AddressSanitizer run-time library. Not yet integrated with the compiler-rt build system, but can be built using the old makefile. See details in README.txt

git-svn-id: https://llvm.org/svn/llvm-project/compiler-rt/trunk@145463 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/asan/tests/asan_noinst_test.cc b/lib/asan/tests/asan_noinst_test.cc
new file mode 100644
index 0000000..ab218e9
--- /dev/null
+++ b/lib/asan/tests/asan_noinst_test.cc
@@ -0,0 +1,331 @@
+//===-- asan_noinst_test.cc ------------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of AddressSanitizer, an address sanity checker.
+//
+// This test file should be compiled w/o asan instrumentation.
+//===----------------------------------------------------------------------===//
+#include "asan_allocator.h"
+#include "asan_interface.h"
+#include "asan_internal.h"
+#include "asan_mapping.h"
+#include "asan_stack.h"
+#include "asan_test_utils.h"
+
+#include <assert.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <vector>
+#include <algorithm>
+#include "gtest/gtest.h"
+
+// Simple stand-alone pseudorandom number generator.
+// Current algorithm is ANSI C linear congruential PRNG.
+static inline uint32_t my_rand(uint32_t* state) {
+  return (*state = *state * 1103515245 + 12345) >> 16;
+}
+
+static uint32_t global_seed = 0;
+
+
+TEST(AddressSanitizer, InternalSimpleDeathTest) {
+  EXPECT_DEATH(exit(1), "");
+}
+
+static void MallocStress(size_t n) {
+  uint32_t seed = my_rand(&global_seed);
+  __asan::AsanStackTrace stack1;
+  stack1.trace[0] = 0xa123;
+  stack1.trace[1] = 0xa456;
+  stack1.size = 2;
+
+  __asan::AsanStackTrace stack2;
+  stack2.trace[0] = 0xb123;
+  stack2.trace[1] = 0xb456;
+  stack2.size = 2;
+
+  __asan::AsanStackTrace stack3;
+  stack3.trace[0] = 0xc123;
+  stack3.trace[1] = 0xc456;
+  stack3.size = 2;
+
+  std::vector<void *> vec;
+  for (size_t i = 0; i < n; i++) {
+    if ((i % 3) == 0) {
+      if (vec.empty()) continue;
+      size_t idx = my_rand(&seed) % vec.size();
+      void *ptr = vec[idx];
+      vec[idx] = vec.back();
+      vec.pop_back();
+      __asan::asan_free(ptr, &stack1);
+    } else {
+      size_t size = my_rand(&seed) % 1000 + 1;
+      switch ((my_rand(&seed) % 128)) {
+        case 0: size += 1024; break;
+        case 1: size += 2048; break;
+        case 2: size += 4096; break;
+      }
+      size_t alignment = 1 << (my_rand(&seed) % 10 + 1);
+      char *ptr = (char*)__asan::asan_memalign(alignment, size, &stack2);
+      vec.push_back(ptr);
+      ptr[0] = 0;
+      ptr[size-1] = 0;
+      ptr[size/2] = 0;
+    }
+  }
+  for (size_t i = 0; i < vec.size(); i++)
+    __asan::asan_free(vec[i], &stack3);
+}
+
+
+TEST(AddressSanitizer, NoInstMallocTest) {
+#ifdef __arm__
+  MallocStress(300000);
+#else
+  MallocStress(1000000);
+#endif
+}
+
+static void PrintShadow(const char *tag, uintptr_t ptr, size_t size) {
+  fprintf(stderr, "%s shadow: %lx size % 3ld: ", tag, (long)ptr, (long)size);
+  uintptr_t prev_shadow = 0;
+  for (intptr_t i = -32; i < (intptr_t)size + 32; i++) {
+    uintptr_t shadow = __asan::MemToShadow(ptr + i);
+    if (i == 0 || i == (intptr_t)size)
+      fprintf(stderr, ".");
+    if (shadow != prev_shadow) {
+      prev_shadow = shadow;
+      fprintf(stderr, "%02x", (int)*(uint8_t*)shadow);
+    }
+  }
+  fprintf(stderr, "\n");
+}
+
+TEST(AddressSanitizer, DISABLED_InternalPrintShadow) {
+  for (size_t size = 1; size <= 513; size++) {
+    char *ptr = new char[size];
+    PrintShadow("m", (uintptr_t)ptr, size);
+    delete [] ptr;
+    PrintShadow("f", (uintptr_t)ptr, size);
+  }
+}
+
+static uintptr_t pc_array[] = {
+#if __WORDSIZE == 64
+  0x7effbf756068ULL,
+  0x7effbf75e5abULL,
+  0x7effc0625b7cULL,
+  0x7effc05b8997ULL,
+  0x7effbf990577ULL,
+  0x7effbf990c56ULL,
+  0x7effbf992f3cULL,
+  0x7effbf950c22ULL,
+  0x7effc036dba0ULL,
+  0x7effc03638a3ULL,
+  0x7effc035be4aULL,
+  0x7effc0539c45ULL,
+  0x7effc0539a65ULL,
+  0x7effc03db9b3ULL,
+  0x7effc03db100ULL,
+  0x7effc037c7b8ULL,
+  0x7effc037bfffULL,
+  0x7effc038b777ULL,
+  0x7effc038021cULL,
+  0x7effc037c7d1ULL,
+  0x7effc037bfffULL,
+  0x7effc038b777ULL,
+  0x7effc038021cULL,
+  0x7effc037c7d1ULL,
+  0x7effc037bfffULL,
+  0x7effc038b777ULL,
+  0x7effc038021cULL,
+  0x7effc037c7d1ULL,
+  0x7effc037bfffULL,
+  0x7effc0520d26ULL,
+  0x7effc009ddffULL,
+  0x7effbf90bb50ULL,
+  0x7effbdddfa69ULL,
+  0x7effbdde1fe2ULL,
+  0x7effbdde2424ULL,
+  0x7effbdde27b3ULL,
+  0x7effbddee53bULL,
+  0x7effbdde1988ULL,
+  0x7effbdde0904ULL,
+  0x7effc106ce0dULL,
+  0x7effbcc3fa04ULL,
+  0x7effbcc3f6a4ULL,
+  0x7effbcc3e726ULL,
+  0x7effbcc40852ULL,
+  0x7effb681ec4dULL,
+#endif  // __WORDSIZE
+  0xB0B5E768,
+  0x7B682EC1,
+  0x367F9918,
+  0xAE34E13,
+  0xBA0C6C6,
+  0x13250F46,
+  0xA0D6A8AB,
+  0x2B07C1A8,
+  0x6C844F4A,
+  0x2321B53,
+  0x1F3D4F8F,
+  0x3FE2924B,
+  0xB7A2F568,
+  0xBD23950A,
+  0x61020930,
+  0x33E7970C,
+  0x405998A1,
+  0x59F3551D,
+  0x350E3028,
+  0xBC55A28D,
+  0x361F3AED,
+  0xBEAD0F73,
+  0xAEF28479,
+  0x757E971F,
+  0xAEBA450,
+  0x43AD22F5,
+  0x8C2C50C4,
+  0x7AD8A2E1,
+  0x69EE4EE8,
+  0xC08DFF,
+  0x4BA6538,
+  0x3708AB2,
+  0xC24B6475,
+  0x7C8890D7,
+  0x6662495F,
+  0x9B641689,
+  0xD3596B,
+  0xA1049569,
+  0x44CBC16,
+  0x4D39C39F
+};
+
+void CompressStackTraceTest(size_t n_iter) {
+  uint32_t seed = my_rand(&global_seed);
+  const size_t kNumPcs = ASAN_ARRAY_SIZE(pc_array);
+  uint32_t compressed[2 * kNumPcs];
+
+  for (size_t iter = 0; iter < n_iter; iter++) {
+    std::random_shuffle(pc_array, pc_array + kNumPcs);
+    __asan::AsanStackTrace stack0, stack1;
+    stack0.CopyFrom(pc_array, kNumPcs);
+    stack0.size = std::max((size_t)1, (size_t)my_rand(&seed) % stack0.size);
+    size_t compress_size =
+      std::max((size_t)2, (size_t)my_rand(&seed) % (2 * kNumPcs));
+    size_t n_frames =
+      __asan::AsanStackTrace::CompressStack(&stack0, compressed, compress_size);
+    assert(n_frames <= stack0.size);
+    __asan::AsanStackTrace::UncompressStack(&stack1, compressed, compress_size);
+    assert(stack1.size == n_frames);
+    for (size_t i = 0; i < stack1.size; i++) {
+      assert(stack0.trace[i] == stack1.trace[i]);
+    }
+  }
+}
+
+TEST(AddressSanitizer, CompressStackTraceTest) {
+  CompressStackTraceTest(10000);
+}
+
+void CompressStackTraceBenchmark(size_t n_iter) {
+  const size_t kNumPcs = ASAN_ARRAY_SIZE(pc_array);
+  uint32_t compressed[2 * kNumPcs];
+  std::random_shuffle(pc_array, pc_array + kNumPcs);
+
+  __asan::AsanStackTrace stack0;
+  stack0.CopyFrom(pc_array, kNumPcs);
+  stack0.size = kNumPcs;
+  for (size_t iter = 0; iter < n_iter; iter++) {
+    size_t compress_size = kNumPcs;
+    size_t n_frames =
+      __asan::AsanStackTrace::CompressStack(&stack0, compressed, compress_size);
+    Ident(n_frames);
+  }
+}
+
+TEST(AddressSanitizer, CompressStackTraceBenchmark) {
+  CompressStackTraceBenchmark(1 << 24);
+}
+
+TEST(AddressSanitizer, QuarantineTest) {
+  __asan::AsanStackTrace stack;
+  stack.trace[0] = 0x890;
+  stack.size = 1;
+
+  const int size = 32;
+  void *p = __asan::asan_malloc(size, &stack);
+  __asan::asan_free(p, &stack);
+  size_t i;
+  size_t max_i = 1 << 30;
+  for (i = 0; i < max_i; i++) {
+    void *p1 = __asan::asan_malloc(size, &stack);
+    __asan::asan_free(p1, &stack);
+    if (p1 == p) break;
+  }
+  // fprintf(stderr, "i=%ld\n", i);
+  EXPECT_GE(i, 100000U);
+  EXPECT_LT(i, max_i);
+}
+
+void *ThreadedQuarantineTestWorker(void *unused) {
+  uint32_t seed = my_rand(&global_seed);
+  __asan::AsanStackTrace stack;
+  stack.trace[0] = 0x890;
+  stack.size = 1;
+
+  for (size_t i = 0; i < 1000; i++) {
+    void *p = __asan::asan_malloc(1 + (my_rand(&seed) % 4000), &stack);
+    __asan::asan_free(p, &stack);
+  }
+  return NULL;
+}
+
+// Check that the thread local allocators are flushed when threads are
+// destroyed.
+TEST(AddressSanitizer, ThreadedQuarantineTest) {
+  const int n_threads = 3000;
+  bool old_flag_stats = __asan_enable_statistics(true);
+  size_t mmaped1 = __asan_get_heap_size();
+  for (int i = 0; i < n_threads; i++) {
+    pthread_t t;
+    pthread_create(&t, NULL, ThreadedQuarantineTestWorker, 0);
+    pthread_join(t, 0);
+    size_t mmaped2 = __asan_get_heap_size();
+    EXPECT_LT(mmaped2 - mmaped1, 320U * (1 << 20));
+  }
+  __asan_enable_statistics(old_flag_stats);
+}
+
+void *ThreadedOneSizeMallocStress(void *unused) {
+  __asan::AsanStackTrace stack;
+  stack.trace[0] = 0x890;
+  stack.size = 1;
+  const size_t kNumMallocs = 1000;
+  for (int iter = 0; iter < 1000; iter++) {
+    void *p[kNumMallocs];
+    for (size_t i = 0; i < kNumMallocs; i++) {
+      p[i] = __asan::asan_malloc(32, &stack);
+    }
+    for (size_t i = 0; i < kNumMallocs; i++) {
+      __asan::asan_free(p[i], &stack);
+    }
+  }
+  return NULL;
+}
+
+TEST(AddressSanitizer, ThreadedOneSizeMallocStressTest) {
+  const int kNumThreads = 4;
+  pthread_t t[kNumThreads];
+  for (int i = 0; i < kNumThreads; i++) {
+    pthread_create(&t[i], 0, ThreadedOneSizeMallocStress, 0);
+  }
+  for (int i = 0; i < kNumThreads; i++) {
+    pthread_join(t[i], 0);
+  }
+}