The Independent JPEG Group's JPEG software v7
diff --git a/jdhuff.c b/jdhuff.c
index b5ba39f..a5d679e 100644
--- a/jdhuff.c
+++ b/jdhuff.c
@@ -2,10 +2,12 @@
  * jdhuff.c
  *
  * Copyright (C) 1991-1997, Thomas G. Lane.
+ * Modified 2006-2009 by Guido Vollbeding.
  * This file is part of the Independent JPEG Group's software.
  * For conditions of distribution and use, see the accompanying README file.
  *
  * This file contains Huffman entropy decoding routines.
+ * Both sequential and progressive modes are supported in this single module.
  *
  * Much of the complexity here has to do with supporting input suspension.
  * If the data source module demands suspension, we want to be able to back
@@ -17,7 +19,173 @@
 #define JPEG_INTERNALS
 #include "jinclude.h"
 #include "jpeglib.h"
-#include "jdhuff.h"		/* Declarations shared with jdphuff.c */
+
+
+/* Derived data constructed for each Huffman table */
+
+#define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */
+
+typedef struct {
+  /* Basic tables: (element [0] of each array is unused) */
+  INT32 maxcode[18];		/* largest code of length k (-1 if none) */
+  /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
+  INT32 valoffset[17];		/* huffval[] offset for codes of length k */
+  /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
+   * the smallest code of length k; so given a code of length k, the
+   * corresponding symbol is huffval[code + valoffset[k]]
+   */
+
+  /* Link to public Huffman table (needed only in jpeg_huff_decode) */
+  JHUFF_TBL *pub;
+
+  /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
+   * the input data stream.  If the next Huffman code is no more
+   * than HUFF_LOOKAHEAD bits long, we can obtain its length and
+   * the corresponding symbol directly from these tables.
+   */
+  int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
+  UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
+} d_derived_tbl;
+
+
+/*
+ * Fetching the next N bits from the input stream is a time-critical operation
+ * for the Huffman decoders.  We implement it with a combination of inline
+ * macros and out-of-line subroutines.  Note that N (the number of bits
+ * demanded at one time) never exceeds 15 for JPEG use.
+ *
+ * We read source bytes into get_buffer and dole out bits as needed.
+ * If get_buffer already contains enough bits, they are fetched in-line
+ * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough
+ * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
+ * as full as possible (not just to the number of bits needed; this
+ * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
+ * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
+ * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
+ * at least the requested number of bits --- dummy zeroes are inserted if
+ * necessary.
+ */
+
+typedef INT32 bit_buf_type;	/* type of bit-extraction buffer */
+#define BIT_BUF_SIZE  32	/* size of buffer in bits */
+
+/* If long is > 32 bits on your machine, and shifting/masking longs is
+ * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
+ * appropriately should be a win.  Unfortunately we can't define the size
+ * with something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
+ * because not all machines measure sizeof in 8-bit bytes.
+ */
+
+typedef struct {		/* Bitreading state saved across MCUs */
+  bit_buf_type get_buffer;	/* current bit-extraction buffer */
+  int bits_left;		/* # of unused bits in it */
+} bitread_perm_state;
+
+typedef struct {		/* Bitreading working state within an MCU */
+  /* Current data source location */
+  /* We need a copy, rather than munging the original, in case of suspension */
+  const JOCTET * next_input_byte; /* => next byte to read from source */
+  size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */
+  /* Bit input buffer --- note these values are kept in register variables,
+   * not in this struct, inside the inner loops.
+   */
+  bit_buf_type get_buffer;	/* current bit-extraction buffer */
+  int bits_left;		/* # of unused bits in it */
+  /* Pointer needed by jpeg_fill_bit_buffer. */
+  j_decompress_ptr cinfo;	/* back link to decompress master record */
+} bitread_working_state;
+
+/* Macros to declare and load/save bitread local variables. */
+#define BITREAD_STATE_VARS  \
+	register bit_buf_type get_buffer;  \
+	register int bits_left;  \
+	bitread_working_state br_state
+
+#define BITREAD_LOAD_STATE(cinfop,permstate)  \
+	br_state.cinfo = cinfop; \
+	br_state.next_input_byte = cinfop->src->next_input_byte; \
+	br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
+	get_buffer = permstate.get_buffer; \
+	bits_left = permstate.bits_left;
+
+#define BITREAD_SAVE_STATE(cinfop,permstate)  \
+	cinfop->src->next_input_byte = br_state.next_input_byte; \
+	cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
+	permstate.get_buffer = get_buffer; \
+	permstate.bits_left = bits_left
+
+/*
+ * These macros provide the in-line portion of bit fetching.
+ * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
+ * before using GET_BITS, PEEK_BITS, or DROP_BITS.
+ * The variables get_buffer and bits_left are assumed to be locals,
+ * but the state struct might not be (jpeg_huff_decode needs this).
+ *	CHECK_BIT_BUFFER(state,n,action);
+ *		Ensure there are N bits in get_buffer; if suspend, take action.
+ *      val = GET_BITS(n);
+ *		Fetch next N bits.
+ *      val = PEEK_BITS(n);
+ *		Fetch next N bits without removing them from the buffer.
+ *	DROP_BITS(n);
+ *		Discard next N bits.
+ * The value N should be a simple variable, not an expression, because it
+ * is evaluated multiple times.
+ */
+
+#define CHECK_BIT_BUFFER(state,nbits,action) \
+	{ if (bits_left < (nbits)) {  \
+	    if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \
+	      { action; }  \
+	    get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
+
+#define GET_BITS(nbits) \
+	(((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
+
+#define PEEK_BITS(nbits) \
+	(((int) (get_buffer >> (bits_left -  (nbits)))) & BIT_MASK(nbits))
+
+#define DROP_BITS(nbits) \
+	(bits_left -= (nbits))
+
+
+/*
+ * Code for extracting next Huffman-coded symbol from input bit stream.
+ * Again, this is time-critical and we make the main paths be macros.
+ *
+ * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
+ * without looping.  Usually, more than 95% of the Huffman codes will be 8
+ * or fewer bits long.  The few overlength codes are handled with a loop,
+ * which need not be inline code.
+ *
+ * Notes about the HUFF_DECODE macro:
+ * 1. Near the end of the data segment, we may fail to get enough bits
+ *    for a lookahead.  In that case, we do it the hard way.
+ * 2. If the lookahead table contains no entry, the next code must be
+ *    more than HUFF_LOOKAHEAD bits long.
+ * 3. jpeg_huff_decode returns -1 if forced to suspend.
+ */
+
+#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
+{ register int nb, look; \
+  if (bits_left < HUFF_LOOKAHEAD) { \
+    if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
+    get_buffer = state.get_buffer; bits_left = state.bits_left; \
+    if (bits_left < HUFF_LOOKAHEAD) { \
+      nb = 1; goto slowlabel; \
+    } \
+  } \
+  look = PEEK_BITS(HUFF_LOOKAHEAD); \
+  if ((nb = htbl->look_nbits[look]) != 0) { \
+    DROP_BITS(nb); \
+    result = htbl->look_sym[look]; \
+  } else { \
+    nb = HUFF_LOOKAHEAD+1; \
+slowlabel: \
+    if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
+	{ failaction; } \
+    get_buffer = state.get_buffer; bits_left = state.bits_left; \
+  } \
+}
 
 
 /*
@@ -28,7 +196,8 @@
  */
 
 typedef struct {
-  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+  unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */
+  int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */
 } savable_state;
 
 /* This macro is to work around compilers with missing or broken
@@ -41,7 +210,8 @@
 #else
 #if MAX_COMPS_IN_SCAN == 4
 #define ASSIGN_STATE(dest,src)  \
-	((dest).last_dc_val[0] = (src).last_dc_val[0], \
+	((dest).EOBRUN = (src).EOBRUN, \
+	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
@@ -61,6 +231,15 @@
   /* These fields are NOT loaded into local working state. */
   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
 
+  /* Following two fields used only in progressive mode */
+
+  /* Pointers to derived tables (these workspaces have image lifespan) */
+  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
+
+  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
+
+  /* Following fields used only in sequential mode */
+
   /* Pointers to derived tables (these workspaces have image lifespan) */
   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
@@ -71,81 +250,30 @@
   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
   /* Whether we care about the DC and AC coefficient values for each block */
-  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
-  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
+  int coef_limit[D_MAX_BLOCKS_IN_MCU];
 } huff_entropy_decoder;
 
 typedef huff_entropy_decoder * huff_entropy_ptr;
 
 
-/*
- * Initialize for a Huffman-compressed scan.
- */
-
-METHODDEF(void)
-start_pass_huff_decoder (j_decompress_ptr cinfo)
-{
-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
-  int ci, blkn, dctbl, actbl;
-  jpeg_component_info * compptr;
-
-  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
-   * This ought to be an error condition, but we make it a warning because
-   * there are some baseline files out there with all zeroes in these bytes.
-   */
-  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
-      cinfo->Ah != 0 || cinfo->Al != 0)
-    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
-
-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
-    compptr = cinfo->cur_comp_info[ci];
-    dctbl = compptr->dc_tbl_no;
-    actbl = compptr->ac_tbl_no;
-    /* Compute derived values for Huffman tables */
-    /* We may do this more than once for a table, but it's not expensive */
-    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
-			    & entropy->dc_derived_tbls[dctbl]);
-    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
-			    & entropy->ac_derived_tbls[actbl]);
-    /* Initialize DC predictions to 0 */
-    entropy->saved.last_dc_val[ci] = 0;
-  }
-
-  /* Precalculate decoding info for each block in an MCU of this scan */
-  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
-    ci = cinfo->MCU_membership[blkn];
-    compptr = cinfo->cur_comp_info[ci];
-    /* Precalculate which table to use for each block */
-    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
-    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
-    /* Decide whether we really care about the coefficient values */
-    if (compptr->component_needed) {
-      entropy->dc_needed[blkn] = TRUE;
-      /* we don't need the ACs if producing a 1/8th-size image */
-      entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
-    } else {
-      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
-    }
-  }
-
-  /* Initialize bitread state variables */
-  entropy->bitstate.bits_left = 0;
-  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
-  entropy->pub.insufficient_data = FALSE;
-
-  /* Initialize restart counter */
-  entropy->restarts_to_go = cinfo->restart_interval;
-}
+static const int jpeg_zigzag_order[8][8] = {
+  {  0,  1,  5,  6, 14, 15, 27, 28 },
+  {  2,  4,  7, 13, 16, 26, 29, 42 },
+  {  3,  8, 12, 17, 25, 30, 41, 43 },
+  {  9, 11, 18, 24, 31, 40, 44, 53 },
+  { 10, 19, 23, 32, 39, 45, 52, 54 },
+  { 20, 22, 33, 38, 46, 51, 55, 60 },
+  { 21, 34, 37, 47, 50, 56, 59, 61 },
+  { 35, 36, 48, 49, 57, 58, 62, 63 }
+};
 
 
 /*
  * Compute the derived values for a Huffman table.
  * This routine also performs some validation checks on the table.
- *
- * Note this is also used by jdphuff.c.
  */
 
-GLOBAL(void)
+LOCAL(void)
 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
 			 d_derived_tbl ** pdtbl)
 {
@@ -267,8 +395,7 @@
 
 
 /*
- * Out-of-line code for bit fetching (shared with jdphuff.c).
- * See jdhuff.h for info about usage.
+ * Out-of-line code for bit fetching.
  * Note: current values of get_buffer and bits_left are passed as parameters,
  * but are returned in the corresponding fields of the state struct.
  *
@@ -288,7 +415,7 @@
 #endif
 
 
-GLOBAL(boolean)
+LOCAL(boolean)
 jpeg_fill_bit_buffer (bitread_working_state * state,
 		      register bit_buf_type get_buffer, register int bits_left,
 		      int nbits)
@@ -390,11 +517,32 @@
 
 
 /*
- * Out-of-line code for Huffman code decoding.
- * See jdhuff.h for info about usage.
+ * Figure F.12: extend sign bit.
+ * On some machines, a shift and sub will be faster than a table lookup.
  */
 
-GLOBAL(int)
+#ifdef AVOID_TABLES
+
+#define BIT_MASK(nbits)   ((1<<(nbits))-1)
+#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
+
+#else
+
+#define BIT_MASK(nbits)   bmask[nbits]
+#define HUFF_EXTEND(x,s)  ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
+
+static const int bmask[16] =	/* bmask[n] is mask for n rightmost bits */
+  { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
+    0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
+
+#endif /* AVOID_TABLES */
+
+
+/*
+ * Out-of-line code for Huffman code decoding.
+ */
+
+LOCAL(int)
 jpeg_huff_decode (bitread_working_state * state,
 		  register bit_buf_type get_buffer, register int bits_left,
 		  d_derived_tbl * htbl, int min_bits)
@@ -434,32 +582,6 @@
 
 
 /*
- * Figure F.12: extend sign bit.
- * On some machines, a shift and add will be faster than a table lookup.
- */
-
-#ifdef AVOID_TABLES
-
-#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
-
-#else
-
-#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
-
-static const int extend_test[16] =   /* entry n is 2**(n-1) */
-  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
-    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
-
-static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
-  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
-    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
-    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
-    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
-
-#endif /* AVOID_TABLES */
-
-
-/*
  * Check for a restart marker & resynchronize decoder.
  * Returns FALSE if must suspend.
  */
@@ -482,6 +604,8 @@
   /* Re-initialize DC predictions to 0 */
   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
     entropy->saved.last_dc_val[ci] = 0;
+  /* Re-init EOB run count, too */
+  entropy->saved.EOBRUN = 0;
 
   /* Reset restart counter */
   entropy->restarts_to_go = cinfo->restart_interval;
@@ -499,18 +623,381 @@
 
 
 /*
- * Decode and return one MCU's worth of Huffman-compressed coefficients.
+ * Huffman MCU decoding.
+ * Each of these routines decodes and returns one MCU's worth of
+ * Huffman-compressed coefficients. 
  * The coefficients are reordered from zigzag order into natural array order,
  * but are not dequantized.
  *
  * The i'th block of the MCU is stored into the block pointed to by
- * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
+ * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
  * (Wholesale zeroing is usually a little faster than retail...)
  *
- * Returns FALSE if data source requested suspension.  In that case no
+ * We return FALSE if data source requested suspension.  In that case no
  * changes have been made to permanent state.  (Exception: some output
  * coefficients may already have been assigned.  This is harmless for
- * this module, since we'll just re-assign them on the next call.)
+ * spectral selection, since we'll just re-assign them on the next call.
+ * Successive approximation AC refinement has to be more careful, however.)
+ */
+
+/*
+ * MCU decoding for DC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{   
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  int Al = cinfo->Al;
+  register int s, r;
+  int blkn, ci;
+  JBLOCKROW block;
+  BITREAD_STATE_VARS;
+  savable_state state;
+  d_derived_tbl * tbl;
+  jpeg_component_info * compptr;
+
+  /* Process restart marker if needed; may have to suspend */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      if (! process_restart(cinfo))
+	return FALSE;
+  }
+
+  /* If we've run out of data, just leave the MCU set to zeroes.
+   * This way, we return uniform gray for the remainder of the segment.
+   */
+  if (! entropy->pub.insufficient_data) {
+
+    /* Load up working state */
+    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+    ASSIGN_STATE(state, entropy->saved);
+
+    /* Outer loop handles each block in the MCU */
+
+    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+      block = MCU_data[blkn];
+      ci = cinfo->MCU_membership[blkn];
+      compptr = cinfo->cur_comp_info[ci];
+      tbl = entropy->derived_tbls[compptr->dc_tbl_no];
+
+      /* Decode a single block's worth of coefficients */
+
+      /* Section F.2.2.1: decode the DC coefficient difference */
+      HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
+      if (s) {
+	CHECK_BIT_BUFFER(br_state, s, return FALSE);
+	r = GET_BITS(s);
+	s = HUFF_EXTEND(r, s);
+      }
+
+      /* Convert DC difference to actual value, update last_dc_val */
+      s += state.last_dc_val[ci];
+      state.last_dc_val[ci] = s;
+      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
+      (*block)[0] = (JCOEF) (s << Al);
+    }
+
+    /* Completed MCU, so update state */
+    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+    ASSIGN_STATE(entropy->saved, state);
+  }
+
+  /* Account for restart interval (no-op if not using restarts) */
+  entropy->restarts_to_go--;
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC initial scan (either spectral selection,
+ * or first pass of successive approximation).
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{   
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  int Se = cinfo->Se;
+  int Al = cinfo->Al;
+  register int s, k, r;
+  unsigned int EOBRUN;
+  JBLOCKROW block;
+  BITREAD_STATE_VARS;
+  d_derived_tbl * tbl;
+
+  /* Process restart marker if needed; may have to suspend */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      if (! process_restart(cinfo))
+	return FALSE;
+  }
+
+  /* If we've run out of data, just leave the MCU set to zeroes.
+   * This way, we return uniform gray for the remainder of the segment.
+   */
+  if (! entropy->pub.insufficient_data) {
+
+    /* Load up working state.
+     * We can avoid loading/saving bitread state if in an EOB run.
+     */
+    EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */
+
+    /* There is always only one block per MCU */
+
+    if (EOBRUN > 0)		/* if it's a band of zeroes... */
+      EOBRUN--;			/* ...process it now (we do nothing) */
+    else {
+      BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+      block = MCU_data[0];
+      tbl = entropy->ac_derived_tbl;
+
+      for (k = cinfo->Ss; k <= Se; k++) {
+	HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
+	r = s >> 4;
+	s &= 15;
+	if (s) {
+	  k += r;
+	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
+	  r = GET_BITS(s);
+	  s = HUFF_EXTEND(r, s);
+	  /* Scale and output coefficient in natural (dezigzagged) order */
+	  (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
+	} else {
+	  if (r == 15) {	/* ZRL */
+	    k += 15;		/* skip 15 zeroes in band */
+	  } else {		/* EOBr, run length is 2^r + appended bits */
+	    EOBRUN = 1 << r;
+	    if (r) {		/* EOBr, r > 0 */
+	      CHECK_BIT_BUFFER(br_state, r, return FALSE);
+	      r = GET_BITS(r);
+	      EOBRUN += r;
+	    }
+	    EOBRUN--;		/* this band is processed at this moment */
+	    break;		/* force end-of-band */
+	  }
+	}
+      }
+
+      BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+    }
+
+    /* Completed MCU, so update state */
+    entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */
+  }
+
+  /* Account for restart interval (no-op if not using restarts) */
+  entropy->restarts_to_go--;
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for DC successive approximation refinement scan.
+ * Note: we assume such scans can be multi-component, although the spec
+ * is not very clear on the point.
+ */
+
+METHODDEF(boolean)
+decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{   
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
+  int blkn;
+  JBLOCKROW block;
+  BITREAD_STATE_VARS;
+
+  /* Process restart marker if needed; may have to suspend */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      if (! process_restart(cinfo))
+	return FALSE;
+  }
+
+  /* Not worth the cycles to check insufficient_data here,
+   * since we will not change the data anyway if we read zeroes.
+   */
+
+  /* Load up working state */
+  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+
+  /* Outer loop handles each block in the MCU */
+
+  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+    block = MCU_data[blkn];
+
+    /* Encoded data is simply the next bit of the two's-complement DC value */
+    CHECK_BIT_BUFFER(br_state, 1, return FALSE);
+    if (GET_BITS(1))
+      (*block)[0] |= p1;
+    /* Note: since we use |=, repeating the assignment later is safe */
+  }
+
+  /* Completed MCU, so update state */
+  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+
+  /* Account for restart interval (no-op if not using restarts) */
+  entropy->restarts_to_go--;
+
+  return TRUE;
+}
+
+
+/*
+ * MCU decoding for AC successive approximation refinement scan.
+ */
+
+METHODDEF(boolean)
+decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{   
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  int Se = cinfo->Se;
+  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
+  int m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
+  register int s, k, r;
+  unsigned int EOBRUN;
+  JBLOCKROW block;
+  JCOEFPTR thiscoef;
+  BITREAD_STATE_VARS;
+  d_derived_tbl * tbl;
+  int num_newnz;
+  int newnz_pos[DCTSIZE2];
+
+  /* Process restart marker if needed; may have to suspend */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      if (! process_restart(cinfo))
+	return FALSE;
+  }
+
+  /* If we've run out of data, don't modify the MCU.
+   */
+  if (! entropy->pub.insufficient_data) {
+
+    /* Load up working state */
+    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
+
+    /* There is always only one block per MCU */
+    block = MCU_data[0];
+    tbl = entropy->ac_derived_tbl;
+
+    /* If we are forced to suspend, we must undo the assignments to any newly
+     * nonzero coefficients in the block, because otherwise we'd get confused
+     * next time about which coefficients were already nonzero.
+     * But we need not undo addition of bits to already-nonzero coefficients;
+     * instead, we can test the current bit to see if we already did it.
+     */
+    num_newnz = 0;
+
+    /* initialize coefficient loop counter to start of band */
+    k = cinfo->Ss;
+
+    if (EOBRUN == 0) {
+      for (; k <= Se; k++) {
+	HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
+	r = s >> 4;
+	s &= 15;
+	if (s) {
+	  if (s != 1)		/* size of new coef should always be 1 */
+	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
+	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+	  if (GET_BITS(1))
+	    s = p1;		/* newly nonzero coef is positive */
+	  else
+	    s = m1;		/* newly nonzero coef is negative */
+	} else {
+	  if (r != 15) {
+	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */
+	    if (r) {
+	      CHECK_BIT_BUFFER(br_state, r, goto undoit);
+	      r = GET_BITS(r);
+	      EOBRUN += r;
+	    }
+	    break;		/* rest of block is handled by EOB logic */
+	  }
+	  /* note s = 0 for processing ZRL */
+	}
+	/* Advance over already-nonzero coefs and r still-zero coefs,
+	 * appending correction bits to the nonzeroes.  A correction bit is 1
+	 * if the absolute value of the coefficient must be increased.
+	 */
+	do {
+	  thiscoef = *block + jpeg_natural_order[k];
+	  if (*thiscoef != 0) {
+	    CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+	    if (GET_BITS(1)) {
+	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
+		if (*thiscoef >= 0)
+		  *thiscoef += p1;
+		else
+		  *thiscoef += m1;
+	      }
+	    }
+	  } else {
+	    if (--r < 0)
+	      break;		/* reached target zero coefficient */
+	  }
+	  k++;
+	} while (k <= Se);
+	if (s) {
+	  int pos = jpeg_natural_order[k];
+	  /* Output newly nonzero coefficient */
+	  (*block)[pos] = (JCOEF) s;
+	  /* Remember its position in case we have to suspend */
+	  newnz_pos[num_newnz++] = pos;
+	}
+      }
+    }
+
+    if (EOBRUN > 0) {
+      /* Scan any remaining coefficient positions after the end-of-band
+       * (the last newly nonzero coefficient, if any).  Append a correction
+       * bit to each already-nonzero coefficient.  A correction bit is 1
+       * if the absolute value of the coefficient must be increased.
+       */
+      for (; k <= Se; k++) {
+	thiscoef = *block + jpeg_natural_order[k];
+	if (*thiscoef != 0) {
+	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+	  if (GET_BITS(1)) {
+	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
+	      if (*thiscoef >= 0)
+		*thiscoef += p1;
+	      else
+		*thiscoef += m1;
+	    }
+	  }
+	}
+      }
+      /* Count one block completed in EOB run */
+      EOBRUN--;
+    }
+
+    /* Completed MCU, so update state */
+    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
+  }
+
+  /* Account for restart interval (no-op if not using restarts) */
+  entropy->restarts_to_go--;
+
+  return TRUE;
+
+undoit:
+  /* Re-zero any output coefficients that we made newly nonzero */
+  while (num_newnz > 0)
+    (*block)[newnz_pos[--num_newnz]] = 0;
+
+  return FALSE;
+}
+
+
+/*
+ * Decode one MCU's worth of Huffman-compressed coefficients.
  */
 
 METHODDEF(boolean)
@@ -541,39 +1028,40 @@
 
     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
       JBLOCKROW block = MCU_data[blkn];
-      d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
-      d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
+      d_derived_tbl * htbl;
       register int s, k, r;
+      int coef_limit, ci;
 
       /* Decode a single block's worth of coefficients */
 
       /* Section F.2.2.1: decode the DC coefficient difference */
-      HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
-      if (s) {
-	CHECK_BIT_BUFFER(br_state, s, return FALSE);
-	r = GET_BITS(s);
-	s = HUFF_EXTEND(r, s);
-      }
+      htbl = entropy->dc_cur_tbls[blkn];
+      HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
 
-      if (entropy->dc_needed[blkn]) {
+      htbl = entropy->ac_cur_tbls[blkn];
+      k = 1;
+      coef_limit = entropy->coef_limit[blkn];
+      if (coef_limit) {
 	/* Convert DC difference to actual value, update last_dc_val */
-	int ci = cinfo->MCU_membership[blkn];
+	if (s) {
+	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
+	  r = GET_BITS(s);
+	  s = HUFF_EXTEND(r, s);
+	}
+	ci = cinfo->MCU_membership[blkn];
 	s += state.last_dc_val[ci];
 	state.last_dc_val[ci] = s;
-	/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
+	/* Output the DC coefficient */
 	(*block)[0] = (JCOEF) s;
-      }
-
-      if (entropy->ac_needed[blkn]) {
 
 	/* Section F.2.2.2: decode the AC coefficients */
 	/* Since zeroes are skipped, output area must be cleared beforehand */
-	for (k = 1; k < DCTSIZE2; k++) {
-	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
-      
+	for (; k < coef_limit; k++) {
+	  HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
+
 	  r = s >> 4;
 	  s &= 15;
-      
+
 	  if (s) {
 	    k += r;
 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
@@ -586,33 +1074,37 @@
 	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
 	  } else {
 	    if (r != 15)
-	      break;
+	      goto EndOfBlock;
 	    k += 15;
 	  }
 	}
-
       } else {
-
-	/* Section F.2.2.2: decode the AC coefficients */
-	/* In this path we just discard the values */
-	for (k = 1; k < DCTSIZE2; k++) {
-	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
-      
-	  r = s >> 4;
-	  s &= 15;
-      
-	  if (s) {
-	    k += r;
-	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
-	    DROP_BITS(s);
-	  } else {
-	    if (r != 15)
-	      break;
-	    k += 15;
-	  }
+	if (s) {
+	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
+	  DROP_BITS(s);
 	}
-
       }
+
+      /* Section F.2.2.2: decode the AC coefficients */
+      /* In this path we just discard the values */
+      for (; k < DCTSIZE2; k++) {
+	HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
+
+	r = s >> 4;
+	s &= 15;
+
+	if (s) {
+	  k += r;
+	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
+	  DROP_BITS(s);
+	} else {
+	  if (r != 15)
+	    break;
+	  k += 15;
+	}
+      }
+
+      EndOfBlock: ;
     }
 
     /* Completed MCU, so update state */
@@ -628,6 +1120,156 @@
 
 
 /*
+ * Initialize for a Huffman-compressed scan.
+ */
+
+METHODDEF(void)
+start_pass_huff_decoder (j_decompress_ptr cinfo)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  int ci, blkn, dctbl, actbl, i;
+  jpeg_component_info * compptr;
+
+  if (cinfo->progressive_mode) {
+    /* Validate progressive scan parameters */
+    if (cinfo->Ss == 0) {
+      if (cinfo->Se != 0)
+	goto bad;
+    } else {
+      /* need not check Ss/Se < 0 since they came from unsigned bytes */
+      if (cinfo->Se < cinfo->Ss || cinfo->Se >= DCTSIZE2)
+	goto bad;
+      /* AC scans may have only one component */
+      if (cinfo->comps_in_scan != 1)
+	goto bad;
+    }
+    if (cinfo->Ah != 0) {
+      /* Successive approximation refinement scan: must have Al = Ah-1. */
+      if (cinfo->Ah-1 != cinfo->Al)
+	goto bad;
+    }
+    if (cinfo->Al > 13) {	/* need not check for < 0 */
+      /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
+       * but the spec doesn't say so, and we try to be liberal about what we
+       * accept.  Note: large Al values could result in out-of-range DC
+       * coefficients during early scans, leading to bizarre displays due to
+       * overflows in the IDCT math.  But we won't crash.
+       */
+      bad:
+      ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+    }
+    /* Update progression status, and verify that scan order is legal.
+     * Note that inter-scan inconsistencies are treated as warnings
+     * not fatal errors ... not clear if this is right way to behave.
+     */
+    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+      int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
+      int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
+      if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
+	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
+      for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
+	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
+	if (cinfo->Ah != expected)
+	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
+	coef_bit_ptr[coefi] = cinfo->Al;
+      }
+    }
+
+    /* Select MCU decoding routine */
+    if (cinfo->Ah == 0) {
+      if (cinfo->Ss == 0)
+	entropy->pub.decode_mcu = decode_mcu_DC_first;
+      else
+	entropy->pub.decode_mcu = decode_mcu_AC_first;
+    } else {
+      if (cinfo->Ss == 0)
+	entropy->pub.decode_mcu = decode_mcu_DC_refine;
+      else
+	entropy->pub.decode_mcu = decode_mcu_AC_refine;
+    }
+
+    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+      compptr = cinfo->cur_comp_info[ci];
+      /* Make sure requested tables are present, and compute derived tables.
+       * We may build same derived table more than once, but it's not expensive.
+       */
+      if (cinfo->Ss == 0) {
+	if (cinfo->Ah == 0) {	/* DC refinement needs no table */
+	  i = compptr->dc_tbl_no;
+	  jpeg_make_d_derived_tbl(cinfo, TRUE, i,
+				  & entropy->derived_tbls[i]);
+	}
+      } else {
+	i = compptr->ac_tbl_no;
+	jpeg_make_d_derived_tbl(cinfo, FALSE, i,
+				& entropy->derived_tbls[i]);
+	/* remember the single active table */
+	entropy->ac_derived_tbl = entropy->derived_tbls[i];
+      }
+      /* Initialize DC predictions to 0 */
+      entropy->saved.last_dc_val[ci] = 0;
+    }
+
+    /* Initialize private state variables */
+    entropy->saved.EOBRUN = 0;
+  } else {
+    /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
+     * This ought to be an error condition, but we make it a warning because
+     * there are some baseline files out there with all zeroes in these bytes.
+     */
+    if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
+	cinfo->Ah != 0 || cinfo->Al != 0)
+      WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
+
+    /* Select MCU decoding routine */
+    entropy->pub.decode_mcu = decode_mcu;
+
+    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+      compptr = cinfo->cur_comp_info[ci];
+      dctbl = compptr->dc_tbl_no;
+      actbl = compptr->ac_tbl_no;
+      /* Compute derived values for Huffman tables */
+      /* We may do this more than once for a table, but it's not expensive */
+      jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
+			      & entropy->dc_derived_tbls[dctbl]);
+      jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
+			      & entropy->ac_derived_tbls[actbl]);
+      /* Initialize DC predictions to 0 */
+      entropy->saved.last_dc_val[ci] = 0;
+    }
+
+    /* Precalculate decoding info for each block in an MCU of this scan */
+    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+      ci = cinfo->MCU_membership[blkn];
+      compptr = cinfo->cur_comp_info[ci];
+      /* Precalculate which table to use for each block */
+      entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
+      entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
+      /* Decide whether we really care about the coefficient values */
+      if (compptr->component_needed) {
+	ci = compptr->DCT_v_scaled_size;
+	if (ci <= 0 || ci > 8) ci = 8;
+	i = compptr->DCT_h_scaled_size;
+	if (i <= 0 || i > 8) i = 8;
+	entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
+      } else {
+	entropy->coef_limit[blkn] = 0;
+      }
+    }
+  }
+
+  /* Initialize bitread state variables */
+  entropy->bitstate.bits_left = 0;
+  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
+  entropy->pub.insufficient_data = FALSE;
+
+  /* Initialize restart counter */
+  entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
  * Module initialization routine for Huffman entropy decoding.
  */
 
@@ -642,10 +1284,26 @@
 				SIZEOF(huff_entropy_decoder));
   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
   entropy->pub.start_pass = start_pass_huff_decoder;
-  entropy->pub.decode_mcu = decode_mcu;
 
-  /* Mark tables unallocated */
-  for (i = 0; i < NUM_HUFF_TBLS; i++) {
-    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+  if (cinfo->progressive_mode) {
+    /* Create progression status table */
+    int *coef_bit_ptr, ci;
+    cinfo->coef_bits = (int (*)[DCTSIZE2])
+      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
+    coef_bit_ptr = & cinfo->coef_bits[0][0];
+    for (ci = 0; ci < cinfo->num_components; ci++)
+      for (i = 0; i < DCTSIZE2; i++)
+	*coef_bit_ptr++ = -1;
+
+    /* Mark derived tables unallocated */
+    for (i = 0; i < NUM_HUFF_TBLS; i++) {
+      entropy->derived_tbls[i] = NULL;
+    }
+  } else {
+    /* Mark tables unallocated */
+    for (i = 0; i < NUM_HUFF_TBLS; i++) {
+      entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+    }
   }
 }