign(const BinaryOperator *E) {
Chris Lattnerd4f08022007-08-08 17:43:05 +00001482 assert(E->getLHS()->getType().getCanonicalType() ==
1483 E->getRHS()->getType().getCanonicalType() && "Invalid assignment");
Reid Spencer5f016e22007-07-11 17:01:13 +00001484 LValue LHS = EmitLValue(E->getLHS());
Chris Lattnerd4f08022007-08-08 17:43:05 +00001485 RValue RHS = EmitExpr(E->getRHS());
Reid Spencer5f016e22007-07-11 17:01:13 +00001486
1487 // Store the value into the LHS.
1488 EmitStoreThroughLValue(RHS, LHS, E->getType());
1489
1490 // Return the converted RHS.
1491 return RHS;
1492}
1493
1494
1495RValue CodeGenFunction::EmitBinaryComma(const BinaryOperator *E) {
1496 EmitExpr(E->getLHS());
1497 return EmitExpr(E->getRHS());
1498}
Chris Lattnerb0a721a2007-07-13 05:18:11 +00001499
1500RValue CodeGenFunction::EmitConditionalOperator(const ConditionalOperator *E) {
1501 llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?");
1502 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:");
1503 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont");
1504
1505 llvm::Value *Cond = EvaluateExprAsBool(E->getCond());
1506 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
1507
Chris Lattner06c8d962007-07-14 00:01:01 +00001508 // FIXME: Implement this for aggregate values.
1509
Chris Lattnerb0a721a2007-07-13 05:18:11 +00001510 EmitBlock(LHSBlock);
Chris Lattnerd4f08022007-08-08 17:43:05 +00001511 // Handle the GNU extension for missing LHS.
1512 llvm::Value *LHSValue = E->getLHS() ? EmitExpr(E->getLHS()).getVal() : Cond;
Chris Lattnerb0a721a2007-07-13 05:18:11 +00001513 Builder.CreateBr(ContBlock);
1514 LHSBlock = Builder.GetInsertBlock();
1515
1516 EmitBlock(RHSBlock);
Chris Lattnerd4f08022007-08-08 17:43:05 +00001517
1518 llvm::Value *RHSValue = EmitExpr(E->getRHS()).getVal();
Chris Lattnerb0a721a2007-07-13 05:18:11 +00001519 Builder.CreateBr(ContBlock);
1520 RHSBlock = Builder.GetInsertBlock();
1521
1522 const llvm::Type *LHSType = LHSValue->getType();
1523 assert(LHSType == RHSValue->getType() && "?: LHS & RHS must have same type");
1524
1525 EmitBlock(ContBlock);
1526 llvm::PHINode *PN = Builder.CreatePHI(LHSType, "cond");
1527 PN->reserveOperandSpace(2);
1528 PN->addIncoming(LHSValue, LHSBlock);
1529 PN->addIncoming(RHSValue, RHSBlock);
1530
1531 return RValue::get(PN);
1532}