| SUBROUTINE ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) |
| * .. Scalar Arguments .. |
| INTEGER INCX,N |
| CHARACTER DIAG,TRANS,UPLO |
| * .. |
| * .. Array Arguments .. |
| DOUBLE COMPLEX AP(*),X(*) |
| * .. |
| * |
| * Purpose |
| * ======= |
| * |
| * ZTPMV performs one of the matrix-vector operations |
| * |
| * x := A*x, or x := A'*x, or x := conjg( A' )*x, |
| * |
| * where x is an n element vector and A is an n by n unit, or non-unit, |
| * upper or lower triangular matrix, supplied in packed form. |
| * |
| * Arguments |
| * ========== |
| * |
| * UPLO - CHARACTER*1. |
| * On entry, UPLO specifies whether the matrix is an upper or |
| * lower triangular matrix as follows: |
| * |
| * UPLO = 'U' or 'u' A is an upper triangular matrix. |
| * |
| * UPLO = 'L' or 'l' A is a lower triangular matrix. |
| * |
| * Unchanged on exit. |
| * |
| * TRANS - CHARACTER*1. |
| * On entry, TRANS specifies the operation to be performed as |
| * follows: |
| * |
| * TRANS = 'N' or 'n' x := A*x. |
| * |
| * TRANS = 'T' or 't' x := A'*x. |
| * |
| * TRANS = 'C' or 'c' x := conjg( A' )*x. |
| * |
| * Unchanged on exit. |
| * |
| * DIAG - CHARACTER*1. |
| * On entry, DIAG specifies whether or not A is unit |
| * triangular as follows: |
| * |
| * DIAG = 'U' or 'u' A is assumed to be unit triangular. |
| * |
| * DIAG = 'N' or 'n' A is not assumed to be unit |
| * triangular. |
| * |
| * Unchanged on exit. |
| * |
| * N - INTEGER. |
| * On entry, N specifies the order of the matrix A. |
| * N must be at least zero. |
| * Unchanged on exit. |
| * |
| * AP - COMPLEX*16 array of DIMENSION at least |
| * ( ( n*( n + 1 ) )/2 ). |
| * Before entry with UPLO = 'U' or 'u', the array AP must |
| * contain the upper triangular matrix packed sequentially, |
| * column by column, so that AP( 1 ) contains a( 1, 1 ), |
| * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) |
| * respectively, and so on. |
| * Before entry with UPLO = 'L' or 'l', the array AP must |
| * contain the lower triangular matrix packed sequentially, |
| * column by column, so that AP( 1 ) contains a( 1, 1 ), |
| * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) |
| * respectively, and so on. |
| * Note that when DIAG = 'U' or 'u', the diagonal elements of |
| * A are not referenced, but are assumed to be unity. |
| * Unchanged on exit. |
| * |
| * X - COMPLEX*16 array of dimension at least |
| * ( 1 + ( n - 1 )*abs( INCX ) ). |
| * Before entry, the incremented array X must contain the n |
| * element vector x. On exit, X is overwritten with the |
| * tranformed vector x. |
| * |
| * INCX - INTEGER. |
| * On entry, INCX specifies the increment for the elements of |
| * X. INCX must not be zero. |
| * Unchanged on exit. |
| * |
| * Further Details |
| * =============== |
| * |
| * Level 2 Blas routine. |
| * |
| * -- Written on 22-October-1986. |
| * Jack Dongarra, Argonne National Lab. |
| * Jeremy Du Croz, Nag Central Office. |
| * Sven Hammarling, Nag Central Office. |
| * Richard Hanson, Sandia National Labs. |
| * |
| * ===================================================================== |
| * |
| * .. Parameters .. |
| DOUBLE COMPLEX ZERO |
| PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
| * .. |
| * .. Local Scalars .. |
| DOUBLE COMPLEX TEMP |
| INTEGER I,INFO,IX,J,JX,K,KK,KX |
| LOGICAL NOCONJ,NOUNIT |
| * .. |
| * .. External Functions .. |
| LOGICAL LSAME |
| EXTERNAL LSAME |
| * .. |
| * .. External Subroutines .. |
| EXTERNAL XERBLA |
| * .. |
| * .. Intrinsic Functions .. |
| INTRINSIC DCONJG |
| * .. |
| * |
| * Test the input parameters. |
| * |
| INFO = 0 |
| IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
| INFO = 1 |
| ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
| + .NOT.LSAME(TRANS,'C')) THEN |
| INFO = 2 |
| ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN |
| INFO = 3 |
| ELSE IF (N.LT.0) THEN |
| INFO = 4 |
| ELSE IF (INCX.EQ.0) THEN |
| INFO = 7 |
| END IF |
| IF (INFO.NE.0) THEN |
| CALL XERBLA('ZTPMV ',INFO) |
| RETURN |
| END IF |
| * |
| * Quick return if possible. |
| * |
| IF (N.EQ.0) RETURN |
| * |
| NOCONJ = LSAME(TRANS,'T') |
| NOUNIT = LSAME(DIAG,'N') |
| * |
| * Set up the start point in X if the increment is not unity. This |
| * will be ( N - 1 )*INCX too small for descending loops. |
| * |
| IF (INCX.LE.0) THEN |
| KX = 1 - (N-1)*INCX |
| ELSE IF (INCX.NE.1) THEN |
| KX = 1 |
| END IF |
| * |
| * Start the operations. In this version the elements of AP are |
| * accessed sequentially with one pass through AP. |
| * |
| IF (LSAME(TRANS,'N')) THEN |
| * |
| * Form x:= A*x. |
| * |
| IF (LSAME(UPLO,'U')) THEN |
| KK = 1 |
| IF (INCX.EQ.1) THEN |
| DO 20 J = 1,N |
| IF (X(J).NE.ZERO) THEN |
| TEMP = X(J) |
| K = KK |
| DO 10 I = 1,J - 1 |
| X(I) = X(I) + TEMP*AP(K) |
| K = K + 1 |
| 10 CONTINUE |
| IF (NOUNIT) X(J) = X(J)*AP(KK+J-1) |
| END IF |
| KK = KK + J |
| 20 CONTINUE |
| ELSE |
| JX = KX |
| DO 40 J = 1,N |
| IF (X(JX).NE.ZERO) THEN |
| TEMP = X(JX) |
| IX = KX |
| DO 30 K = KK,KK + J - 2 |
| X(IX) = X(IX) + TEMP*AP(K) |
| IX = IX + INCX |
| 30 CONTINUE |
| IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1) |
| END IF |
| JX = JX + INCX |
| KK = KK + J |
| 40 CONTINUE |
| END IF |
| ELSE |
| KK = (N* (N+1))/2 |
| IF (INCX.EQ.1) THEN |
| DO 60 J = N,1,-1 |
| IF (X(J).NE.ZERO) THEN |
| TEMP = X(J) |
| K = KK |
| DO 50 I = N,J + 1,-1 |
| X(I) = X(I) + TEMP*AP(K) |
| K = K - 1 |
| 50 CONTINUE |
| IF (NOUNIT) X(J) = X(J)*AP(KK-N+J) |
| END IF |
| KK = KK - (N-J+1) |
| 60 CONTINUE |
| ELSE |
| KX = KX + (N-1)*INCX |
| JX = KX |
| DO 80 J = N,1,-1 |
| IF (X(JX).NE.ZERO) THEN |
| TEMP = X(JX) |
| IX = KX |
| DO 70 K = KK,KK - (N- (J+1)),-1 |
| X(IX) = X(IX) + TEMP*AP(K) |
| IX = IX - INCX |
| 70 CONTINUE |
| IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J) |
| END IF |
| JX = JX - INCX |
| KK = KK - (N-J+1) |
| 80 CONTINUE |
| END IF |
| END IF |
| ELSE |
| * |
| * Form x := A'*x or x := conjg( A' )*x. |
| * |
| IF (LSAME(UPLO,'U')) THEN |
| KK = (N* (N+1))/2 |
| IF (INCX.EQ.1) THEN |
| DO 110 J = N,1,-1 |
| TEMP = X(J) |
| K = KK - 1 |
| IF (NOCONJ) THEN |
| IF (NOUNIT) TEMP = TEMP*AP(KK) |
| DO 90 I = J - 1,1,-1 |
| TEMP = TEMP + AP(K)*X(I) |
| K = K - 1 |
| 90 CONTINUE |
| ELSE |
| IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
| DO 100 I = J - 1,1,-1 |
| TEMP = TEMP + DCONJG(AP(K))*X(I) |
| K = K - 1 |
| 100 CONTINUE |
| END IF |
| X(J) = TEMP |
| KK = KK - J |
| 110 CONTINUE |
| ELSE |
| JX = KX + (N-1)*INCX |
| DO 140 J = N,1,-1 |
| TEMP = X(JX) |
| IX = JX |
| IF (NOCONJ) THEN |
| IF (NOUNIT) TEMP = TEMP*AP(KK) |
| DO 120 K = KK - 1,KK - J + 1,-1 |
| IX = IX - INCX |
| TEMP = TEMP + AP(K)*X(IX) |
| 120 CONTINUE |
| ELSE |
| IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
| DO 130 K = KK - 1,KK - J + 1,-1 |
| IX = IX - INCX |
| TEMP = TEMP + DCONJG(AP(K))*X(IX) |
| 130 CONTINUE |
| END IF |
| X(JX) = TEMP |
| JX = JX - INCX |
| KK = KK - J |
| 140 CONTINUE |
| END IF |
| ELSE |
| KK = 1 |
| IF (INCX.EQ.1) THEN |
| DO 170 J = 1,N |
| TEMP = X(J) |
| K = KK + 1 |
| IF (NOCONJ) THEN |
| IF (NOUNIT) TEMP = TEMP*AP(KK) |
| DO 150 I = J + 1,N |
| TEMP = TEMP + AP(K)*X(I) |
| K = K + 1 |
| 150 CONTINUE |
| ELSE |
| IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
| DO 160 I = J + 1,N |
| TEMP = TEMP + DCONJG(AP(K))*X(I) |
| K = K + 1 |
| 160 CONTINUE |
| END IF |
| X(J) = TEMP |
| KK = KK + (N-J+1) |
| 170 CONTINUE |
| ELSE |
| JX = KX |
| DO 200 J = 1,N |
| TEMP = X(JX) |
| IX = JX |
| IF (NOCONJ) THEN |
| IF (NOUNIT) TEMP = TEMP*AP(KK) |
| DO 180 K = KK + 1,KK + N - J |
| IX = IX + INCX |
| TEMP = TEMP + AP(K)*X(IX) |
| 180 CONTINUE |
| ELSE |
| IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK)) |
| DO 190 K = KK + 1,KK + N - J |
| IX = IX + INCX |
| TEMP = TEMP + DCONJG(AP(K))*X(IX) |
| 190 CONTINUE |
| END IF |
| X(JX) = TEMP |
| JX = JX + INCX |
| KK = KK + (N-J+1) |
| 200 CONTINUE |
| END IF |
| END IF |
| END IF |
| * |
| RETURN |
| * |
| * End of ZTPMV . |
| * |
| END |