The Independent JPEG Group's JPEG software v5
diff --git a/libjpeg.doc b/libjpeg.doc
new file mode 100644
index 0000000..83067d1
--- /dev/null
+++ b/libjpeg.doc
@@ -0,0 +1,2144 @@
+USING THE IJG JPEG LIBRARY
+
+Copyright (C) 1994, Thomas G. Lane.
+This file is part of the Independent JPEG Group's software.
+For conditions of distribution and use, see the accompanying README file.
+
+
+This file describes how to use the IJG JPEG library within an application
+program.  Read it if you want to write a program that uses the library.
+
+The file example.c provides heavily commented skeleton code for calling the
+JPEG library.  Also see jpeglib.h (the include file to be used by application
+programs) for full details about data structures and function parameter lists.
+The library source code, of course, is the ultimate reference.
+
+Note that there have been *major* changes from the application interface
+presented by IJG version 4 and earlier versions.  The old design had several
+inherent limitations, and it had accumulated a lot of cruft as we added
+features while trying to minimize application-interface changes.  We have
+sacrificed backward compatibility in the version 5 rewrite, but we think the
+improvements justify this.
+
+
+TABLE OF CONTENTS
+-----------------
+
+Overview:
+	Functions provided by the library
+	Outline of typical usage
+Basic library usage:
+	Data formats
+	Compression details
+	Decompression details
+	Mechanics of usage: include files, linking, etc
+Advanced features:
+	Compression parameter selection
+	Decompression parameter selection
+	Special color spaces
+	Error handling
+	Compressed data handling (source and destination managers)
+	I/O suspension
+	Abbreviated datastreams and multiple images
+	Special markers
+	Raw (downsampled) image data
+	Progress monitoring
+	Memory management
+	Library compile-time options
+	Portability considerations
+	Notes for MS-DOS implementors
+
+You should read at least the overview and basic usage sections before trying
+to program with the library.  The sections on advanced features can be read
+if and when you need them.
+
+
+OVERVIEW
+========
+
+Functions provided by the library
+---------------------------------
+
+The IJG JPEG library provides C code to read and write JPEG-compressed image
+files.  The surrounding application program receives or supplies image data a
+scanline at a time, using a straightforward uncompressed image format.  All
+details of color conversion and other preprocessing/postprocessing can be
+handled by the library.
+
+The library includes a substantial amount of code that is not covered by the
+JPEG standard but is necessary for typical applications of JPEG.  These
+functions preprocess the image before JPEG compression or postprocess it after
+decompression.  They include colorspace conversion, downsampling/upsampling,
+and color quantization.  The application indirectly selects use of this code
+by specifying the format in which it wishes to supply or receive image data.
+For example, if colormapped output is requested, then the decompression
+library automatically invokes color quantization.
+
+A wide range of quality vs. speed tradeoffs are possible in JPEG processing,
+and even more so in decompression postprocessing.  The decompression library
+provides multiple implementations that cover most of the useful tradeoffs,
+ranging from very-high-quality down to fast-preview operation.  On the
+compression side we have generally not provided low-quality choices, since
+compression is normally less time-critical.  It should be understood that the
+low-quality modes may not meet the JPEG standard's accuracy requirements;
+nonetheless, they are useful for viewers.
+
+A word about functions *not* provided by the library.  We handle a subset of
+the ISO JPEG standard; most baseline and extended-sequential JPEG processes
+are supported.  (Our subset includes all features now in common use.)
+Unsupported ISO options include:
+	* Progressive storage (may be supported in future versions)
+	* Hierarchical storage
+	* Lossless JPEG
+	* Arithmetic entropy coding (unsupported for legal reasons)
+	* DNL marker
+	* Nonintegral subsampling ratios
+We support both 8- and 12-bit data precision, but this is a compile-time
+choice rather than a run-time choice; hence it is difficult to use both
+precisions in a single application.
+
+By itself, the library handles only interchange JPEG datastreams --- in
+particular the widely used JFIF file format.  The library can be used by
+surrounding code to process interchange or abbreviated JPEG datastreams that
+are embedded in more complex file formats.  (For example, we anticipate that
+Sam Leffler's LIBTIFF library will use this code to support the revised TIFF
+JPEG format.)
+
+
+Outline of typical usage
+------------------------
+
+The rough outline of a JPEG compression operation is:
+
+	Allocate and initialize a JPEG compression object
+	Specify the destination for the compressed data (eg, a file)
+	Set parameters for compression, including image size & colorspace
+	jpeg_start_compress(...);
+	while (scan lines remain to be written)
+		jpeg_write_scanlines(...);
+	jpeg_finish_compress(...);
+	Release the JPEG compression object
+
+A JPEG compression object holds parameters and working state for the JPEG
+library.  We make creation/destruction of the object separate from starting
+or finishing compression of an image; the same object can be re-used for a
+series of image compression operations.  This makes it easy to re-use the
+same parameter settings for a sequence of images.  Re-use of a JPEG object
+also has important implications for processing abbreviated JPEG datastreams,
+as discussed later.
+
+The image data to be compressed is supplied to jpeg_write_scanlines() from
+in-memory buffers.  If the application is doing file-to-file compression,
+reading image data from the source file is the application's responsibility.
+The library emits compressed data by calling a "data destination manager",
+which typically will write the data into a file; but the application can
+provide its own destination manager to do something else.
+
+Similarly, the rough outline of a JPEG decompression operation is:
+
+	Allocate and initialize a JPEG decompression object
+	Specify the source of the compressed data (eg, a file)
+	Call jpeg_read_header() to obtain image info
+	Set parameters for decompression
+	jpeg_start_decompress(...);
+	while (scan lines remain to be read)
+		jpeg_read_scanlines(...);
+	jpeg_finish_decompress(...);
+	Release the JPEG decompression object
+
+This is comparable to the compression outline except that reading the
+datastream header is a separate step.  This is helpful because information
+about the image's size, colorspace, etc is available when the application
+selects decompression parameters.  For example, the application can choose an
+output scaling ratio that will fit the image into the available screen size.
+
+The decompression library obtains compressed data by calling a data source
+manager, which typically will read the data from a file; but other behaviors
+can be obtained with a custom source manager.  Decompressed data is delivered
+into in-memory buffers passed to jpeg_read_scanlines().
+
+It is possible to abort an incomplete compression or decompression operation
+by calling jpeg_abort(); or, if you do not need to retain the JPEG object,
+simply release it by calling jpeg_destroy().
+
+JPEG compression and decompression objects are two separate struct types.
+However, they share some common fields, and certain routines such as
+jpeg_destroy() can work on either type of object.
+
+The JPEG library has no static variables: all state is in the compression
+or decompression object.  Therefore it is possible to process multiple
+compression and decompression operations concurrently, using multiple JPEG
+objects.
+
+Both compression and decompression can be done in an incremental memory-to-
+memory fashion, if suitable source/destination managers are used.  However,
+there are some restrictions on the processing that can be done in this mode.
+See the section on "I/O suspension" for more details.
+
+
+BASIC LIBRARY USAGE
+===================
+
+Data formats
+------------
+
+Before diving into procedural details, it is helpful to understand the
+image data format that the JPEG library expects or returns.
+
+The standard input image format is a rectangular array of pixels, with each
+pixel having the same number of "component" values (color channels).  You
+must specify how many components there are and the colorspace interpretation
+of the components.  Most applications will use RGB data (three components
+per pixel) or grayscale data (one component per pixel).
+
+Note that there is no provision for colormapped input.  You can feed in a
+colormapped image by expanding it to full-color format.  However JPEG often
+doesn't work very well with colormapped source data, because of dithering
+noise.  This is discussed in more detail in the JPEG FAQ and the other
+references mentioned in the README file.
+
+Pixels are stored by scanlines, with each scanline running from left to
+right.  The component values for each pixel are adjacent in the row; for
+example, R,G,B,R,G,B,R,G,B,... for 24-bit RGB color.  Each scanline is an
+array of data type JSAMPLE --- which is typically "unsigned char", unless
+you've changed jmorecfg.h.  (You can also change the RGB pixel layout, say
+to B,G,R order, by modifying jmorecfg.h.  But see the restrictions listed in
+that file before doing so.)
+
+A 2-D array of pixels is formed by making a list of pointers to the starts of
+scanlines; so the scanlines need not be physically adjacent in memory.  Even
+if you process just one scanline at a time, you must make a one-element
+pointer array to serve this purpose.  Pointers to JSAMPLE rows are of type
+JSAMPROW, and the pointer to the pointer array is of type JSAMPARRAY.
+
+The library accepts or supplies one or more complete scanlines per call.
+It is not possible to process part of a row at a time.  Scanlines are always
+processed top-to-bottom.  You can process an entire image in one call if you
+have it all in memory, but usually it's simplest to process one scanline at
+a time.
+
+For best results, source data values should have the precision specified by
+BITS_IN_JSAMPLE (normally 8 bits).  For instance, if you choose to compress
+data that's only 6 bits/channel, you should left-justify each value in a
+byte before passing it to the compressor.  If you need to compress data
+that has more than 8 bits/channel, compile with BITS_IN_JSAMPLE = 12.
+(See "Library compile-time options", later.)
+
+The data format returned by the decompressor is the same in all details,
+except that colormapped data is supported.  If you request colormapped
+output then the returned data array contains a single JSAMPLE per pixel;
+its value is an index into a color map.  The color map is represented as
+a 2-D JSAMPARRAY in which each row holds the values of one color component,
+that is, colormap[i][j] is the value of the i'th color component for pixel
+value (map index) j.  Note that since the colormap indexes are stored in
+JSAMPLEs, the maximum number of colors is limited by the size of JSAMPLE
+(ie, at most 256 colors for an 8-bit JPEG library).
+
+
+Compression details
+-------------------
+
+Here we revisit the JPEG compression outline given in the overview.
+
+1. Allocate and initialize a JPEG compression object.
+
+A JPEG compression object is a "struct jpeg_compress_struct" (plus a bunch of
+subsidiary structures which are allocated via malloc(), but the application
+doesn't control those directly).  This struct can be just a local variable in
+the calling routine, if a single routine is going to execute the whole JPEG
+compression sequence.  Otherwise it can be static or allocated from malloc().
+
+You will also need a structure representing a JPEG error handler.  The part
+of this that the library cares about is a "struct jpeg_error_mgr".  If you
+are providing your own error handler, you'll typically want to embed the
+jpeg_error_mgr struct in a larger structure; this is discussed later under
+"Error handling".  For now we'll assume you are just using the default error
+handler.  The default error handler will print JPEG error/warning messages
+on stderr, and it will call exit() if a fatal error occurs.
+
+You must initialize the error handler structure, store a pointer to it into
+the JPEG object's "err" field, and then call jpeg_create_compress() to
+initialize the rest of the JPEG object.
+
+Typical code for this step, if you are using the default error handler, is
+
+	struct jpeg_compress_struct cinfo;
+	struct jpeg_error_mgr jerr;
+	...
+	cinfo.err = jpeg_std_error(&jerr);
+	jpeg_create_compress(&cinfo);
+
+jpeg_create_compress allocates a small amount of memory, so it could fail
+if you are out of memory.  In that case it will exit via the error handler;
+that's why the error handler must be initialized first.
+
+
+2. Specify the destination for the compressed data (eg, a file).
+
+As previously mentioned, the JPEG library delivers compressed data to a
+"data destination" module.  The library includes one data destination
+module which knows how to write to a stdio stream.  You can use your own
+destination module if you want to do something else, as discussed later.
+
+If you use the standard destination module, you must open the target stdio
+stream beforehand.  Typical code for this step looks like:
+
+	FILE * outfile;
+	...
+	if ((outfile = fopen(filename, "wb")) == NULL) {
+	    fprintf(stderr, "can't open %s\n", filename);
+	    exit(1);
+	}
+	jpeg_stdio_dest(&cinfo, outfile);
+
+where the last line invokes the standard destination module.
+
+WARNING: it is critical that the binary compressed data be delivered to the
+output file unchanged.  On non-Unix systems the stdio library may perform
+newline translation or otherwise corrupt binary data.  To suppress this
+behavior, you may need to use a "b" option to fopen (as shown above), or use
+setmode() or another routine to put the stdio stream in binary mode.  See
+cjpeg.c and djpeg.c for code that has been found to work on many systems.
+
+You can select the data destination after setting other parameters (step 3),
+if that's more convenient.  You may not change the destination between
+calling jpeg_start_compress() and jpeg_finish_compress().
+
+
+3. Set parameters for compression, including image size & colorspace.
+
+You must supply information about the source image by setting the following
+fields in the JPEG object (cinfo structure):
+
+	image_width		Width of image, in pixels
+	image_height		Height of image, in pixels
+	input_components	Number of color channels (samples per pixel)
+	in_color_space		Color space of source image
+
+The image dimensions are, hopefully, obvious.  JPEG supports image dimensions
+of 1 to 64K pixels in either direction.  The input color space is typically
+RGB or grayscale, and input_components is 3 or 1 accordingly.  (See "Special
+color spaces", later, for more info.)  The in_color_space field must be
+assigned one of the J_COLOR_SPACE enum constants, typically JCS_RGB or
+JCS_GRAYSCALE.
+
+JPEG has a large number of compression parameters that determine how the
+image is encoded.  Most applications don't need or want to know about all
+these parameters.  You can set all the parameters to reasonable defaults by
+calling jpeg_set_defaults(); then, if there are particular values you want
+to change, you can do so after that.  The "Compression parameter selection"
+section tells about all the parameters.
+
+You must set in_color_space correctly before calling jpeg_set_defaults(),
+because the defaults depend on the source image colorspace.  However the
+other three source image parameters need not be valid until you call
+jpeg_start_compress().  There's no harm in calling jpeg_set_defaults() more
+than once, if that happens to be convenient.
+
+Typical code for a 24-bit RGB source image is
+
+	cinfo.image_width = Width; 	/* image width and height, in pixels */
+	cinfo.image_height = Height;
+	cinfo.input_components = 3;	/* # of color components per pixel */
+	cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
+
+	jpeg_set_defaults(&cinfo);
+	/* Make optional parameter settings here */
+
+
+4. jpeg_start_compress(...);
+
+After you have established the data destination and set all the necessary
+source image info and other parameters, call jpeg_start_compress() to begin
+a compression cycle.  This will initialize internal state, allocate working
+storage, and emit the first few bytes of the JPEG datastream header.
+
+Typical code:
+
+	jpeg_start_compress(&cinfo, TRUE);
+
+The "TRUE" parameter ensures that a complete JPEG interchange datastream
+will be written.  This is appropriate in most cases.  If you think you might
+want to use an abbreviated datastream, read the section on abbreviated
+datastreams, below.
+
+Once you have called jpeg_start_compress(), you may not alter any JPEG
+parameters or other fields of the JPEG object until you have completed
+the compression cycle.
+
+
+5. while (scan lines remain to be written)
+	jpeg_write_scanlines(...);
+
+Now write all the required image data by calling jpeg_write_scanlines()
+one or more times.  You can pass one or more scanlines in each call, up
+to the total image height.  In most applications it is convenient to pass
+just one or a few scanlines at a time.  The expected format for the passed
+data is discussed under "Data formats", above.
+
+Image data should be written in top-to-bottom scanline order.  The JPEG spec
+contains some weasel wording about how top and bottom are application-defined
+terms (a curious interpretation of the English language...) but if you want
+your files to be compatible with everyone else's, you WILL use top-to-bottom
+order.  If the source data must be read in bottom-to-top order, you can use
+the JPEG library's virtual array mechanism to invert the data efficiently.
+Examples of this can be found in the sample application cjpeg.
+
+The library maintains a count of the number of scanlines written so far
+in the next_scanline field of the JPEG object.  Usually you can just use
+this variable as the loop counter, so that the loop test looks like
+"while (cinfo.next_scanline < cinfo.image_height)".
+
+Code for this step depends heavily on the way that you store the source data.
+example.c shows the following code for the case of a full-size 2-D source
+array containing 3-byte RGB pixels:
+
+	JSAMPROW row_pointer[1];	/* pointer to a single row */
+	int row_stride;			/* physical row width in buffer */
+
+	row_stride = image_width * 3;	/* JSAMPLEs per row in image_buffer */
+
+	while (cinfo.next_scanline < cinfo.image_height) {
+	    row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];
+	    jpeg_write_scanlines(&cinfo, row_pointer, 1);
+	}
+
+jpeg_write_scanlines() returns the number of scanlines actually written.
+This will normally be equal to the number passed in, so you can usually
+ignore the return value.  It is different in just two cases:
+  * If you try to write more scanlines than the declared image height,
+    the additional scanlines are ignored.
+  * If you use a suspending data destination manager, output buffer overrun
+    will cause the compressor to return before accepting all the passed lines.
+    This feature is discussed under "I/O suspension", below.  The normal
+    stdio destination manager will NOT cause this to happen.
+In any case, the return value is the same as the change in the value of
+next_scanline.
+
+
+6. jpeg_finish_compress(...);
+
+After all the image data has been written, call jpeg_finish_compress() to
+complete the compression cycle.  This step is ESSENTIAL to ensure that the
+last bufferload of data is written to the data destination.
+jpeg_finish_compress() also releases working memory associated with the JPEG
+object.
+
+Typical code:
+
+	jpeg_finish_compress(&cinfo);
+
+If using the stdio destination manager, don't forget to close the output
+stdio stream if necessary.
+
+If you have requested a multi-pass operating mode, such as Huffman code
+optimization, jpeg_finish_compress() will perform the additional passes using
+data buffered by the first pass.  In this case jpeg_finish_compress() may take
+quite a while to complete.  With the default compression parameters, this will
+not happen.
+
+It is an error to call jpeg_finish_compress() before writing the necessary
+total number of scanlines.  If you wish to abort compression, call
+jpeg_abort() as discussed below.
+
+After completing a compression cycle, you may dispose of the JPEG object
+as discussed next, or you may use it to compress another image.  In that case
+return to step 2, 3, or 4 as appropriate.  If you do not change the
+destination manager, the new datastream will be written to the same target.
+If you do not change any JPEG parameters, the new datastream will be written
+with the same parameters as before.  Note that you can change the input image
+dimensions freely between cycles, but if you change the input colorspace, you
+should call jpeg_set_defaults() to adjust for the new colorspace; and then
+you'll need to repeat all of step 3.
+
+
+7. Release the JPEG compression object.
+
+When you are done with a JPEG compression object, destroy it by calling
+jpeg_destroy_compress().  This will free all subsidiary memory.  Or you can
+call jpeg_destroy() which works for either compression or decompression
+objects --- this may be more convenient if you are sharing code between
+compression and decompression cases.  (Actually, these routines are equivalent
+except for the declared type of the passed pointer.  To avoid gripes from
+ANSI C compilers, pass a j_common_ptr to jpeg_destroy().)
+
+If you allocated the jpeg_compress_struct structure from malloc(), freeing
+it is your responsibility --- jpeg_destroy() won't.  Ditto for the error
+handler structure.
+
+Typical code:
+
+	jpeg_destroy_compress(&cinfo);
+
+
+8. Aborting.
+
+If you decide to abort a compression cycle before finishing, you can clean up
+in either of two ways:
+
+* If you don't need the JPEG object any more, just call
+  jpeg_destroy_compress() or jpeg_destroy() to release memory.  This is
+  legitimate at any point after calling jpeg_create_compress() --- in fact,
+  it's safe even if jpeg_create_compress() fails.
+
+* If you want to re-use the JPEG object, call jpeg_abort_compress(), or
+  jpeg_abort() which works on both compression and decompression objects.
+  This will return the object to an idle state, releasing any working memory.
+  jpeg_abort() is allowed at any time after successful object creation.
+
+Note that cleaning up the data destination, if required, is your
+responsibility.
+
+
+Decompression details
+---------------------
+
+Here we revisit the JPEG decompression outline given in the overview.
+
+1. Allocate and initialize a JPEG decompression object.
+
+This is just like initialization for compression, as discussed above,
+except that the object is a "struct jpeg_decompress_struct" and you
+call jpeg_create_decompress().  Error handling is exactly the same.
+
+Typical code:
+
+	struct jpeg_decompress_struct cinfo;
+	struct jpeg_error_mgr jerr;
+	...
+	cinfo.err = jpeg_std_error(&jerr);
+	jpeg_create_decompress(&cinfo);
+
+(Both here and in the IJG code, we usually use variable name "cinfo" for
+both compression and decompression objects.)
+
+
+2. Specify the source of the compressed data (eg, a file).
+
+As previously mentioned, the JPEG library reads compressed data from a "data
+source" module.  The library includes one data source module which knows how
+to read from a stdio stream.  You can use your own source module if you want
+to do something else, as discussed later.
+
+If you use the standard source module, you must open the source stdio stream
+beforehand.  Typical code for this step looks like:
+
+	FILE * infile;
+	...
+	if ((infile = fopen(filename, "rb")) == NULL) {
+	    fprintf(stderr, "can't open %s\n", filename);
+	    exit(1);
+	}
+	jpeg_stdio_src(&cinfo, infile);
+
+where the last line invokes the standard source module.
+
+WARNING: it is critical that the binary compressed data be read unchanged.
+On non-Unix systems the stdio library may perform newline translation or
+otherwise corrupt binary data.  To suppress this behavior, you may need to use
+a "b" option to fopen (as shown above), or use setmode() or another routine to
+put the stdio stream in binary mode.  See cjpeg.c and djpeg.c for code that
+has been found to work on many systems.
+
+You may not change the data source between calling jpeg_read_header() and
+jpeg_finish_decompress().  If you wish to read a series of JPEG images from
+a single source file, you should repeat the jpeg_read_header() to
+jpeg_finish_decompress() sequence without reinitializing either the JPEG
+object or the data source module; this prevents buffered input data from
+being discarded.
+
+
+3. Call jpeg_read_header() to obtain image info.
+
+Typical code for this step is just
+
+	jpeg_read_header(&cinfo, TRUE);
+
+This will read the source datastream header markers, up to the beginning
+of the compressed data proper.  On return, the image dimensions and other
+info have been stored in the JPEG object.  The application may wish to
+consult this information before selecting decompression parameters.
+
+More complex code is necessary if
+  * A suspending data source is used --- in that case jpeg_read_header()
+    may return before it has read all the header data.  See "I/O suspension",
+    below.  The normal stdio source manager will NOT cause this to happen.
+  * Abbreviated JPEG files are to be processed --- see the section on
+    abbreviated datastreams.  Standard applications that deal only in
+    interchange JPEG files need not be concerned with this case either.
+
+It is permissible to stop at this point if you just wanted to find out the
+image dimensions and other header info for a JPEG file.  In that case,
+call jpeg_destroy() when you are done with the JPEG object, or call
+jpeg_abort() to return it to an idle state before selecting a new data
+source and reading another header.
+
+
+4. Set parameters for decompression.
+
+jpeg_read_header() sets appropriate default decompression parameters based on
+the properties of the image (in particular, its colorspace).  However, you
+may well want to alter these defaults before beginning the decompression.
+For example, the default is to produce full color output from a color file.
+If you want colormapped output you must ask for it.  Other options allow the
+returned image to be scaled and allow various speed/quality tradeoffs to be
+selected.  "Decompression parameter selection", below, gives details.
+
+If the defaults are appropriate, nothing need be done at this step.
+
+Note that all default values are set by each call to jpeg_read_header().
+If you reuse a decompression object, you cannot expect your parameter
+settings to be preserved across cycles, as you can for compression.
+You must adjust parameter values each time.
+
+
+5. jpeg_start_decompress(...);
+
+Once the parameter values are satisfactory, call jpeg_start_decompress() to
+begin decompression.  This will initialize internal state, allocate working
+memory, and prepare for returning data.
+
+Typical code is just
+
+	jpeg_start_decompress(&cinfo);
+
+If you have requested a multi-pass operating mode, such as 2-pass color
+quantization, jpeg_start_decompress() will do everything needed before data
+output can begin.  In this case jpeg_start_decompress() may take quite a while
+to complete.  With a single-scan (fully interleaved) JPEG file and default
+decompression parameters, this will not happen; jpeg_start_decompress() will
+return quickly.
+
+After this call, the final output image dimensions, including any requested
+scaling, are available in the JPEG object; so is the selected colormap, if
+colormapped output has been requested.  Useful fields include
+
+	output_width		image width and height, as scaled
+	output_height
+	out_color_components	# of color components in out_color_space
+	output_components	# of color components returned per pixel
+	colormap		the selected colormap, if any
+	actual_number_of_colors		number of entries in colormap
+
+output_components is 1 (a colormap index) when quantizing colors; otherwise it
+equals out_color_components.  It is the number of JSAMPLE values that will be
+emitted per pixel in the output arrays.
+
+Typically you will need to allocate data buffers to hold the incoming image.
+You will need output_width * output_components JSAMPLEs per scanline in your
+output buffer, and a total of output_height scanlines will be returned.
+
+Note: if you are using the JPEG library's internal memory manager to allocate
+data buffers (as djpeg does), then the manager's protocol requires that you
+request large buffers *before* calling jpeg_start_decompress().  This is a
+little tricky since the output_XXX fields are not normally valid then.  You
+can make them valid by calling jpeg_calc_output_dimensions() after setting the
+relevant parameters (scaling, output color space, and quantization flag).
+
+
+6. while (scan lines remain to be read)
+	jpeg_read_scanlines(...);
+
+Now you can read the decompressed image data by calling jpeg_read_scanlines()
+one or more times.  At each call, you pass in the maximum number of scanlines
+to be read (ie, the height of your working buffer); jpeg_read_scanlines()
+will return up to that many lines.  The return value is the number of lines
+actually read.  The format of the returned data is discussed under "Data
+formats", above.
+
+Image data is returned in top-to-bottom scanline order.  If you must write
+out the image in bottom-to-top order, you can use the JPEG library's virtual
+array mechanism to invert the data efficiently.  Examples of this can be
+found in the sample application djpeg.
+
+The library maintains a count of the number of scanlines returned so far
+in the output_scanline field of the JPEG object.  Usually you can just use
+this variable as the loop counter, so that the loop test looks like
+"while (cinfo.output_scanline < cinfo.output_height)".  (Note that the test
+should NOT be against image_height, unless you never use scaling.  The
+image_height field is the height of the original unscaled image.)
+
+If you don't use a suspending data source, it is safe to assume that
+jpeg_read_scanlines() reads at least one scanline per call, until the
+bottom of the image has been reached.  If you use a buffer larger than one
+scanline, it is NOT safe to assume that jpeg_read_scanlines() fills it.
+In any case, the return value is the same as the change in the value of
+output_scanline.
+
+
+7. jpeg_finish_decompress(...);
+
+After all the image data has been read, call jpeg_finish_decompress() to
+complete the decompression cycle.  This causes working memory associated
+with the JPEG object to be released.
+
+Typical code:
+
+	jpeg_finish_decompress(&cinfo);
+
+If using the stdio source manager, don't forget to close the source stdio
+stream if necessary.
+
+It is an error to call jpeg_finish_decompress() before reading the correct
+total number of scanlines.  If you wish to abort compression, call
+jpeg_abort() as discussed below.
+
+After completing a decompression cycle, you may dispose of the JPEG object as
+discussed next, or you may use it to decompress another image.  In that case
+return to step 2 or 3 as appropriate.  If you do not change the source
+manager, the next image will be read from the same source.
+
+
+8. Release the JPEG decompression object.
+
+When you are done with a JPEG decompression object, destroy it by calling
+jpeg_destroy_decompress() or jpeg_destroy().  The previous discussion of
+destroying compression objects applies here too.
+
+Typical code:
+
+	jpeg_destroy_decompress(&cinfo);
+
+
+9. Aborting.
+
+You can abort a decompression cycle by calling jpeg_destroy_decompress() or
+jpeg_destroy() if you don't need the JPEG object any more, or
+jpeg_abort_decompress() or jpeg_abort() if you want to reuse the object.
+The previous discussion of aborting compression cycles applies here too.
+
+
+Mechanics of usage: include files, linking, etc
+-----------------------------------------------
+
+Applications using the JPEG library should include the header file jpeglib.h
+to obtain declarations of data types and routines.  Before including
+jpeglib.h, include system headers that define at least the typedefs FILE and
+size_t.  On ANSI-conforming systems, including <stdio.h> is sufficient; on
+older Unix systems, you may need <sys/types.h> to define size_t.
+
+If the application needs to refer to individual JPEG library error codes, also
+include jerror.h to define those symbols.
+
+jpeglib.h indirectly includes the files jconfig.h and jmorecfg.h.  If you are
+installing the JPEG header files in a system directory, you will want to
+install all four files: jpeglib.h, jerror.h, jconfig.h, jmorecfg.h.
+
+The most convenient way to include the JPEG code into your executable program
+is to prepare a library file ("libjpeg.a", or a corresponding name on non-Unix
+machines) and reference it at your link step.  If you use only half of the
+library (only compression or only decompression), only that much code will be
+included from the library, unless your linker is hopelessly brain-damaged.
+The supplied makefiles build libjpeg.a automatically (see install.doc).
+
+On some systems your application may need to set up a signal handler to ensure
+that temporary files are deleted if the program is interrupted.  This is most
+critical if you are on MS-DOS and use the jmemdos.c memory manager back end;
+it will try to grab extended memory for temp files, and that space will NOT be
+freed automatically.  See cjpeg.c or djpeg.c for an example signal handler.
+
+It may be worth pointing out that the core JPEG library does not actually
+require the stdio library: only the default source/destination managers and
+error handler need it.  You can use the library in a stdio-less environment
+if you replace those modules and use jmemnobs.c (or another memory manager of
+your own devising).  More info about the minimum system library requirements
+may be found in jinclude.h.
+
+
+ADVANCED FEATURES
+=================
+
+Compression parameter selection
+-------------------------------
+
+This section describes all the optional parameters you can set for JPEG
+compression, as well as the "helper" routines provided to assist in this
+task.  Proper setting of some parameters requires detailed understanding
+of the JPEG standard; if you don't know what a parameter is for, it's best
+not to mess with it!  See REFERENCES in the README file for pointers to
+more info about JPEG.
+
+It's a good idea to call jpeg_set_defaults() first, even if you plan to set
+all the parameters; that way your code is more likely to work with future JPEG
+libraries that have additional parameters.  For the same reason, we recommend
+you use a helper routine where one is provided, in preference to twiddling
+cinfo fields directly.
+
+The helper routines are:
+
+jpeg_set_defaults (j_compress_ptr cinfo)
+	This routine sets all JPEG parameters to reasonable defaults, using
+	only the input image's color space (field in_color_space, which must
+	already be set in cinfo).  Many applications will only need to use
+	this routine and perhaps jpeg_set_quality().
+
+jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
+	Sets the JPEG file's colorspace (field jpeg_color_space) as specified,
+	and sets other color-space-dependent parameters appropriately.  See
+	"Special color spaces", below, before using this.  A large number of
+	parameters, including all per-component parameters, are set by this
+	routine; if you want to twiddle individual parameters you should call
+	jpeg_set_colorspace() before rather than after.
+
+jpeg_default_colorspace (j_compress_ptr cinfo)
+	Selects an appropriate JPEG colorspace based on cinfo->in_color_space,
+	and calls jpeg_set_colorspace().  This is actually a subroutine of
+	jpeg_set_defaults().  It's broken out in case you want to change
+	just the colorspace-dependent JPEG parameters.
+
+jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
+	Constructs JPEG quantization tables appropriate for the indicated
+	quality setting.  The quality value is expressed on the 0..100 scale
+	recommended by IJG (cjpeg's "-quality" switch uses this routine).
+	Note that the exact mapping from quality values to tables may change
+	in future IJG releases as more is learned about DCT quantization.
+	If the force_baseline parameter is TRUE, then the quantization table
+	entries are constrained to the range 1..255 for full JPEG baseline
+	compatibility.  In the current implementation, this only makes a
+	difference for quality settings below 25, and it effectively prevents
+	very small/low quality files from being generated.  The IJG decoder
+	is capable of reading the non-baseline files generated at low quality
+	settings when force_baseline is FALSE, but other decoders may not be.
+
+jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
+			 boolean force_baseline)
+	Same as jpeg_set_quality() except that the generated tables are the
+	sample tables given in the JPEC spec section K.1, multiplied by the
+	specified scale factor (which is expressed as a percentage; thus
+	scale_factor = 100 reproduces the spec's tables).  Note that larger
+	scale factors give lower quality.  This entry point is useful for
+	conforming to the Adobe PostScript DCT conventions, but we do not
+	recommend linear scaling as a user-visible quality scale otherwise.
+	force_baseline again constrains the computed table entries to 1..255.
+
+int jpeg_quality_scaling (int quality)
+	Converts a value on the IJG-recommended quality scale to a linear
+	scaling percentage.  Note that this routine may change or go away
+	in future releases --- IJG may choose to adopt a scaling method that
+	can't be expressed as a simple scalar multiplier, in which case the
+	premise of this routine collapses.  Caveat user.
+
+jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
+		      const unsigned int *basic_table,
+		      int scale_factor, boolean force_baseline));
+	Allows an arbitrary quantization table to be created.  which_tbl
+	indicates which table slot to fill.  basic_table points to an array
+	of 64 unsigned ints given in JPEG zigzag order.  These values are
+	multiplied by scale_factor/100 and then clamped to the range 1..65535
+	(or to 1..255 if force_baseline is TRUE).
+
+
+Compression parameters (cinfo fields) include:
+
+boolean optimize_coding
+	TRUE causes the compressor to compute optimal Huffman coding tables
+	for the image.  This requires an extra pass over the data and
+	therefore costs a good deal of space and time.  The default is
+	FALSE, which tells the compressor to use the supplied or default
+	Huffman tables.  In most cases optimal tables save only a few percent
+	of file size compared to the default tables.  Note that when this is
+	TRUE, you need not supply Huffman tables at all, and any you do
+	supply will be overwritten.
+
+int smoothing_factor
+	If non-zero, the input image is smoothed; the value should be 1 for
+	minimal smoothing to 100 for maximum smoothing.  Consult jcsample.c
+	for details of the smoothing algorithm.  The default is zero.
+
+J_DCT_METHOD dct_method
+	Selects the algorithm used for the DCT step.  Choices are:
+		JDCT_ISLOW: slow but accurate integer algorithm
+		JDCT_IFAST: faster, less accurate integer method
+		JDCT_FLOAT: floating-point method
+		JDCT_DEFAULT: default method (normally JDCT_ISLOW)
+		JDCT_FASTEST: fastest method (normally JDCT_IFAST)
+	The floating-point method is the most accurate, but may give slightly
+	different results on different machines due to varying roundoff
+	behavior.  The integer methods should give the same results on all
+	machines.  On machines with sufficiently fast FP hardware, the
+	floating-point method may also be the fastest.  The IFAST method is
+	considerably less accurate than the other two; its use is not
+	recommended if high quality is a concern.  JDCT_DEFAULT and
+	JDCT_FASTEST are macros configurable by each installation.
+
+unsigned int restart_interval
+int restart_in_rows
+	To emit restart markers in the JPEG file, set one of these nonzero.
+	Set restart_interval to specify the exact interval in MCU blocks.
+	Set restart_in_rows to specify the interval in MCU rows.  (If
+	restart_in_rows is not 0, then restart_interval is set after the
+	image width in MCUs is computed.)  Defaults are zero (no restarts).
+
+J_COLOR_SPACE jpeg_color_space
+int num_components
+	The JPEG color space and corresponding number of components; see
+	"Special color spaces", below, for more info.  We recommend using
+	jpeg_set_color_space() if you want to change these.
+
+boolean write_JFIF_header
+	If TRUE, a JFIF APP0 marker is emitted.  jpeg_set_defaults() and
+	jpeg_set_colorspace() set this TRUE if a JFIF-legal JPEG color space
+	(ie, YCbCr or grayscale) is selected, otherwise FALSE.
+
+UINT8 density_unit
+UINT16 X_density
+UINT16 Y_density
+	The resolution information to be written into the JFIF marker;
+	not used otherwise.  density_unit may be 0 for unknown,
+	1 for dots/inch, or 2 for dots/cm.  The default values are 0,1,1
+	indicating square pixels of unknown size.
+
+boolean write_Adobe_marker
+	If TRUE, an Adobe APP14 marker is emitted.  jpeg_set_defaults() and
+	jpeg_set_colorspace() set this TRUE if JPEG color space RGB, CMYK,
+	or YCCK is selected, otherwise FALSE.  It is generally a bad idea
+	to set both write_JFIF_header and write_Adobe_marker.  In fact,
+	you probably shouldn't change the default settings at all --- the
+	default behavior ensures that the JPEG file's color space can be
+	recognized by the decoder.
+
+JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS]
+	Pointers to coefficient quantization tables, one per table slot,
+	or NULL if no table is defined for a slot.  Usually these should
+	be set via one of the above helper routines; jpeg_add_quant_table()
+	is general enough to define any quantization table.  The other
+	routines will set up table slot 0 for luminance quality and table
+	slot 1 for chrominance.
+
+JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS]
+JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS]
+	Pointers to Huffman coding tables, one per table slot, or NULL if
+	no table is defined for a slot.  Slots 0 and 1 are filled with the
+	JPEG sample tables by jpeg_set_defaults().  If you need to allocate
+	more table structures, jpeg_alloc_huff_table() may be used.
+	Note that optimal Huffman tables can be computed for an image
+	by setting optimize_coding, as discussed above; there's seldom
+	any need to mess with providing your own Huffman tables.
+
+There are some additional cinfo fields which are not documented here
+because you currently can't change them; for example, you can't set
+arith_code TRUE because arithmetic coding is unsupported.
+
+
+Per-component parameters are stored in the struct cinfo.comp_info[i] for
+component number i.  Note that components here refer to components of the
+JPEG color space, *not* the source image color space.  A suitably large
+comp_info[] array is allocated by jpeg_set_defaults(); if you choose not
+to use that routine, it's up to you to allocate the array.
+
+int component_id
+	The one-byte identifier code to be recorded in the JPEG file for
+	this component.  For the standard color spaces, we recommend you
+	leave the default values alone.
+
+int h_samp_factor
+int v_samp_factor
+	Horizontal and vertical sampling factors for the component; must
+	be 1..4 according to the JPEG standard.  Note that larger sampling
+	factors indicate a higher-resolution component; many people find
+	this behavior quite unintuitive.  The default values are 2,2 for
+	luminance components and 1,1 for chrominance components, except
+	for grayscale where 1,1 is used.
+
+int quant_tbl_no
+	Quantization table number for component.  The default value is
+	0 for luminance components and 1 for chrominance components.
+
+int dc_tbl_no
+int ac_tbl_no
+	DC and AC entropy coding table numbers.  The default values are
+	0 for luminance components and 1 for chrominance components.
+
+int component_index
+	Must equal the component's index in comp_info[].
+
+
+Decompression parameter selection
+---------------------------------
+
+Decompression parameter selection is somewhat simpler than compression
+parameter selection, since all of the JPEG internal parameters are
+recorded in the source file and need not be supplied by the application.
+(Unless you are working with abbreviated files, in which case see
+"Abbreviated datastreams", below.)  Decompression parameters control
+the postprocessing done on the image to deliver it in a format suitable
+for the application's use.  Many of the parameters control speed/quality
+tradeoffs, in which faster decompression may be obtained at the price of
+a poorer-quality image.  The defaults select the highest quality (slowest)
+processing.
+
+The following fields in the JPEG object are set by jpeg_read_header() and
+may be useful to the application in choosing decompression parameters:
+
+JDIMENSION image_width			Width and height of image
+JDIMENSION image_height
+int num_components			Number of color components
+J_COLOR_SPACE jpeg_color_space		Colorspace of image
+boolean saw_JFIF_marker			TRUE if a JFIF APP0 marker was seen
+  UINT8 density_unit			Resolution data from JFIF marker
+  UINT16 X_density
+  UINT16 Y_density
+boolean saw_Adobe_marker		TRUE if an Adobe APP14 marker was seen
+  UINT8 Adobe_transform			Color transform code from Adobe marker
+
+The JPEG color space, unfortunately, is something of a guess since the JPEG
+standard proper does not provide a way to record it.  In practice most files
+adhere to the JFIF or Adobe conventions, and the decoder will recognize these
+correctly.  See "Special color spaces", below, for more info.
+
+
+The decompression parameters that determine the basic properties of the
+returned image are:
+
+J_COLOR_SPACE out_color_space
+	Output color space.  jpeg_read_header() sets an appropriate default
+	based on jpeg_color_space; typically it will be RGB or grayscale.
+	The application can change this field to request output in a different
+	colorspace.  For example, set it to JCS_GRAYSCALE to get grayscale
+	output from a color file.  (This is useful for previewing: grayscale
+	output is faster than full color since the color components need not
+	be processed.)  Note that not all possible color space transforms are
+	currently implemented; you may need to extend jdcolor.c if you want an
+	unusual conversion.
+
+unsigned int scale_num, scale_denom
+	Scale the image by the fraction scale_num/scale_denom.  Default is
+	1/1, or no scaling.  Currently, the only supported scaling ratios
+	are 1/1, 1/2, 1/4, and 1/8.  (The library design allows for arbitrary
+	scaling ratios but this is not likely to be implemented any time soon.)
+	Smaller scaling ratios permit significantly faster decoding since
+	fewer pixels need be processed and a simpler IDCT method can be used.
+
+boolean quantize_colors
+	If set TRUE, colormapped output will be delivered.  Default is FALSE,
+	meaning that full-color output will be delivered.
+
+The next three parameters are relevant only if quantize_colors is TRUE.
+
+int desired_number_of_colors
+	Maximum number of colors to use in generating a library-supplied color
+	map (the actual number of colors is returned in a different field).
+	Default 256.  Ignored when the application supplies its own color map.
+
+boolean two_pass_quantize
+	If TRUE, an extra pass over the image is made to select a custom color
+	map for the image.  This usually looks a lot better than the one-size-
+	fits-all colormap that is used otherwise.  Default is TRUE.  Ignored
+	when the application supplies its own color map.
+
+J_DITHER_MODE dither_mode
+	Selects color dithering method.  Supported values are:
+		JDITHER_NONE	no dithering: fast, very low quality
+		JDITHER_ORDERED	ordered dither: moderate speed and quality
+		JDITHER_FS	Floyd-Steinberg dither: slow, high quality
+	Default is JDITHER_FS.  (At present, ordered dither is implemented
+	only in the single-pass, standard-colormap case.  If you ask for
+	ordered dither when two_pass_quantize is TRUE or when you supply
+	an external color map, you'll get F-S dithering.)
+
+When quantize_colors is TRUE, the target color map is described by the next
+two fields.  colormap is set to NULL by jpeg_read_header().  The application
+can supply a color map by setting colormap non-NULL and setting
+actual_number_of_colors to the map size.  Otherwise, jpeg_start_decompress()
+selects a suitable color map and sets these two fields itself.
+[Implementation restriction: at present, an externally supplied colormap is
+only accepted for 3-component output color spaces.]
+
+JSAMPARRAY colormap
+	The color map, represented as a 2-D pixel array of out_color_components
+	rows and actual_number_of_colors columns.  Ignored if not quantizing.
+
+int actual_number_of_colors
+	The number of colors in the color map.
+
+Additional decompression parameters that the application may set include:
+
+J_DCT_METHOD dct_method
+	Selects the algorithm used for the DCT step.  Choices are the same
+	as described above for compression.
+
+boolean do_fancy_upsampling
+	If TRUE, do careful upsampling of chroma components.  If FALSE,
+	a faster but sloppier method is used.  Default is TRUE.  The visual
+	impact of the sloppier method is often very small.
+
+
+The output image dimensions are given by the following fields.  These are
+computed from the source image dimensions and the decompression parameters
+by jpeg_start_decompress().  You can also call jpeg_calc_output_dimensions()
+to obtain the values that will result from the current parameter settings.
+This can be useful if you are trying to pick a scaling ratio that will get
+close to a desired target size.  It's also important if you are using the
+JPEG library's memory manager to allocate output buffer space, because you
+are supposed to request such buffers *before* jpeg_start_decompress().
+
+JDIMENSION output_width		Actual dimensions of output image.
+JDIMENSION output_height
+int out_color_components	Number of color components in out_color_space.
+int output_components		Number of color components returned.
+int rec_outbuf_height		Recommended height of scanline buffer.
+
+When quantizing colors, output_components is 1, indicating a single color map
+index per pixel.  Otherwise it equals out_color_components.  The output arrays
+are required to be output_width * output_components JSAMPLEs wide.
+
+rec_outbuf_height is the recommended minimum height (in scanlines) of the
+buffer passed to jpeg_read_scanlines().  If the buffer is smaller, the
+library will still work, but time will be wasted due to unnecessary data
+copying.  In high-quality modes, rec_outbuf_height is always 1, but some
+faster, lower-quality modes set it to larger values (typically 2 to 4).
+If you are going to ask for a high-speed processing mode, you may as well
+go to the trouble of honoring rec_outbuf_height so as to avoid data copying.
+
+
+Special color spaces
+--------------------
+
+The JPEG standard itself is "color blind" and doesn't specify any particular
+color space.  It is customary to convert color data to a luminance/chrominance
+color space before compressing, since this permits greater compression.  The
+existing de-facto JPEG file format standards specify YCbCr or grayscale data
+(JFIF), or grayscale, RGB, YCbCr, CMYK, or YCCK (Adobe).  For special
+applications such as multispectral images, other color spaces can be used,
+but it must be understood that such files will be unportable.
+
+The JPEG library can handle the most common colorspace conversions (namely
+RGB <=> YCbCr and CMYK <=> YCCK).  It can also deal with data of an unknown
+color space, passing it through without conversion.  If you deal extensively
+with an unusual color space, you can easily extend the library to understand
+additional color spaces and perform appropriate conversions.
+
+For compression, the source data's color space is specified by field
+in_color_space.  This is transformed to the JPEG file's color space given
+by jpeg_color_space.  jpeg_set_defaults() chooses a reasonable JPEG color
+space depending on in_color_space, but you can override this by calling
+jpeg_set_colorspace().  Of course you must select a supported transformation.
+jccolor.c currently supports the following transformations:
+	RGB => YCbCr
+	RGB => GRAYSCALE
+	YCbCr => GRAYSCALE
+	CMYK => YCCK
+plus the null transforms: GRAYSCALE => GRAYSCALE, RGB => RGB,
+YCbCr => YCbCr, CMYK => CMYK, YCCK => YCCK, and UNKNOWN => UNKNOWN.
+
+The de-facto file format standards (JFIF and Adobe) specify APPn markers that
+indicate the color space of the JPEG file.  It is important to ensure that
+these are written correctly, or omitted if the JPEG file's color space is not
+one of the ones supported by the de-facto standards.  jpeg_set_colorspace()
+will set the compression parameters to include or omit the APPn markers
+properly, so long as it is told the truth about the JPEG color space.
+For example, if you are writing some random 3-component color space without
+conversion, don't try to fake out the library by setting in_color_space and
+jpeg_color_space to JCS_YCbCr; use JCS_UNKNOWN.  You may want to write an
+APPn marker of your own devising to identify the colorspace --- see "Special
+markers", below.
+
+When told that the color space is UNKNOWN, the library will default to using
+luminance-quality compression parameters for all color components.  You may
+well want to change these parameters.  See the source code for
+jpeg_set_colorspace(), in jcparam.c, for details.
+
+For decompression, the JPEG file's color space is given in jpeg_color_space,
+and this is transformed to the output color space out_color_space.
+jpeg_read_header's setting of jpeg_color_space can be relied on if the file
+conforms to JFIF or Adobe conventions, but otherwise it is no better than a
+guess.  If you know the JPEG file's color space for certain, you can override
+jpeg_read_header's guess by setting jpeg_color_space.  jpeg_read_header also
+selects a default output color space based on (its guess of) jpeg_color_space;
+set out_color_space to override this.  Again, you must select a supported
+transformation.  jdcolor.c currently supports
+	YCbCr => GRAYSCALE
+	YCbCr => RGB
+	YCCK => CMYK
+as well as the null transforms.
+
+The two-pass color quantizer, jquant2.c, is specialized to handle RGB data
+(it weights distances appropriately for RGB colors).  You'll need to modify
+the code if you want to use it for non-RGB output color spaces.  Note that
+jquant2.c is used to map to an application-supplied colormap as well as for
+the normal two-pass colormap selection process.
+
+CAUTION: it appears that Adobe Photoshop writes inverted data in CMYK JPEG
+files: 0 represents 100% ink coverage, rather than 0% ink as you'd expect.
+This is arguably a bug in Photoshop, but if you need to work with Photoshop
+CMYK files, you will have to deal with it in your application.  We cannot
+"fix" this in the library by inverting the data during the CMYK<=>YCCK
+transform, because that would break other applications, notably Ghostscript.
+Photoshop versions prior to 3.0 write EPS files containing JPEG-encoded CMYK
+data in the same inverted-YCCK representation used in bare JPEG files, but
+the surrounding PostScript code performs an inversion using the PS image
+operator.  I am told that Photoshop 3.0 will write uninverted YCCK in
+EPS/JPEG files, and will omit the PS-level inversion.  (But the data
+polarity used in bare JPEG files will not change in 3.0.)  In either case,
+the JPEG library must not invert the data itself, or else Ghostscript would
+read these EPS files incorrectly.
+
+
+Error handling
+--------------
+
+When the default error handler is used, any error detected inside the JPEG
+routines will cause a message to be printed on stderr, followed by exit().
+You can supply your own error handling routines to override this behavior
+and to control the treatment of nonfatal warnings and trace/debug messages.
+The file example.c illustrates the most common case, which is to have the
+application regain control after an error rather than exiting.
+
+The JPEG library never writes any message directly; it always goes through
+the error handling routines.  Three classes of messages are recognized:
+  * Fatal errors: the library cannot continue.
+  * Warnings: the library can continue, but the data is corrupt, and a
+    damaged output image is likely to result.
+  * Trace/informational messages.  These come with a trace level indicating
+    the importance of the message; you can control the verbosity of the
+    program by adjusting the maximum trace level that will be displayed.
+
+You may, if you wish, simply replace the entire JPEG error handling module
+(jerror.c) with your own code.  However, you can avoid code duplication by
+only replacing some of the routines depending on the behavior you need.
+This is accomplished by calling jpeg_std_error() as usual, but then overriding
+some of the method pointers in the jpeg_error_mgr struct, as illustrated by
+example.c.
+
+All of the error handling routines will receive a pointer to the JPEG object
+(a j_common_ptr which points to either a jpeg_compress_struct or a
+jpeg_decompress_struct; if you need to tell which, test the is_decompressor
+field).  This struct includes a pointer to the error manager struct in its
+"err" field.  Frequently, custom error handler routines will need to access
+additional data which is not known to the JPEG library or the standard error
+handler.  The most convenient way to do this is to embed either the JPEG
+object or the jpeg_error_mgr struct in a larger structure that contains
+additional fields; then casting the passed pointer provides access to the
+additional fields.  Again, see example.c for one way to do it.
+
+The individual methods that you might wish to override are:
+
+error_exit (j_common_ptr cinfo)
+	Receives control for a fatal error.  Information sufficient to
+	generate the error message has been stored in cinfo->err; call
+	output_message to display it.  Control must NOT return to the caller;
+	generally this routine will exit() or longjmp() somewhere.
+	Typically you would override this routine to get rid of the exit()
+	default behavior.  Note that if you continue processing, you should
+	clean up the JPEG object with jpeg_abort() or jpeg_destroy().
+
+output_message (j_common_ptr cinfo)
+	Actual output of any JPEG message.  Override this to send messages
+	somewhere other than stderr.  Note that this method does not know
+	how to generate a message, only where to send it.
+
+format_message (j_common_ptr cinfo, char * buffer)
+	Constructs a readable error message string based on the error info
+	stored in cinfo->err.  This method is called by output_message.  Few
+	applications should need to override this method.  One possible
+	reason for doing so is to implement dynamic switching of error message
+	language.
+
+emit_message (j_common_ptr cinfo, int msg_level)
+	Decide whether or not to emit a warning or trace message; if so,
+	calls output_message.  The main reason for overriding this method
+	would be to abort on warnings.  msg_level is -1 for warnings,
+	0 and up for trace messages.
+
+Only error_exit() and emit_message() are called from the rest of the JPEG
+library; the other two are internal to the error handler.
+
+The actual message texts are stored in an array of strings which is pointed to
+by the field err->jpeg_message_table.  The messages are numbered from 0 to
+err->last_jpeg_message, and it is these code numbers that are used in the
+JPEG library code.  You could replace the message texts (for instance, with
+messages in French or German) by changing the message table pointer.  See
+jerror.h for the default texts.  CAUTION: this table will almost certainly
+change or grow from one library version to the next.
+
+It may be useful for an application to add its own message texts that are
+handled by the same mechanism.  The error handler supports a second "add-on"
+message table for this purpose.  To define an addon table, set the pointer
+err->addon_message_table and the message numbers err->first_addon_message and
+err->last_addon_message.  If you number the addon messages beginning at 1000
+or so, you won't have to worry about conflicts with the library's built-in
+messages.  See the sample applications cjpeg/djpeg for an example of using
+addon messages (the addon messages are defined in cderror.h).
+
+Actual invocation of the error handler is done via macros defined in jerror.h:
+	ERREXITn(...)	for fatal errors
+	WARNMSn(...)	for corrupt-data warnings
+	TRACEMSn(...)	for trace and informational messages.
+These macros store the message code and any additional parameters into the
+error handler struct, then invoke the error_exit() or emit_message() method.
+The variants of each macro are for varying numbers of additional parameters.
+The additional parameters are inserted into the generated message using
+standard printf() format codes.
+
+See jerror.h and jerror.c for further details.
+
+
+Compressed data handling (source and destination managers)
+----------------------------------------------------------
+
+The JPEG compression library sends its compressed data to a "destination
+manager" module.  The default destination manager just writes the data to a
+stdio stream, but you can provide your own manager to do something else.
+Similarly, the decompression library calls a "source manager" to obtain the
+compressed data; you can provide your own source manager if you want the data
+to come from somewhere other than a stdio stream.
+
+In both cases, compressed data is processed a bufferload at a time: the
+destination or source manager provides a work buffer, and the library invokes
+the manager only when the buffer is filled or emptied.  (You could define a
+one-character buffer to force the manager to be invoked for each byte, but
+that would be rather inefficient.)  The buffer's size and location are
+controlled by the manager, not by the library.  For example, if you desired to
+decompress a JPEG datastream that was all in memory, you could just make the
+buffer pointer and length point to the original data in memory.  Then the
+buffer-reload procedure would be invoked only if the decompressor ran off the
+end of the datastream, which would indicate an erroneous datastream.
+
+The work buffer is defined as an array of datatype JOCTET, which is generally
+"char" or "unsigned char".  On a machine where char is not exactly 8 bits
+wide, you must define JOCTET as a wider data type and then modify the data
+source and destination modules to transcribe the work arrays into 8-bit units
+on external storage.
+
+A data destination manager struct contains a pointer and count defining the
+next byte to write in the work buffer and the remaining free space:
+
+	JOCTET * next_output_byte;  /* => next byte to write in buffer */
+	size_t free_in_buffer;      /* # of byte spaces remaining in buffer */
+
+The library increments the pointer and decrements the count until the buffer
+is filled.  The manager's empty_output_buffer method must reset the pointer
+and count.  The manager is expected to remember the buffer's starting address
+and total size in private fields not visible to the library.
+
+A data destination manager provides three methods:
+
+init_destination (j_compress_ptr cinfo)
+	Initialize destination.  This is called by jpeg_start_compress()
+	before any data is actually written.  It must initialize
+	next_output_byte and free_in_buffer.  free_in_buffer must be
+	initialized to a positive value.
+
+empty_output_buffer (j_compress_ptr cinfo)
+	This is called whenever the buffer has filled (free_in_buffer
+	reaches zero).  In typical applications, it should write out the
+	*entire* buffer (use the saved start address and buffer length;
+	ignore the current state of next_output_byte and free_in_buffer).
+	Then reset the pointer & count to the start of the buffer, and
+	return TRUE indicating that the buffer has been dumped.
+	free_in_buffer must be set to a positive value when TRUE is
+	returned.  A FALSE return should only be used when I/O suspension is
+	desired (this operating mode is discussed in the next section).
+
+term_destination (j_compress_ptr cinfo)
+	Terminate destination --- called by jpeg_finish_compress() after all
+	data has been written.  In most applications, this must flush any
+	data remaining in the buffer.  Use either next_output_byte or
+	free_in_buffer to determine how much data is in the buffer.
+
+term_destination() is NOT called by jpeg_abort() or jpeg_destroy().  If you
+want the destination manager to be cleaned up during an abort, you must do it
+yourself.
+
+You will also need code to create a jpeg_destination_mgr struct, fill in its
+method pointers, and insert a pointer to the struct into the "dest" field of
+the JPEG compression object.  This can be done in-line in your setup code if
+you like, but it's probably cleaner to provide a separate routine similar to
+the jpeg_stdio_dest() routine of the supplied destination manager.
+
+Decompression source managers follow a parallel design, but with some
+additional frammishes.  The source manager struct contains a pointer and count
+defining the next byte to read from the work buffer and the number of bytes
+remaining:
+
+	const JOCTET * next_input_byte; /* => next byte to read from buffer */
+	size_t bytes_in_buffer;         /* # of bytes remaining in buffer */
+
+The library increments the pointer and decrements the count until the buffer
+is emptied.  The manager's fill_input_buffer method must reset the pointer and
+count.  In most applications, the manager must remember the buffer's starting
+address and total size in private fields not visible to the library.
+
+A data source manager provides five methods:
+
+init_source (j_decompress_ptr cinfo)
+	Initialize source.  This is called by jpeg_read_header() before any
+	data is actually read.  Unlike init_destination(), it may leave
+	bytes_in_buffer set to 0 (in which case a fill_input_buffer() call
+	will occur immediately).
+
+fill_input_buffer (j_decompress_ptr cinfo)
+	This is called whenever bytes_in_buffer has reached zero and more
+	data is wanted.  In typical applications, it should read fresh data
+	into the buffer (ignoring the current state of next_input_byte and
+	bytes_in_buffer), reset the pointer & count to the start of the
+	buffer, and return TRUE indicating that the buffer has been reloaded.
+	It is not necessary to fill the buffer entirely, only to obtain at
+	least one more byte.  bytes_in_buffer MUST be set to a positive value
+	if TRUE is returned.  A FALSE return should only be used when I/O
+	suspension is desired (this mode is discussed in the next section).
+
+skip_input_data (j_decompress_ptr cinfo, long num_bytes)
+	Skip num_bytes worth of data.  The buffer pointer and count should
+	be advanced over num_bytes input bytes, refilling the buffer as
+	needed.  This is used to skip over a potentially large amount of
+	uninteresting data (such as an APPn marker).  In some applications
+	it may be possible to optimize away the reading of the skipped data,
+	but it's not clear that being smart is worth much trouble; large
+	skips are uncommon.  bytes_in_buffer may be zero on return.
+	A zero or negative skip count should be treated as a no-op.
+
+resync_to_restart (j_decompress_ptr cinfo)
+	This routine is called only when the decompressor has failed to find
+	a restart (RSTn) marker where one is expected.  Its mission is to
+	find a suitable point for resuming decompression.  For most
+	applications, we recommend that you just use the default resync
+	procedure, jpeg_resync_to_restart().  However, if you are able to back
+	up in the input data stream, or if you have a-priori knowledge about
+	the likely location of restart markers, you may be able to do better.
+	Read the read_restart_marker() and jpeg_resync_to_restart() routines
+	in jdmarker.c if you think you'd like to implement your own resync
+	procedure.
+
+term_source (j_decompress_ptr cinfo)
+	Terminate source --- called by jpeg_finish_decompress() after all
+	data has been read.  Often a no-op.
+
+For both fill_input_buffer() and skip_input_data(), there is no such thing
+as an EOF return.  If the end of the file has been reached, the routine has
+a choice of exiting via ERREXIT() or inserting fake data into the buffer.
+In most cases, generating a warning message and inserting a fake EOI marker
+is the best course of action --- this will allow the decompressor to output
+however much of the image is there.  In pathological cases, the decompressor
+may swallow the EOI and again demand data ... just keep feeding it fake EOIs.
+jdatasrc.c illustrates the recommended error recovery behavior.
+
+term_source() is NOT called by jpeg_abort() or jpeg_destroy().  If you want
+the source manager to be cleaned up during an abort, you must do it yourself.
+
+You will also need code to create a jpeg_source_mgr struct, fill in its method
+pointers, and insert a pointer to the struct into the "src" field of the JPEG
+decompression object.  This can be done in-line in your setup code if you
+like, but it's probably cleaner to provide a separate routine similar to the
+jpeg_stdio_src() routine of the supplied source manager.
+
+For more information, consult the stdio source and destination managers
+in jdatasrc.c and jdatadst.c.
+
+
+I/O suspension
+--------------
+
+Some applications need to use the JPEG library as an incremental memory-to-
+memory filter: when the compressed data buffer is filled or emptied, they want
+control to return to the outer loop, rather than expecting that the buffer can
+be flushed or reloaded within the data source/destination manager subroutine.
+The library supports this need by providing an "I/O suspension" mode, which we
+describe in this section.
+
+The I/O suspension mode is a limited solution: it works only in the simplest
+operating modes (namely single-pass processing of single-scan JPEG files), and
+it has several other restrictions which are documented below.  Furthermore,
+nothing is guaranteed about the maximum amount of time spent in any one call
+to the library, so a single-threaded application may still have response-time
+problems.  If you need multi-pass processing or guaranteed response time, we
+suggest you "bite the bullet" and implement a real multi-tasking capability.
+
+To use I/O suspension, cooperation is needed between the calling application
+and the data source or destination manager; you will always need a custom
+source/destination manager.  (Please read the previous section if you haven't
+already.)  The basic idea is that the empty_output_buffer() or
+fill_input_buffer() routine is a no-op, merely returning FALSE to indicate
+that it has done nothing.  Upon seeing this, the JPEG library suspends
+operation and returns to its caller.  The surrounding application is
+responsible for emptying or refilling the work buffer before calling the JPEG
+library again.
+
+Compression suspension:
+
+For compression suspension, use an empty_output_buffer() routine that
+returns FALSE; typically it will not do anything else.  This will cause the
+compressor to return to the caller of jpeg_write_scanlines(), with the
+return value indicating that not all the supplied scanlines have been
+accepted.  The application must make more room in the output buffer, adjust
+the buffer pointer/count appropriately, and then call jpeg_write_scanlines()
+again, pointing to the first unconsumed scanline.
+
+When forced to suspend, the compressor will backtrack to a convenient stopping
+point (usually the start of the current MCU); it will regenerate some output
+data when restarted.  Therefore, although empty_output_buffer() is only called
+when the buffer is filled, you should NOT dump out the entire buffer, only the
+data up to the current position of next_output_byte/free_in_buffer.  The data
+beyond that point will be regenerated after resumption.
+
+Because of the backtracking behavior, a good-size output buffer is essential
+for efficiency; you don't want the compressor to suspend often.  (In fact, an
+overly small buffer could lead to infinite looping, if a single MCU required
+more data than would fit in the buffer.)  We recommend a buffer of at least
+several Kbytes.  You may want to insert explicit code to ensure that you don't
+call jpeg_write_scanlines() unless there is a reasonable amount of space in
+the output buffer; in other words, flush the buffer before trying to compress
+more data.
+
+The JPEG compressor does not support suspension while it is trying to write
+JPEG markers at the beginning and end of the file.  This means that
+  * At the beginning of a compression operation, there must be enough free
+    space in the output buffer to hold the header markers (typically 600 or
+    so bytes).  The recommended buffer size is bigger than this anyway, so
+    this is not a problem as long as you start with an empty buffer.  However,
+    this restriction might catch you if you insert large special markers, such
+    as a JFIF thumbnail image.
+  * When you call jpeg_finish_compress(), there must be enough space in the
+    output buffer to emit any buffered data and the final EOI marker.  In the
+    current implementation, half a dozen bytes should suffice for this, but
+    for safety's sake we recommend ensuring that at least 100 bytes are free
+    before calling jpeg_finish_compress().
+Furthermore, since jpeg_finish_compress() cannot suspend, you cannot request
+multi-pass operating modes such as Huffman code optimization or multiple-scan
+output.  That would imply that a large amount of data would be written inside
+jpeg_finish_compress(), which would certainly trigger a buffer overrun.
+
+Decompression suspension:
+
+For decompression suspension, use a fill_input_buffer() routine that simply
+returns FALSE (except perhaps during error recovery, as discussed below).
+This will cause the decompressor to return to its caller with an indication
+that suspension has occurred.  This can happen at three places:
+  * jpeg_read_header(): will return JPEG_SUSPENDED.
+  * jpeg_read_scanlines(): will return the number of scanlines already
+	completed (possibly 0).
+  * jpeg_finish_decompress(): will return FALSE, rather than its usual TRUE.
+The surrounding application must recognize these cases, load more data into
+the input buffer, and repeat the call.  In the case of jpeg_read_scanlines(),
+adjust the passed pointers to reflect any scanlines successfully read.
+
+Just as with compression, the decompressor will typically backtrack to a
+convenient restart point before suspending.  The data beyond the current
+position of next_input_byte/bytes_in_buffer must NOT be discarded; it will
+be re-read upon resumption.  In most implementations, you'll need to shift
+this data down to the start of your work buffer and then load more data
+after it.  Again, this behavior means that a several-Kbyte work buffer is
+essential for decent performance; furthermore, you should load a reasonable
+amount of new data before resuming decompression.  (If you loaded, say,
+only one new byte each time around, you could waste a LOT of cycles.)
+
+The skip_input_data() source manager routine requires special care in a
+suspension scenario.  This routine is NOT granted the ability to suspend the
+decompressor; it can decrement bytes_in_buffer to zero, but no more.  If the
+requested skip distance exceeds the amount of data currently in the input
+buffer, then skip_input_data() must set bytes_in_buffer to zero and record the
+additional skip distance somewhere else.  The decompressor will immediately
+call fill_input_buffer(), which will return FALSE, which will cause a
+suspension return.  The surrounding application must then arrange to discard
+the right number of bytes before it resumes loading the input buffer.  (Yes,
+this design is rather baroque, but it avoids complexity in the far more common
+case where a non-suspending source manager is used.)
+
+If the input data has been exhausted, we recommend that you emit a warning
+and insert dummy EOI markers just as a non-suspending data source manager
+would do.  This can be handled either in the surrounding application logic or
+within fill_input_buffer(); the latter is probably more efficient.  If
+fill_input_buffer() knows that no more data is available, it can set the
+pointer/count to point to a dummy EOI marker and then return TRUE just as
+though it had read more data in a non-suspending situation.
+
+The decompressor does not support suspension within jpeg_start_decompress().
+This means that you cannot use suspension with any multi-pass processing mode
+(eg, two-pass color quantization or multiple-scan JPEG files).  In single-pass
+modes, jpeg_start_decompress() reads no data and thus need never suspend.
+
+The decompressor does not attempt to suspend within any JPEG marker; it will
+backtrack to the start of the marker.  Hence the input buffer must be large
+enough to hold the longest marker in the file.  We recommend at least a 2K
+buffer.  The buffer would need to be 64K to allow for arbitrary COM or APPn
+markers, but the decompressor does not actually try to read these; it just
+skips them by calling skip_input_data().  If you provide a special marker
+handling routine that does look at such markers, coping with buffer overflow
+is your problem.  Ordinary JPEG markers should normally not exceed a few
+hundred bytes each (DHT tables are typically the longest).  For robustness
+against damaged marker length counts, you may wish to insert a test in your
+application for the case that the input buffer is completely full and yet the
+decoder has suspended without consuming any data --- otherwise, if this
+situation did occur, it would lead to an endless loop.
+
+
+Abbreviated datastreams and multiple images
+-------------------------------------------
+
+A JPEG compression or decompression object can be reused to process multiple
+images.  This saves a small amount of time per image by eliminating the
+"create" and "destroy" operations, but that isn't the real purpose of the
+feature.  Rather, reuse of an object provides support for abbreviated JPEG
+datastreams.  Object reuse can also simplify processing a series of images in
+a single input or output file.  This section explains these features.
+
+A JPEG file normally contains several hundred bytes worth of quantization
+and Huffman tables.  In a situation where many images will be stored or
+transmitted with identical tables, this may represent an annoying overhead.
+The JPEG standard therefore permits tables to be omitted.  The standard
+defines three classes of JPEG datastreams:
+  * "Interchange" datastreams contain an image and all tables needed to decode
+     the image.  These are the usual kind of JPEG file.
+  * "Abbreviated image" datastreams contain an image, but are missing some or
+    all of the tables needed to decode that image.
+  * "Abbreviated table specification" (henceforth "tables-only") datastreams
+    contain only table specifications.
+To decode an abbreviated image, it is necessary to load the missing table(s)
+into the decoder beforehand.  This can be accomplished by reading a separate
+tables-only file.  A variant scheme uses a series of images in which the first
+image is an interchange (complete) datastream, while subsequent ones are
+abbreviated and rely on the tables loaded by the first image.  It is assumed
+that once the decoder has read a table, it will remember that table until a
+new definition for the same table number is encountered.
+
+It is the application designer's responsibility to figure out how to associate
+the correct tables with an abbreviated image.  While abbreviated datastreams
+can be useful in a closed environment, their use is strongly discouraged in
+any situation where data exchange with other applications might be needed.
+Caveat designer.
+
+The JPEG library provides support for reading and writing any combination of
+tables-only datastreams and abbreviated images.  In both compression and
+decompression objects, a quantization or Huffman table will be retained for
+the lifetime of the object, unless it is overwritten by a new table definition.
+
+
+To create abbreviated image datastreams, it is only necessary to tell the
+compressor not to emit some or all of the tables it is using.  Each
+quantization and Huffman table struct contains a boolean field "sent_table",
+which normally is initialized to FALSE.  For each table used by the image, the
+header-writing process emits the table and sets sent_table = TRUE unless it is
+already TRUE.  (In normal usage, this prevents outputting the same table
+definition multiple times, as would otherwise occur because the chroma
+components typically share tables.)  Thus, setting this field to TRUE before
+calling jpeg_start_compress() will prevent the table from being written at
+all.
+
+If you want to create a "pure" abbreviated image file containing no tables,
+just call "jpeg_suppress_tables(&cinfo, TRUE)" after constructing all the
+tables.  If you want to emit some but not all tables, you'll need to set the
+individual sent_table fields directly.
+
+To create an abbreviated image, you must also call jpeg_start_compress()
+with a second parameter of FALSE, not TRUE.  Otherwise jpeg_start_compress()
+will force all the sent_table fields to FALSE.  (This is a safety feature to
+prevent abbreviated images from being created accidentally.)
+
+To create a tables-only file, perform the same parameter setup that you
+normally would, but instead of calling jpeg_start_compress() and so on, call
+jpeg_write_tables(&cinfo).  This will write an abbreviated datastream
+containing only SOI, DQT and/or DHT markers, and EOI.  All the quantization
+and Huffman tables that are currently defined in the compression object will
+be emitted unless their sent_tables flag is already TRUE, and then all the
+sent_tables flags will be set TRUE.
+
+A sure-fire way to create matching tables-only and abbreviated image files
+is to proceed as follows:
+
+	create JPEG compression object
+	set JPEG parameters
+	set destination to tables-only file
+	jpeg_write_tables(&cinfo);
+	set destination to image file
+	jpeg_start_compress(&cinfo, FALSE);
+	write data...
+	jpeg_finish_compress(&cinfo);
+
+Since the JPEG parameters are not altered between writing the table file and
+the abbreviated image file, the same tables are sure to be used.  Of course,
+you can repeat the jpeg_start_compress() ... jpeg_finish_compress() sequence
+many times to produce many abbreviated image files matching the table file.
+
+You cannot suppress output of the computed Huffman tables when Huffman
+optimization is selected.  (If you could, there'd be no way to decode the
+image...)  Generally, you don't want to set optimize_coding = TRUE when
+you are trying to produce abbreviated files.
+
+In some cases you might want to compress an image using tables which are
+not stored in the application, but are defined in an interchange or
+tables-only file readable by the application.  This can be done by setting up
+a JPEG decompression object to read the specification file, then copying the
+tables into your compression object.
+
+
+To read abbreviated image files, you simply need to load the proper tables
+into the decompression object before trying to read the abbreviated image.
+If the proper tables are stored in the application program, you can just
+allocate the table structs and fill in their contents directly.  More commonly
+you'd want to read the tables from a tables-only file.  The jpeg_read_header()
+call is sufficient to read a tables-only file.  You must pass a second
+parameter of FALSE to indicate that you do not require an image to be present.
+Thus, the typical scenario is
+
+	create JPEG decompression object
+	set source to tables-only file
+	jpeg_read_header(&cinfo, FALSE);
+	set source to abbreviated image file
+	jpeg_read_header(&cinfo, TRUE);
+	set decompression parameters
+	jpeg_start_decompress(&cinfo);
+	read data...
+	jpeg_finish_decompress(&cinfo);
+
+In some cases, you may want to read a file without knowing whether it contains
+an image or just tables.  In that case, pass FALSE and check the return value
+from jpeg_read_header(): it will be JPEG_HEADER_OK if an image was found,
+JPEG_HEADER_TABLES_ONLY if only tables were found.  (A third return value,
+JPEG_SUSPENDED, is possible when using a suspending data source manager.)
+Note that jpeg_read_header() will not complain if you read an abbreviated
+image for which you haven't loaded the missing tables; the missing-table check
+occurs in jpeg_start_decompress().
+
+
+It is possible to read a series of images from a single source file by
+repeating the jpeg_read_header() ... jpeg_finish_decompress() sequence,
+without releasing/recreating the JPEG object or the data source module.
+(If you did reinitialize, any partial bufferload left in the data source
+buffer at the end of one image would be discarded, causing you to lose the
+start of the next image.)  When you use this method, stored tables are
+automatically carried forward, so some of the images can be abbreviated images
+that depend on tables from earlier images.
+
+If you intend to write a series of images into a single destination file,
+you might want to make a specialized data destination module that doesn't
+flush the output buffer at term_destination() time.  This would speed things
+up by some trifling amount.  Of course, you'd need to remember to flush the
+buffer after the last image.  You can make the later images be abbreviated
+ones by passing FALSE to jpeg_start_compress().
+
+
+Special markers
+---------------
+
+Some applications may need to insert or extract special data in the JPEG
+datastream.  The JPEG standard provides marker types "COM" (comment) and
+"APP0" through "APP15" (application) to hold application-specific data.
+Unfortunately, the use of these markers is not specified by the standard.
+COM markers are fairly widely used to hold user-supplied text.  The JFIF file
+format spec uses APP0 markers with specified initial strings to hold certain
+data.  Adobe applications use APP14 markers beginning with the string "Adobe"
+for miscellaneous data.  Other APPn markers are rarely seen, but might
+contain almost anything.
+
+If you wish to store user-supplied text, we recommend you use COM markers
+and place readable 7-bit ASCII text in them.  Newline conventions are not
+standardized --- expect to find LF (Unix style), CR/LF (DOS style), or CR
+(Mac style).  A robust COM reader should be able to cope with random binary
+garbage, including nulls, since some applications generate COM markers
+containing non-ASCII junk.  (But yours should not be one of them.)
+
+For program-supplied data, use an APPn marker, and be sure to begin it with an
+identifying string so that you can tell whether the marker is actually yours.
+It's probably best to avoid using APP0 or APP14 for any private markers.
+
+Keep in mind that at most 65533 bytes can be put into one marker, but you
+can have as many markers as you like.
+
+By default, the JPEG compression library will write a JFIF APP0 marker if the
+selected JPEG colorspace is grayscale or YCbCr, or an Adobe APP14 marker if
+the selected colorspace is RGB, CMYK, or YCCK.  You can disable this, but
+we don't recommend it.  The decompression library will recognize JFIF and
+Adobe markers and will set the JPEG colorspace properly when one is found.
+
+You can write special markers immediately following the datastream header by
+calling jpeg_write_marker() after jpeg_start_compress() and before the first
+call to jpeg_write_scanlines().  When you do this, the markers appear after
+the SOI and the JFIF APP0 and Adobe APP14 markers (if written), but before
+all else.  Write the marker type parameter as "JPEG_COM" for COM or
+"JPEG_APP0 + n" for APPn.  (Actually, jpeg_write_marker will let you write
+any marker type, but we don't recommend writing any other kinds of marker.)
+For example, to write a user comment string pointed to by comment_text:
+	jpeg_write_marker(cinfo, JPEG_COM, comment_text, strlen(comment_text));
+Or if you prefer to synthesize the marker byte sequence yourself, you can
+just cram it straight into the data destination module.
+
+For decompression, you can supply your own routine to process COM or APPn
+markers by calling jpeg_set_marker_processor().  Usually you'd call this
+after creating a decompression object and before calling jpeg_read_header(),
+because the markers of interest will normally be scanned by jpeg_read_header.
+Once you've supplied a routine, it will be used for the life of that
+decompression object.  A separate routine may be registered for COM and for
+each APPn marker code.
+
+A marker processor routine must have the signature
+	boolean jpeg_marker_parser_method (j_decompress_ptr cinfo)
+Although the marker code is not explicitly passed, the routine can find it
+in cinfo->unread_marker.  At the time of call, the marker proper has been
+read from the data source module.  The processor routine is responsible for
+reading the marker length word and the remaining parameter bytes, if any.
+Return TRUE to indicate success.  (FALSE should be returned only if you are
+using a suspending data source and it tells you to suspend.  See the standard
+marker processors in jdmarker.c for appropriate coding methods if you need to
+use a suspending data source.)
+
+If you override the default APP0 or APP14 processors, it is up to you to
+recognize JFIF and Adobe markers if you want colorspace recognition to occur
+properly.  We recommend copying and extending the default processors if you
+want to do that.
+
+A simple example of an external COM processor can be found in djpeg.c.
+
+
+Raw (downsampled) image data
+----------------------------
+
+Some applications need to supply already-downsampled image data to the JPEG
+compressor, or to receive raw downsampled data from the decompressor.  The
+library supports this requirement by allowing the application to write or
+read raw data, bypassing the normal preprocessing or postprocessing steps.
+The interface is different from the standard one and is somewhat harder to
+use.  If your interest is merely in bypassing color conversion, we recommend
+that you use the standard interface and simply set jpeg_color_space =
+in_color_space (or jpeg_color_space = out_color_space for decompression).
+The mechanism described in this section is necessary only to supply or
+receive downsampled image data, in which not all components have the same
+dimensions.
+
+
+To compress raw data, you must supply the data in the colorspace to be used
+in the JPEG file (please read the earlier section on Special color spaces)
+and downsampled to the sampling factors specified in the JPEG parameters.
+You must supply the data in the format used internally by the JPEG library,
+namely a JSAMPIMAGE array.  This is an array of pointers to two-dimensional
+arrays, each of type JSAMPARRAY.  Each 2-D array holds the values for one
+color component.  This structure is necessary since the components are of
+different sizes.  If the image dimensions are not a multiple of the MCU size,
+you must also pad the data correctly (usually, this is done by replicating
+the last column and/or row).  The data must be padded to a multiple of a DCT
+block in each component: that is, each downsampled row must contain a
+multiple of 8 valid samples, and there must be a multiple of 8 sample rows
+for each component.  (For applications such as conversion of digital TV
+images, the standard image size is usually a multiple of the DCT block size,
+so that no padding need actually be done.)
+
+The procedure for compression of raw data is basically the same as normal
+compression, except that you call jpeg_write_raw_data() in place of
+jpeg_write_scanlines().  Before calling jpeg_start_compress(), you must do
+the following:
+  * Set cinfo->raw_data_in to TRUE.  (It is set FALSE by jpeg_set_defaults().)
+    This notifies the library that you will be supplying raw data.
+  * Ensure jpeg_color_space is correct --- an explicit jpeg_set_colorspace()
+    call is a good idea.  Note that since color conversion is bypassed,
+    in_color_space is ignored, except that jpeg_set_defaults() uses it to
+    choose the default jpeg_color_space setting.
+  * Ensure the sampling factors, cinfo->comp_info[i].h_samp_factor and
+    cinfo->comp_info[i].v_samp_factor, are correct.  Since these indicate the
+    dimensions of the data you are supplying, it's wise to set them
+    explicitly, rather than assuming the library's defaults are what you want.
+
+To pass raw data to the library, call jpeg_write_raw_data() in place of
+jpeg_write_scanlines().  The two routines work similarly except that
+jpeg_write_raw_data takes a JSAMPIMAGE data array rather than JSAMPARRAY.
+The scanlines count passed to and returned from jpeg_write_raw_data is
+measured in terms of the component with the largest v_samp_factor.
+
+jpeg_write_raw_data() processes one MCU row per call, which is to say
+v_samp_factor*DCTSIZE sample rows of each component.  The passed num_lines
+value must be at least max_v_samp_factor*DCTSIZE, and the return value will
+be exactly that amount (or possibly some multiple of that amount, in future
+library versions).  This is true even on the last call at the bottom of the
+image; don't forget to pad your data as necessary.
+
+The required dimensions of the supplied data can be computed for each
+component as
+	cinfo->comp_info[i].width_in_blocks*DCTSIZE  samples per row
+	cinfo->comp_info[i].height_in_blocks*DCTSIZE rows in image
+after jpeg_start_compress() has initialized those fields.  If the valid data
+is smaller than this, it must be padded appropriately.  For some sampling
+factors and image sizes, additional dummy DCT blocks are inserted to make
+the image a multiple of the MCU dimensions.  The library creates such dummy
+blocks itself; it does not read them from your supplied data.  Therefore you
+need never pad by more than DCTSIZE samples.  An example may help here.
+Assume 2h2v downsampling of YCbCr data, that is
+	cinfo->comp_info[0].h_samp_factor = 2		for Y
+	cinfo->comp_info[0].v_samp_factor = 2
+	cinfo->comp_info[1].h_samp_factor = 1		for Cb
+	cinfo->comp_info[1].v_samp_factor = 1
+	cinfo->comp_info[2].h_samp_factor = 1		for Cr
+	cinfo->comp_info[2].v_samp_factor = 1
+and suppose that the nominal image dimensions (cinfo->image_width and
+cinfo->image_height) are 101x101 pixels.  Then jpeg_start_compress() will
+compute downsampled_width = 101 and width_in_blocks = 13 for Y,
+downsampled_width = 51 and width_in_blocks = 7 for Cb and Cr (and the same
+for the height fields).  You must pad the Y data to at least 13*8 = 104
+columns and rows, the Cb/Cr data to at least 7*8 = 56 columns and rows.  The
+MCU height is max_v_samp_factor = 2 DCT rows so you must pass at least 16
+scanlines on each call to jpeg_write_raw_data(), which is to say 16 actual
+sample rows of Y and 8 each of Cb and Cr.  A total of 7 MCU rows are needed,
+so you must pass a total of 7*16 = 112 "scanlines".  The last DCT block row
+of Y data is dummy, so it doesn't matter what you pass for it in the data
+arrays, but the scanlines count must total up to 112 so that all of the Cb
+and Cr data gets passed.
+
+Currently, output suspension is not supported with raw data output: an error
+will result if the data destination module tries to suspend.
+
+
+Decompression with raw data output implies bypassing all postprocessing:
+you cannot ask for color quantization, for instance.  More seriously, you must
+deal with the color space and sampling factors present in the incoming file.
+If your application only handles, say, 2h1v YCbCr data, you must check for
+and fail on other color spaces or other sampling factors.
+
+To obtain raw data output, set cinfo->raw_data_out = TRUE before
+jpeg_start_decompress() (it is set FALSE by jpeg_read_header()).  Be sure to
+verify that the color space and sampling factors are ones you can handle.
+Then call jpeg_read_raw_data() in place of jpeg_read_scanlines().  The
+decompression process is otherwise the same as usual.
+
+jpeg_read_raw_data() returns one MCU row per call, and thus you must pass a
+buffer of at least max_v_samp_factor*DCTSIZE scanlines (scanline counting is
+the same as for raw-data compression).  The buffer you pass must be large
+enough to hold the actual data plus padding to DCT-block boundaries.  As with
+compression, any entirely dummy DCT blocks are not processed so you need not
+allocate space for them, but the total scanline count includes them.  The
+above example of computing buffer dimensions for raw-data compression is
+equally valid for decompression.
+
+Input suspension is supported with raw-data decompression: if the data source
+module suspends, jpeg_read_raw_data() will return 0.
+
+
+Progress monitoring
+-------------------
+
+Some applications may need to regain control from the JPEG library every so
+often.  The typical use of this feature is to produce a percent-done bar or
+other progress display.  (For a simple example, see cjpeg.c or djpeg.c.)
+Although you do get control back frequently during the data-transferring pass
+(the jpeg_read_scanlines or jpeg_write_scanlines loop), any additional passes
+will occur inside jpeg_finish_compress or jpeg_start_decompress; those
+routines may take a long time to execute, and you don't get control back
+until they are done.
+
+You can define a progress-monitor routine which will be called periodically
+by the library.  No guarantees are made about how often this call will occur,
+so we don't recommend you use it for mouse tracking or anything like that.
+At present, a call will occur once per MCU row, scanline, or sample row
+group, whichever unit is convenient for the current processing mode; so the
+wider the image, the longer the time between calls.  (During the data
+transferring pass, only one call occurs per call of jpeg_read_scanlines or
+jpeg_write_scanlines, so don't pass a large number of scanlines at once if
+you want fine resolution in the progress count.)
+
+To establish a progress-monitor callback, create a struct jpeg_progress_mgr,
+fill in its progress_monitor field with a pointer to your callback routine,
+and set cinfo->progress to point to the struct.  The callback will be called
+whenever cinfo->progress is non-NULL.  (This pointer is set to NULL by
+jpeg_create_compress or jpeg_create_decompress; the library will not change
+it thereafter.  So if you allocate dynamic storage for the progress struct,
+make sure it will live as long as the JPEG object does.  Allocating from the
+JPEG memory manager with lifetime JPOOL_PERMANENT will work nicely.)  You
+can use the same callback routine for both compression and decompression.
+
+The jpeg_progress_mgr struct contains four fields which are set by the library:
+	long pass_counter;	/* work units completed in this pass */
+	long pass_limit;	/* total number of work units in this pass */
+	int completed_passes;	/* passes completed so far */
+	int total_passes;	/* total number of passes expected */
+During any one pass, pass_counter increases from 0 up to (not including)
+pass_limit; the step size is not necessarily 1.  Both the step size and the
+limit may differ from one pass to another.  The expected total number of
+passes is in total_passes, and the number of passes already completed is in
+completed_passes.  Thus the fraction of work completed may be estimated as
+		completed_passes + (pass_counter/pass_limit)
+		--------------------------------------------
+				total_passes
+ignoring the fact that the passes may not be equal amounts of work.
+
+When decompressing, the total_passes value is not trustworthy, because it
+depends on the number of scans in the JPEG file, which isn't always known in
+advance.  In the current implementation, completed_passes may jump by more
+than one when dealing with a multiple-scan input file.  About all that is
+really safe to assume is that when completed_passes = total_passes - 1, the
+current pass will be the last one.
+
+If you really need to use the callback mechanism for time-critical tasks
+like mouse tracking, you could insert additional calls inside some of the
+library's inner loops.
+
+
+Memory management
+-----------------
+
+This section covers some key facts about the JPEG library's built-in memory
+manager.  For more info, please read structure.doc's section about the memory
+manager, and consult the source code if necessary.
+
+All memory and temporary file allocation within the library is done via the
+memory manager.  If necessary, you can replace the "back end" of the memory
+manager to control allocation yourself (for example, if you don't want the
+library to use malloc() and free() for some reason).
+
+Some data is allocated "permanently" and will not be freed until the JPEG
+object is destroyed.  Most data is allocated "per image" and is freed by
+jpeg_finish_compress, jpeg_finish_decompress, or jpeg_abort.  You can call the
+memory manager yourself to allocate structures that will automatically be
+freed at these times.  Typical code for this is
+  ptr = (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, size);
+Use JPOOL_PERMANENT to get storage that lasts as long as the JPEG object.
+Use alloc_large instead of alloc_small for anything bigger than a few Kbytes.
+There are also alloc_sarray and alloc_barray routines that automatically
+build 2-D sample or block arrays.
+
+The library's minimum space requirements to process an image depend on the
+image's width, but not on its height, because the library ordinarily works
+with "strip" buffers that are as wide as the image but just a few rows high.
+Some operating modes (eg, two-pass color quantization) require full-image
+buffers.  Such buffers are treated as "virtual arrays": only the current strip
+need be in memory, and the rest can be swapped out to a temporary file.
+
+If you use the simplest memory manager back end (jmemnobs.c), then no
+temporary files are used; virtual arrays are simply malloc()'d.  Images bigger
+than memory can be processed only if your system supports virtual memory.
+The other memory manager back ends support temporary files of various flavors
+and thus work in machines without virtual memory.  They may also be useful on
+Unix machines if you need to process images that exceed available swap space.
+
+When using temporary files, the library will make the in-memory buffers for
+its virtual arrays just big enough to stay within a "maximum memory" setting.
+Your application can set this limit by setting cinfo->mem->max_memory_to_use
+after creating the JPEG object.  (Of course, there is still a minimum size for
+the buffers, so the max-memory setting is effective only if it is bigger than
+the minimum space needed.)  If you allocate any large structures yourself, you
+must allocate them before jpeg_start_compress() or jpeg_start_decompress() in
+order to have them counted against the max memory limit.  Also keep in mind
+that space allocated with alloc_small() is ignored, on the assumption that
+it's too small to be worth worrying about.
+
+If you use the jmemname.c or jmemdos.c memory manager back end, it is
+important to clean up the JPEG object properly to ensure that the temporary
+files get deleted.  (This is especially crucial with jmemdos.c, where the
+"temporary files" may be extended-memory segments; if they are not freed,
+DOS will require a reboot to recover the memory.)  Thus, with these memory
+managers, it's a good idea to provide a signal handler that will trap any
+early exit from your program.  The handler should call either jpeg_abort()
+or jpeg_destroy() for any active JPEG objects.  A handler is not needed with
+jmemnobs.c, and shouldn't be necessary with jmemansi.c either, since the C
+library is supposed to take care of deleting files made with tmpfile().
+
+
+Library compile-time options
+----------------------------
+
+A number of compile-time options are available by modifying jmorecfg.h.
+
+The JPEG standard provides for both the baseline 8-bit DCT process and
+a 12-bit DCT process.  12-bit lossy JPEG is supported if you define
+BITS_IN_JSAMPLE as 12 rather than 8.  Note that this causes JSAMPLE to be
+larger than a char, so it affects the surrounding application's image data.
+At present, a 12-bit library can handle *only* 12-bit images, not both
+precisions.  (If you need to include both 8- and 12-bit libraries in a
+single application, you could probably do it by defining
+NEED_SHORT_EXTERNAL_NAMES for just one of the copies.  You'd have to access
+the 8-bit and 12-bit copies from separate application source files.  This is
+untested ... if you try it, we'd like to hear whether it works!)
+
+The maximum number of components (color channels) in the image is determined
+by MAX_COMPONENTS.  The JPEG standard allows up to 255 components, but we
+expect that few applications will need more than four or so.
+
+On machines with unusual data type sizes, you may be able to improve
+performance or reduce memory space by tweaking the various typedefs in
+jmorecfg.h.  In particular, on some RISC CPUs, access to arrays of "short"s
+is quite slow; consider trading memory for speed by making JCOEF, INT16, and
+UINT16 be "int" or "unsigned int".  UINT8 is also a candidate to become int.
+You probably don't want to make JSAMPLE be int unless you have lots of memory
+to burn.
+
+You can reduce the size of the library by compiling out various optional
+functions.  To do this, undefine xxx_SUPPORTED symbols as necessary.
+
+
+Portability considerations
+--------------------------
+
+The JPEG library has been written to be extremely portable; the sample
+applications cjpeg and djpeg are slightly less so.  This section summarizes
+the design goals in this area.  (If you encounter any bugs that cause the
+library to be less portable than is claimed here, we'd appreciate hearing
+about them.)
+
+The code works fine on both ANSI and pre-ANSI C compilers, using any of the
+popular system include file setups, and some not-so-popular ones too.  See
+install.doc for configuration procedures.
+
+The code is not dependent on the exact sizes of the C data types.  As
+distributed, we make the assumptions that
+	char	is at least 8 bits wide
+	short	is at least 16 bits wide
+	int	is at least 16 bits wide
+	long	is at least 32 bits wide
+(These are the minimum requirements of the ANSI C standard.)  Wider types will
+work fine, although memory may be used inefficiently if char is much larger
+than 8 bits or short is much bigger than 16 bits.  The code should work
+equally well with 16- or 32-bit ints.
+
+In a system where these assumptions are not met, you may be able to make the
+code work by modifying the typedefs in jmorecfg.h.  However, you will probably
+have difficulty if int is less than 16 bits wide, since references to plain
+int abound in the code.
+
+char can be either signed or unsigned, although the code runs faster if an
+unsigned char type is available.  If char is wider than 8 bits, you will need
+to redefine JOCTET and/or provide custom data source/destination managers so
+that JOCTET represents exactly 8 bits of data on external storage.
+
+The JPEG library proper does not assume ASCII representation of characters.
+But some of the image file I/O modules in cjpeg/djpeg do have ASCII
+dependencies in file-header manipulation; so does cjpeg's select_file_type()
+routine.
+
+The JPEG library does not rely heavily on the C library.  In particular, C
+stdio is used only by the data source/destination modules and the error
+handler, all of which are application-replaceable.  (cjpeg/djpeg are more
+heavily dependent on stdio.)  malloc and free are called only from the memory
+manager "back end" module, so you can use a different memory allocator by
+replacing that one file.
+
+The code generally assumes that C names must be unique in the first 15
+characters.  However, global function names can be made unique in the
+first 6 characters by defining NEED_SHORT_EXTERNAL_NAMES.
+
+More info about porting the code may be gleaned by reading jconfig.doc,
+jmorecfg.h, and jinclude.h.
+
+
+Notes for MS-DOS implementors
+-----------------------------
+
+The IJG code is designed to work efficiently in 80x86 "small" or "medium"
+memory models (i.e., data pointers are 16 bits unless explicitly declared
+"far"; code pointers can be either size).  You may be able to use small
+model to compile cjpeg or djpeg by itself, but you will probably have to use
+medium model for any larger application.  This won't make much difference in
+performance.  You *will* take a noticeable performance hit if you use a
+large-data memory model (perhaps 10%-25%), and you should avoid "huge" model
+if at all possible.
+
+The JPEG library typically needs 2Kb-3Kb of stack space.  It will also
+malloc about 20K-30K of near heap space while executing (and lots of far
+heap, but that doesn't count in this calculation).  This figure will vary
+depending on selected operating mode, and to a lesser extent on image size.
+Thus you have perhaps 25K available for static data and other modules' near
+heap space before you need to go to a larger memory model.  The C library's
+static data will account for several K of this, but that still leaves a good
+deal for your needs.  (If you are tight on space, you could reduce the sizes
+of the I/O buffers allocated by jdatasrc.c and jdatadst.c, say from 4K to
+1K.)
+
+About 2K of the near heap space is "permanent" memory that will not be
+released until you destroy the JPEG object.  This is only an issue if you
+save a JPEG object between compression or decompression operations.
+
+Far data space may also be a tight resource when you are dealing with large
+images.  The most memory-intensive case is decompression with two-pass color
+quantization, or single-pass quantization to an externally supplied color
+map.  This requires a 128Kb color lookup table plus strip buffers amounting
+to about 50 bytes per column for typical sampling ratios (eg, about 32000
+bytes for a 640-pixel-wide image).  You may not be able to process wide
+images if you have large data structures of your own.
+
+Of course, all of these concerns vanish if you use a 32-bit flat-memory-model
+compiler, such as DJGPP or Watcom C.  We highly recommend flat model if you
+can use it; the JPEG library is significantly faster in flat model.