commit | 9ca6039b030a5c83062cfec9a5ff52f42814fa13 | [log] [tgz] |
---|---|---|
author | A. Cody Schuffelen <schuffelen@google.com> | Mon Dec 23 18:27:11 2019 -0800 |
committer | Commit Bot <commit-bot@chromium.org> | Fri Feb 21 21:52:53 2020 +0000 |
tree | da4efa052a2f0afe1b736a26ad83eb216c90b7e0 | |
parent | 4f48eab6027a3ab3e4b87893f7ec275f67f62922 [diff] |
Support generating and opening backing files The new functionality can be invoked through "crosvm create_qcow2 --backing_file=backing new_file". The old behavior of creating a qcow image with a particular size is still available with its original syntax. This is relevant to implement as by default something like qemu-img will create a new image that assumes the backing file is raw or qcow, while crosvm can use its knowledge of other formats (such as composite disk, and later android sparse) to determine the true size of the backing file. TEST=unit tests BUG=b:140069322 Change-Id: I22de6a79c6d8566a9fcb0bc8124e2d74fea9ca55 Reviewed-on: https://chromium-review.googlesource.com/c/chromiumos/platform/crosvm/+/1982833 Reviewed-by: Daniel Verkamp <dverkamp@chromium.org> Tested-by: kokoro <noreply+kokoro@google.com> Commit-Queue: Daniel Verkamp <dverkamp@chromium.org>
This component, known as crosvm, runs untrusted operating systems along with virtualized devices. This only runs VMs through the Linux's KVM interface. What makes crosvm unique is a focus on safety within the programming language and a sandbox around the virtual devices to protect the kernel from attack in case of an exploit in the devices.
The channel #crosvm on freenode is used for technical discussion related to crosvm development and integration.
See the README from the docker
subdirectory to learn how to build crosvm in enviroments outside of the Chrome OS chroot.
To see the usage information for your version of crosvm, run crosvm
or crosvm run --help
.
To run a very basic VM with just a kernel and default devices:
$ crosvm run "${KERNEL_PATH}"
The uncompressed kernel image, also known as vmlinux, can be found in your kernel build directory in the case of x86 at arch/x86/boot/compressed/vmlinux
.
In most cases, you will want to give the VM a virtual block device to use as a root file system:
$ crosvm run -r "${ROOT_IMAGE}" "${KERNEL_PATH}"
The root image must be a path to a disk image formatted in a way that the kernel can read. Typically this is a squashfs image made with mksquashfs
or an ext4 image made with mkfs.ext4
. By using the -r
argument, the kernel is automatically told to use that image as the root, and therefore can only be given once. More disks can be given with -d
or --rwdisk
if a writable disk is desired.
To run crosvm with a writable rootfs:
WARNING: Writable disks are at risk of corruption by a malicious or malfunctioning guest OS.
crosvm run --rwdisk "${ROOT_IMAGE}" -p "root=/dev/vda" vmlinux
NOTE: If more disks arguments are added prior to the desired rootfs image, the
root=/dev/vda
must be adjusted to the appropriate letter.
If the control socket was enabled with -s
, the main process can be controlled while crosvm is running. To tell crosvm to stop and exit, for example:
NOTE: If the socket path given is for a directory, a socket name underneath that path will be generated based on crosvm's PID.
$ crosvm run -s /run/crosvm.sock ${USUAL_CROSVM_ARGS} <in another shell> $ crosvm stop /run/crosvm.sock
WARNING: The guest OS will not be notified or gracefully shutdown.
This will cause the original crosvm process to exit in an orderly fashion, allowing it to clean up any OS resources that might have stuck around if crosvm were terminated early.
By default crosvm runs in multiprocess mode. Each device that supports running inside of a sandbox will run in a jailed child process of crosvm. The appropriate minijail seccomp policy files must be present either in /usr/share/policy/crosvm
or in the path specified by the --seccomp-policy-dir
argument. The sandbox can be disabled for testing with the --disable-sandbox
option.
Virtio Wayland support requires special support on the part of the guest and as such is unlikely to work out of the box unless you are using a Chrome OS kernel along with a termina
rootfs.
To use it, ensure that the XDG_RUNTIME_DIR
enviroment variable is set and that the path $XDG_RUNTIME_DIR/wayland-0
points to the socket of the Wayland compositor you would like the guest to use.
The following are crosvm's default arguments and how to override them.
-m
)-c
)-r
, -d
, or --rwdisk
)--host_ip
, --netmask
, and --mac
)XDG_RUNTIME_DIR
enviroment variable is set (disable with --no-wl
)-p
)--disable-sandbox
)-s
)A Linux kernel with KVM support (check for /dev/kvm
) is required to run crosvm. In order to run certain devices, there are additional system requirements:
virtio-wayland
- The memfd_create
syscall, introduced in Linux 3.17, and a Wayland compositor.vsock
- Host Linux kernel with vhost-vsock support, introduced in Linux 4.8.multiprocess
- Host Linux kernel with seccomp-bpf and Linux namespacing support.virtio-net
- Host Linux kernel with TUN/TAP support (check for /dev/net/tun
) and running with CAP_NET_ADMIN
privileges.Device | Description |
---|---|
CMOS/RTC | Used to get the current calendar time. |
i8042 | Used by the guest kernel to exit crosvm. |
serial | x86 I/O port driven serial devices that print to stdout and take input from stdin. |
virtio-block | Basic read/write block device. |
virtio-net | Device to interface the host and guest networks. |
virtio-rng | Entropy source used to seed guest OS's entropy pool. |
virtio-vsock | Enabled VSOCKs for the guests. |
virtio-wayland | Allowed guest to use host Wayland socket. |
build_test
There are no automated tests run before code is committed to crosvm. In order to maintain sanity, please execute build_test
before submitting code for review. All tests should be passing or ignored and there should be no compiler warnings or errors. All supported architectures are built, but only tests for x86_64 are run. In order to build everything without failures, sysroots must be supplied for each architecture. See build_test -h
for more information.
rustfmt
All code should be formatted with rustfmt
. We have a script that applies rustfmt to all Rust code in the crosvm repo: please run bin/fmt
before checking in a change. This is different from cargo fmt --all
which formats multiple crates but a single workspace only; crosvm consists of multiple workspaces.
With a few exceptions, external dependencies inside of the Cargo.toml
files are not allowed. The reason being that community made crates tend to explode the binary size by including dozens of transitive dependencies. All these dependencies also must be reviewed to ensure their suitability to the crosvm project. Currently allowed crates are:
cc
- Build time dependency needed to build C source code used in crosvm.libc
- Required to use the standard library, this crate is a simple wrapper around libc
's symbols.The crosvm source code is written in Rust and C. To build, crosvm generally requires the most recent stable version of rustc.
Source code is organized into crates, each with their own unit tests. These crates are:
crosvm
- The top-level binary front-end for using crosvm.devices
- Virtual devices exposed to the guest OS.io_jail
- Creates jailed process using libminijail
.kernel_loader
- Loads elf64 kernel files to a slice of memory.kvm_sys
- Low-level (mostly) auto-generated structures and constants for using KVM.kvm
- Unsafe, low-level wrapper code for using kvm_sys
.net_sys
- Low-level (mostly) auto-generated structures and constants for creating TUN/TAP devices.net_util
- Wrapper for creating TUN/TAP devices.sys_util
- Mostly safe wrappers for small system facilities such as eventfd
or syslog
.syscall_defines
- Lists of syscall numbers in each architecture used to make syscalls not supported in libc
.vhost
- Wrappers for creating vhost based devices.virtio_sys
- Low-level (mostly) auto-generated structures and constants for interfacing with kernel vhost support.vm_control
- IPC for the VM.x86_64
- Support code specific to 64 bit intel machines.The seccomp
folder contains minijail seccomp policy files for each sandboxed device. Because some syscalls vary by architecture, the seccomp policies are split by architecture.