The Independent JPEG Group's JPEG software v5
diff --git a/jccoefct.c b/jccoefct.c
new file mode 100644
index 0000000..2ca1f37
--- /dev/null
+++ b/jccoefct.c
@@ -0,0 +1,414 @@
+/*
+ * jccoefct.c
+ *
+ * Copyright (C) 1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the coefficient buffer controller for compression.
+ * This controller is the top level of the JPEG compressor proper.
+ * The coefficient buffer lies between forward-DCT and entropy encoding steps.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* We use a full-image coefficient buffer when doing Huffman optimization,
+ * and also for writing multiple-scan JPEG files.  In all cases, the DCT
+ * step is run during the first pass, and subsequent passes need only read
+ * the buffered coefficients.
+ */
+#ifdef ENTROPY_OPT_SUPPORTED
+#define FULL_COEF_BUFFER_SUPPORTED
+#else
+#ifdef C_MULTISCAN_FILES_SUPPORTED
+#define FULL_COEF_BUFFER_SUPPORTED
+#endif
+#endif
+
+
+/* Private buffer controller object */
+
+typedef struct {
+  struct jpeg_c_coef_controller pub; /* public fields */
+
+  JDIMENSION MCU_row_num;	/* keep track of MCU row # within image */
+
+  /* For single-pass compression, it's sufficient to buffer just one MCU
+   * (although this may prove a bit slow in practice).  We allocate a
+   * workspace of MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
+   * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
+   * it's not really very big; this is to keep the module interfaces unchanged
+   * when a large coefficient buffer is necessary.)
+   * In multi-pass modes, this array points to the current MCU's blocks
+   * within the virtual arrays.
+   */
+  JBLOCKROW MCU_buffer[MAX_BLOCKS_IN_MCU];
+
+  /* In multi-pass modes, we need a virtual block array for each component. */
+  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
+} my_coef_controller;
+
+typedef my_coef_controller * my_coef_ptr;
+
+
+/* Forward declarations */
+METHODDEF void compress_data
+    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr));
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+METHODDEF void compress_first_pass
+    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr));
+METHODDEF void compress_output
+    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr));
+#endif
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF void
+start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+  coef->MCU_row_num = 0;
+
+  switch (pass_mode) {
+  case JBUF_PASS_THRU:
+    if (coef->whole_image[0] != NULL)
+      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    coef->pub.compress_data = compress_data;
+    break;
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+  case JBUF_SAVE_AND_PASS:
+    if (coef->whole_image[0] == NULL)
+      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    coef->pub.compress_data = compress_first_pass;
+    break;
+  case JBUF_CRANK_DEST:
+    if (coef->whole_image[0] == NULL)
+      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    coef->pub.compress_data = compress_output;
+    break;
+#endif
+  default:
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+    break;
+  }
+}
+
+
+/*
+ * Process some data in the single-pass case.
+ * Up to one MCU row is processed (less if suspension is forced).
+ *
+ * NB: input_buf contains a plane for each component in image.
+ * For single pass, this is the same as the components in the scan.
+ */
+
+METHODDEF void
+compress_data (j_compress_ptr cinfo,
+	       JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+  JDIMENSION last_MCU_row = cinfo->MCU_rows_in_scan - 1;
+  int blkn, bi, ci, yindex, blockcnt;
+  JDIMENSION ypos, xpos;
+  jpeg_component_info *compptr;
+
+  /* Loop to write as much as one whole MCU row */
+
+  for (MCU_col_num = *in_mcu_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++) {
+    /* Determine where data comes from in input_buf and do the DCT thing.
+     * Each call on forward_DCT processes a horizontal row of DCT blocks
+     * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
+     * sequentially.  Dummy blocks at the right or bottom edge are filled in
+     * specially.  The data in them does not matter for image reconstruction,
+     * so we fill them with values that will encode to the smallest amount of
+     * data, viz: all zeroes in the AC entries, DC entries equal to previous
+     * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
+     */
+    blkn = 0;
+    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+      compptr = cinfo->cur_comp_info[ci];
+      blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+					      : compptr->last_col_width;
+      xpos = MCU_col_num * compptr->MCU_sample_width;
+      ypos = 0;
+      for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+	if (coef->MCU_row_num < last_MCU_row ||
+	    yindex < compptr->last_row_height) {
+	  (*cinfo->fdct->forward_DCT) (cinfo, compptr,
+				       input_buf[ci], coef->MCU_buffer[blkn],
+				       ypos, xpos, (JDIMENSION) blockcnt);
+	  if (blockcnt < compptr->MCU_width) {
+	    /* Create some dummy blocks at the right edge of the image. */
+	    jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
+		      (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
+	    for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
+	      coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
+	    }
+	  }
+	} else {
+	  /* Create a whole row of dummy blocks at the bottom of the image. */
+	  jzero_far((void FAR *) coef->MCU_buffer[blkn],
+		    compptr->MCU_width * SIZEOF(JBLOCK));
+	  for (bi = 0; bi < compptr->MCU_width; bi++) {
+	    coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
+	  }
+	}
+	blkn += compptr->MCU_width;
+	ypos += DCTSIZE;
+      }
+    }
+    /* Try to write the MCU.  In event of a suspension failure, we will
+     * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
+     */
+    if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer))
+      break;			/* suspension forced; exit loop */
+  }
+  if (MCU_col_num > last_MCU_col)
+    coef->MCU_row_num++;	/* advance if we finished the row */
+  *in_mcu_ctr = MCU_col_num;
+}
+
+
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+
+/*
+ * Process some data in the first pass of a multi-pass case.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the image.
+ * This amount of data is read from the source buffer, DCT'd and quantized,
+ * and saved into the virtual arrays.  We also generate suitable dummy blocks
+ * as needed at the right and lower edges.  (The dummy blocks are constructed
+ * in the virtual arrays, which have been padded appropriately.)  This makes
+ * it possible for subsequent passes not to worry about real vs. dummy blocks.
+ *
+ * We must also emit the data to the entropy encoder.  This is conveniently
+ * done by calling compress_output() after we've loaded the current strip
+ * of the virtual arrays.
+ *
+ * NB: input_buf contains a plane for each component in image.  All
+ * components are DCT'd and loaded into the virtual arrays in this pass.
+ * However, it may be that only a subset of the components are emitted to
+ * the entropy encoder during this first pass; be careful about looking
+ * at the scan-dependent variables (MCU dimensions, etc).
+ */
+
+METHODDEF void
+compress_first_pass (j_compress_ptr cinfo,
+		     JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  JDIMENSION last_MCU_row = cinfo->total_iMCU_rows - 1;
+  JDIMENSION blocks_across, MCUs_across, MCUindex;
+  int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
+  JCOEF lastDC;
+  jpeg_component_info *compptr;
+  JBLOCKARRAY buffer;
+  JBLOCKROW thisblockrow, lastblockrow;
+
+  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+       ci++, compptr++) {
+    /* Align the virtual buffer for this component. */
+    buffer = (*cinfo->mem->access_virt_barray)
+      ((j_common_ptr) cinfo, coef->whole_image[ci],
+       coef->MCU_row_num * compptr->v_samp_factor, TRUE);
+    /* Count non-dummy DCT block rows in this iMCU row. */
+    if (coef->MCU_row_num < last_MCU_row)
+      block_rows = compptr->v_samp_factor;
+    else {
+      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+      if (block_rows == 0) block_rows = compptr->v_samp_factor;
+    }
+    blocks_across = compptr->width_in_blocks;
+    h_samp_factor = compptr->h_samp_factor;
+    /* Count number of dummy blocks to be added at the right margin. */
+    ndummy = (int) (blocks_across % h_samp_factor);
+    if (ndummy > 0)
+      ndummy = h_samp_factor - ndummy;
+    /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
+     * on forward_DCT processes a complete horizontal row of DCT blocks.
+     */
+    for (block_row = 0; block_row < block_rows; block_row++) {
+      thisblockrow = buffer[block_row];
+      (*cinfo->fdct->forward_DCT) (cinfo, compptr,
+				   input_buf[ci], thisblockrow,
+				   (JDIMENSION) (block_row * DCTSIZE),
+				   (JDIMENSION) 0, blocks_across);
+      if (ndummy > 0) {
+	/* Create dummy blocks at the right edge of the image. */
+	thisblockrow += blocks_across; /* => first dummy block */
+	jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
+	lastDC = thisblockrow[-1][0];
+	for (bi = 0; bi < ndummy; bi++) {
+	  thisblockrow[bi][0] = lastDC;
+	}
+      }
+    }
+    /* If at end of image, create dummy block rows as needed.
+     * The tricky part here is that within each MCU, we want the DC values
+     * of the dummy blocks to match the last real block's DC value.
+     * This squeezes a few more bytes out of the resulting file...
+     */
+    if (coef->MCU_row_num == last_MCU_row) {
+      blocks_across += ndummy;	/* include lower right corner */
+      MCUs_across = blocks_across / h_samp_factor;
+      for (block_row = block_rows; block_row < compptr->v_samp_factor;
+	   block_row++) {
+	thisblockrow = buffer[block_row];
+	lastblockrow = buffer[block_row-1];
+	jzero_far((void FAR *) thisblockrow,
+		  (size_t) (blocks_across * SIZEOF(JBLOCK)));
+	for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
+	  lastDC = lastblockrow[h_samp_factor-1][0];
+	  for (bi = 0; bi < h_samp_factor; bi++) {
+	    thisblockrow[bi][0] = lastDC;
+	  }
+	  thisblockrow += h_samp_factor; /* advance to next MCU in row */
+	  lastblockrow += h_samp_factor;
+	}
+      }
+    }
+  }
+  /* NB: compress_output will increment MCU_row_num */
+
+  /* Emit data to the entropy encoder, sharing code with subsequent passes */
+  compress_output(cinfo, input_buf, in_mcu_ctr);
+}
+
+
+/*
+ * Process some data in subsequent passes of a multi-pass case.
+ * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+ * per call, ie, v_samp_factor block rows for each component in the scan.
+ * The data is obtained from the virtual arrays and fed to the entropy coder.
+ *
+ * Note that output suspension is not supported during multi-pass operation,
+ * so the complete MCU row will always be emitted to the entropy encoder
+ * before returning.
+ *
+ * NB: input_buf is ignored; it is likely to be a NULL pointer.
+ */
+
+METHODDEF void
+compress_output (j_compress_ptr cinfo,
+		 JSAMPIMAGE input_buf, JDIMENSION *in_mcu_ctr)
+{
+  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+  int blkn, ci, xindex, yindex, yoffset, num_MCU_rows;
+  JDIMENSION remaining_rows, start_col;
+  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+  JBLOCKROW buffer_ptr;
+  jpeg_component_info *compptr;
+
+  /* Align the virtual buffers for the components used in this scan.
+   * NB: during first pass, this is safe only because the buffers will
+   * already be aligned properly, so jmemmgr.c won't need to do any I/O.
+   */
+  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+    compptr = cinfo->cur_comp_info[ci];
+    buffer[ci] = (*cinfo->mem->access_virt_barray)
+      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+       coef->MCU_row_num * compptr->v_samp_factor, FALSE);
+  }
+
+  /* In an interleaved scan, we process exactly one MCU row.
+   * In a noninterleaved scan, we need to process v_samp_factor MCU rows,
+   * each of which contains a single block row.
+   */
+  if (cinfo->comps_in_scan == 1) {
+    compptr = cinfo->cur_comp_info[0];
+    num_MCU_rows = compptr->v_samp_factor;
+    /* but watch out for the bottom of the image */
+    remaining_rows = cinfo->MCU_rows_in_scan -
+		     coef->MCU_row_num * compptr->v_samp_factor;
+    if (remaining_rows < (JDIMENSION) num_MCU_rows)
+      num_MCU_rows = (int) remaining_rows;
+  } else {
+    num_MCU_rows = 1;
+  }
+
+  /* Loop to process one whole iMCU row */
+  for (yoffset = 0; yoffset < num_MCU_rows; yoffset++) {
+    for (MCU_col_num = 0; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) {
+      /* Construct list of pointers to DCT blocks belonging to this MCU */
+      blkn = 0;			/* index of current DCT block within MCU */
+      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+	compptr = cinfo->cur_comp_info[ci];
+	start_col = MCU_col_num * compptr->MCU_width;
+	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+	    coef->MCU_buffer[blkn++] = buffer_ptr++;
+	  }
+	}
+      }
+      /* Try to write the MCU. */
+      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
+	ERREXIT(cinfo, JERR_CANT_SUSPEND); /* not supported */
+      }
+    }
+  }
+
+  coef->MCU_row_num++;		/* advance to next iMCU row */
+  *in_mcu_ctr = cinfo->MCUs_per_row;
+}
+
+#endif /* FULL_COEF_BUFFER_SUPPORTED */
+
+
+/*
+ * Initialize coefficient buffer controller.
+ */
+
+GLOBAL void
+jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+{
+  my_coef_ptr coef;
+  int ci, i;
+  jpeg_component_info *compptr;
+  JBLOCKROW buffer;
+
+  coef = (my_coef_ptr)
+    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				SIZEOF(my_coef_controller));
+  cinfo->coef = (struct jpeg_c_coef_controller *) coef;
+  coef->pub.start_pass = start_pass_coef;
+
+  /* Create the coefficient buffer. */
+  if (need_full_buffer) {
+#ifdef FULL_COEF_BUFFER_SUPPORTED
+    /* Allocate a full-image virtual array for each component, */
+    /* padded to a multiple of samp_factor DCT blocks in each direction. */
+    /* Note memmgr implicitly pads the vertical direction. */
+    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+	 ci++, compptr++) {
+      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+	((j_common_ptr) cinfo, JPOOL_IMAGE,
+	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+				(long) compptr->h_samp_factor),
+	 compptr->height_in_blocks,
+	 (JDIMENSION) compptr->v_samp_factor);
+    }
+#else
+    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif
+  } else {
+    /* We only need a single-MCU buffer. */
+    buffer = (JBLOCKROW)
+      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+    for (i = 0; i < MAX_BLOCKS_IN_MCU; i++) {
+      coef->MCU_buffer[i] = buffer + i;
+    }
+    coef->whole_image[0] = NULL; /* flag for no virtual arrays */
+  }
+}