blob: 1724a0b82ee6959b2e6b0c9b5f59b083b3dcf905 [file] [log] [blame]
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00001/*
2 * jidctflt.c
3 *
Thomas G. Lane489583f1996-02-07 00:00:00 +00004 * Copyright (C) 1994-1996, Thomas G. Lane.
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +00005 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains a floating-point implementation of the
9 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
10 * must also perform dequantization of the input coefficients.
11 *
12 * This implementation should be more accurate than either of the integer
13 * IDCT implementations. However, it may not give the same results on all
14 * machines because of differences in roundoff behavior. Speed will depend
15 * on the hardware's floating point capacity.
16 *
17 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
18 * on each row (or vice versa, but it's more convenient to emit a row at
19 * a time). Direct algorithms are also available, but they are much more
20 * complex and seem not to be any faster when reduced to code.
21 *
22 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
23 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
24 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
25 * JPEG textbook (see REFERENCES section in file README). The following code
26 * is based directly on figure 4-8 in P&M.
27 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
28 * possible to arrange the computation so that many of the multiplies are
29 * simple scalings of the final outputs. These multiplies can then be
30 * folded into the multiplications or divisions by the JPEG quantization
31 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
32 * to be done in the DCT itself.
33 * The primary disadvantage of this method is that with a fixed-point
34 * implementation, accuracy is lost due to imprecise representation of the
35 * scaled quantization values. However, that problem does not arise if
36 * we use floating point arithmetic.
37 */
38
39#define JPEG_INTERNALS
40#include "jinclude.h"
41#include "jpeglib.h"
42#include "jdct.h" /* Private declarations for DCT subsystem */
43
44#ifdef DCT_FLOAT_SUPPORTED
45
46
47/*
48 * This module is specialized to the case DCTSIZE = 8.
49 */
50
51#if DCTSIZE != 8
52 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
53#endif
54
55
56/* Dequantize a coefficient by multiplying it by the multiplier-table
57 * entry; produce a float result.
58 */
59
60#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
61
62
63/*
64 * Perform dequantization and inverse DCT on one block of coefficients.
65 */
66
Thomas G. Lane489583f1996-02-07 00:00:00 +000067GLOBAL(void)
Thomas G. Lane36a4ccc1994-09-24 00:00:00 +000068jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
69 JCOEFPTR coef_block,
70 JSAMPARRAY output_buf, JDIMENSION output_col)
71{
72 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
73 FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
74 FAST_FLOAT z5, z10, z11, z12, z13;
75 JCOEFPTR inptr;
76 FLOAT_MULT_TYPE * quantptr;
77 FAST_FLOAT * wsptr;
78 JSAMPROW outptr;
79 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
80 int ctr;
81 FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
82 SHIFT_TEMPS
83
84 /* Pass 1: process columns from input, store into work array. */
85
86 inptr = coef_block;
87 quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
88 wsptr = workspace;
89 for (ctr = DCTSIZE; ctr > 0; ctr--) {
90 /* Due to quantization, we will usually find that many of the input
91 * coefficients are zero, especially the AC terms. We can exploit this
92 * by short-circuiting the IDCT calculation for any column in which all
93 * the AC terms are zero. In that case each output is equal to the
94 * DC coefficient (with scale factor as needed).
95 * With typical images and quantization tables, half or more of the
96 * column DCT calculations can be simplified this way.
97 */
98
99 if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
100 inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
101 inptr[DCTSIZE*7]) == 0) {
102 /* AC terms all zero */
103 FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
104
105 wsptr[DCTSIZE*0] = dcval;
106 wsptr[DCTSIZE*1] = dcval;
107 wsptr[DCTSIZE*2] = dcval;
108 wsptr[DCTSIZE*3] = dcval;
109 wsptr[DCTSIZE*4] = dcval;
110 wsptr[DCTSIZE*5] = dcval;
111 wsptr[DCTSIZE*6] = dcval;
112 wsptr[DCTSIZE*7] = dcval;
113
114 inptr++; /* advance pointers to next column */
115 quantptr++;
116 wsptr++;
117 continue;
118 }
119
120 /* Even part */
121
122 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
123 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
124 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
125 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
126
127 tmp10 = tmp0 + tmp2; /* phase 3 */
128 tmp11 = tmp0 - tmp2;
129
130 tmp13 = tmp1 + tmp3; /* phases 5-3 */
131 tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
132
133 tmp0 = tmp10 + tmp13; /* phase 2 */
134 tmp3 = tmp10 - tmp13;
135 tmp1 = tmp11 + tmp12;
136 tmp2 = tmp11 - tmp12;
137
138 /* Odd part */
139
140 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
141 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
142 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
143 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
144
145 z13 = tmp6 + tmp5; /* phase 6 */
146 z10 = tmp6 - tmp5;
147 z11 = tmp4 + tmp7;
148 z12 = tmp4 - tmp7;
149
150 tmp7 = z11 + z13; /* phase 5 */
151 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
152
153 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
154 tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
155 tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
156
157 tmp6 = tmp12 - tmp7; /* phase 2 */
158 tmp5 = tmp11 - tmp6;
159 tmp4 = tmp10 + tmp5;
160
161 wsptr[DCTSIZE*0] = tmp0 + tmp7;
162 wsptr[DCTSIZE*7] = tmp0 - tmp7;
163 wsptr[DCTSIZE*1] = tmp1 + tmp6;
164 wsptr[DCTSIZE*6] = tmp1 - tmp6;
165 wsptr[DCTSIZE*2] = tmp2 + tmp5;
166 wsptr[DCTSIZE*5] = tmp2 - tmp5;
167 wsptr[DCTSIZE*4] = tmp3 + tmp4;
168 wsptr[DCTSIZE*3] = tmp3 - tmp4;
169
170 inptr++; /* advance pointers to next column */
171 quantptr++;
172 wsptr++;
173 }
174
175 /* Pass 2: process rows from work array, store into output array. */
176 /* Note that we must descale the results by a factor of 8 == 2**3. */
177
178 wsptr = workspace;
179 for (ctr = 0; ctr < DCTSIZE; ctr++) {
180 outptr = output_buf[ctr] + output_col;
181 /* Rows of zeroes can be exploited in the same way as we did with columns.
182 * However, the column calculation has created many nonzero AC terms, so
183 * the simplification applies less often (typically 5% to 10% of the time).
184 * And testing floats for zero is relatively expensive, so we don't bother.
185 */
186
187 /* Even part */
188
189 tmp10 = wsptr[0] + wsptr[4];
190 tmp11 = wsptr[0] - wsptr[4];
191
192 tmp13 = wsptr[2] + wsptr[6];
193 tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
194
195 tmp0 = tmp10 + tmp13;
196 tmp3 = tmp10 - tmp13;
197 tmp1 = tmp11 + tmp12;
198 tmp2 = tmp11 - tmp12;
199
200 /* Odd part */
201
202 z13 = wsptr[5] + wsptr[3];
203 z10 = wsptr[5] - wsptr[3];
204 z11 = wsptr[1] + wsptr[7];
205 z12 = wsptr[1] - wsptr[7];
206
207 tmp7 = z11 + z13;
208 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
209
210 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
211 tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
212 tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
213
214 tmp6 = tmp12 - tmp7;
215 tmp5 = tmp11 - tmp6;
216 tmp4 = tmp10 + tmp5;
217
218 /* Final output stage: scale down by a factor of 8 and range-limit */
219
220 outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
221 & RANGE_MASK];
222 outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
223 & RANGE_MASK];
224 outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
225 & RANGE_MASK];
226 outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
227 & RANGE_MASK];
228 outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
229 & RANGE_MASK];
230 outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
231 & RANGE_MASK];
232 outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
233 & RANGE_MASK];
234 outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
235 & RANGE_MASK];
236
237 wsptr += DCTSIZE; /* advance pointer to next row */
238 }
239}
240
241#endif /* DCT_FLOAT_SUPPORTED */