blob: 042d171996b5c5b4a5506813e3f2c17fc0eb2c30 [file] [log] [blame]
Gregory Maxwell0c906072012-06-19 09:11:40 -04001<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE rfc SYSTEM "rfc2629.dtd" [
3<!ENTITY rfc2119 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml'>
4<!ENTITY rfc3550 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.3550.xml'>
5<!ENTITY rfc3711 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.3711.xml'>
6<!ENTITY rfc3551 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.3551.xml'>
7<!ENTITY rfc4288 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.4288.xml'>
8<!ENTITY rfc4855 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.4855.xml'>
9<!ENTITY rfc4566 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.4566.xml'>
10<!ENTITY rfc3264 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.3264.xml'>
11<!ENTITY rfc2974 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.2974.xml'>
12<!ENTITY rfc2326 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.2326.xml'>
13<!ENTITY rfc3555 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.3555.xml'>
14<!ENTITY rfc6562 PUBLIC '' 'http://xml.resource.org/public/rfc/bibxml/reference.RFC.6562.xml'>
15
16 ]>
17
18 <rfc category="info" ipr="trust200902" docName="draft-spittka-payload-rtp-opus-01.txt">
19<?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?>
20
21<?rfc strict="yes" ?>
22<?rfc toc="yes" ?>
23<?rfc tocdepth="3" ?>
24<?rfc tocappendix='no' ?>
25<?rfc tocindent='yes' ?>
26<?rfc symrefs="yes" ?>
27<?rfc sortrefs="yes" ?>
28<?rfc compact="no" ?>
29<?rfc subcompact="yes" ?>
30<?rfc iprnotified="yes" ?>
31
32 <front>
33 <title abbrev="RTP Payload Format for Opus Codec">
34 RTP Payload Format for Opus Speech and Audio Codec
35 </title>
36
37 <author fullname="Julian Spittka" initials="J." surname="Spittka">
38 <organization>Skype Technologies S.A.</organization>
39 <address>
40 <postal>
41 <street>3210 Porter Drive</street>
42 <code>94304</code>
43 <city>Palo Alto</city>
44 <region>CA</region>
45 <country>USA</country>
46 </postal>
47 <email>julian.spittka@skype.net</email>
48 </address>
49 </author>
50
51 <author initials='K.' surname='Vos' fullname='Koen Vos'>
52 <organization>Skype Technologies S.A.</organization>
53 <address>
54 <postal>
55 <street>3210 Porter Drive</street>
56 <code>94304</code>
57 <city>Palo Alto</city>
58 <region>CA</region>
59 <country>USA</country>
60 </postal>
61 <email>koen.vos@skype.net</email>
62 </address>
63 </author>
64
65 <author initials="JM" surname="Valin" fullname="Jean-Marc Valin">
66 <organization>Mozilla</organization>
67 <address>
68 <postal>
69 <street>650 Castro Street</street>
70 <city>Mountain View</city>
71 <region>CA</region>
72 <code>94041</code>
73 <country>USA</country>
74 </postal>
75 <email>jmvalin@jmvalin.ca</email>
76 </address>
77 </author>
78
79 <date day='1' month='May' year='2012' />
80
81 <abstract>
82 <t>
83 This document defines the Real-time Transport Protocol (RTP) payload
84 format for packetization of Opus encoded
85 speech and audio data that is essential to integrate the codec in the
86 most compatible way. Further, media type registrations
87 are described for the RTP payload format.
88 </t>
89 </abstract>
90 </front>
91
92 <middle>
93 <section title='Introduction'>
94 <t>
95 The Opus codec is a speech and audio codec developed within the
96 IETF Internet Wideband Audio Codec working group [codec]. The codec
97 has a very low algorithmic delay and is
98 is highly scalable in terms of audio bandwidth, bitrate, and
99 complexity. Further, it provides different modes to efficiently encode speech signals
100 as well as music signals, thus, making it the codec of choice for
101 various applications using the Internet or similar networks.
102 </t>
103 <t>
104 This document defines the Real-time Transport Protocol (RTP)
105 <xref target="RFC3550"/> payload format for packetization
106 of Opus encoded speech and audio data that is essential to
107 integrate the Opus codec in the
108 most compatible way. Further, media type registrations are described for
109 the RTP payload format. More information on the Opus
110 codec can be obtained from the following IETF draft
111 [Opus].
112 </t>
113 </section>
114
115 <section title='Conventions, Definitions and Acronyms used in this document'>
116 <t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
117 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
118 document are to be interpreted as described in <xref target="RFC2119"/>.</t>
119 <t>
120 <list style='hanging'>
121 <t hangText="CPU:"> Central Processing Unit</t>
122 <t hangText="IP:"> Internet Protocol</t>
123 <t hangText="PSTN:"> Public Switched Telephone Network</t>
124 <t hangText="samples:"> Speech or audio samples</t>
125 <t hangText="SDP:"> Session Description Protocol</t>
126 </list>
127 </t>
128 <section title='Audio Bandwidth'>
129 <t>
130 Throughout this document, we refer to the following definitions:
131 </t>
132 <texttable anchor='bandwidth_definitions'>
133 <ttcol align='center'>Abbreviation</ttcol>
134 <ttcol align='center'>Name</ttcol>
135 <ttcol align='center'>Bandwidth</ttcol>
136 <ttcol align='center'>Sampling</ttcol>
137 <c>nb</c>
138 <c>Narrowband</c>
139 <c>0 - 4000</c>
140 <c>8000</c>
141
142 <c>mb</c>
143 <c>Mediumband</c>
144 <c>0 - 6000</c>
145 <c>12000</c>
146
147 <c>wb</c>
148 <c>Wideband</c>
149 <c>0 - 8000</c>
150 <c>16000</c>
151
152 <c>swb</c>
153 <c>Super-wideband</c>
154 <c>0 - 12000</c>
155 <c>24000</c>
156
157 <c>fb</c>
158 <c>Fullband</c>
159 <c>0 - 20000</c>
160 <c>48000</c>
161
162 <postamble>
163 Audio bandwidth naming
164 </postamble>
165 </texttable>
166 </section>
167 </section>
168
169 <section title='Opus Codec'>
170 <t>
171 The Opus [Opus] speech and audio codec has been developed to encode speech
172 signals as well as audio signals. Two different modes, a voice mode
173 or an audio mode, may be chosen to allow the most efficient coding
174 dependent on the type of input signal, the sampling frequency of the
175 input signal, and the specific application.
176 </t>
177
178 <t>
179 The voice mode allows to efficiently encode voice signals at lower bit
180 rates while the audio mode is optimized for audio signals at medium and
181 higher bitrates.
182 </t>
183
184 <t>
185 The Opus speech and audio codec is highly scalable in terms of audio
186 bandwidth and bitrate and complexity. Further, Opus allows to
187 transmit stereo signals.
188 </t>
189
190 <section title='Network Bandwidth'>
191 <t>
192 Opus supports all bitrates from 6&nbsp;kb/s to 510&nbsp;kb/s.
193 The bitrate can be changed dynamically within that range.
194 All
195 other parameters being
196 equal, higher bitrate results in higher quality.
197 </t>
198 <section title='Recommended Bitrate' anchor='bitrate_by_bandwidth'>
199 <t>
200 For a frame size of
201 20&nbsp;ms, these
202 are the bitrate "sweet spots" for Opus in various configurations:
203
204 <list style="symbols">
205 <t>8-12 kb/s for NB speech,</t>
206 <t>16-20 kb/s for WB speech,</t>
207 <t>28-40 kb/s for FB speech,</t>
208 <t>48-64 kb/s for FB mono music, and</t>
209 <t>64-128 kb/s for FB stereo music.</t>
210 </list>
211 </t>
212 </section>
213 <section title='Variable versus Constant Bit Rate' anchor='variable-vs-constant-bitrate'>
214 <t>
215 For the same average bitrate, variable bitrate (VBR) can achieve higher quality
216 than constant bitrate (CBR). For the majority of voice transmission application, VBR
217 is the best choice. One potential reason for choosing CBR is the potential
218 information leak that <spanx style='emph'>may</spanx> occur when encrypting the
219 compressed stream. See <xref target="RFC6562"/> for guidelines on when VBR is
220 appropriate for encrypted audio communications. In the case where an existing
221 VBR stream needs to be converted to CBR for security reasons, then the Opus padding
222 mechanism described in [Opus] is the RECOMMENDED way to achieve padding
223 because the RTP padding bit is unencrypted.</t>
224
225 <t>
226 The bitrate can be adjusted at any point in time. To avoid congestion,
227 the average bitrate SHOULD be adjusted to the available
228 network capacity. If no target bitrate is specified the average bitrate
229 may go up to the highest bitrate specified in
230 <xref target='bitrate_by_bandwidth'/>.
231 </t>
232
233 </section>
234
235 <section title='Discontinuous Transmission (DTX)'>
236
237 <t>
238 The Opus codec may, as described in <xref target='variable-vs-constant-bitrate'/>,
239 be operated with an adaptive bitrate. In that case, the bitrate
240 will automatically be reduced for certain input signals like periods
241 of silence. During continuous transmission the bitrate will be
242 reduced, when the input signal allows to do so, but the transmission
243 to the receiver itself will never be interrupted. Therefore, the
244 received signal will maintain the same high level of quality over the
245 full duration of a transmission while minimizing the average bit
246 rate over time.
247 </t>
248
249 <t>
250 In cases where the bitrate of Opus needs to be reduced even
251 further or in cases where only constant bitrate is available,
252 the Opus encoder may be set to use discontinuous
253 transmission (DTX), where parts of the encoded signal that
254 correspond to periods of silence in the input speech or audio signal
255 are not transmitted to the receiver.
256 </t>
257
258 <t>
259 On the receiving side, the non-transmitted parts will be handled by a
260 frame loss concealment unit in the Opus decoder which generates a
261 comfort noise signal to replace the non transmitted parts of the
262 speech or audio signal.
263 </t>
264
265 <t>
266 The DTX mode of Opus will have a slightly lower speech or audio
267 quality than the continuous mode. Therefore, it is RECOMMENDED to
268 use Opus in the continuous mode unless restraints on network
269 capacity are severe. The DTX mode can be engaged for operation
270 in both adaptive or constant bitrate.
271 </t>
272
273 </section>
274
275 </section>
276
277 <section title='Complexity'>
278
279 <t>
280 Complexity can be scaled to optimize for CPU resources in real-time, mostly as
281 a trade-off between audio quality and bitrate. Also, different modes of Opus have different complexity.
282 </t>
283
284 </section>
285
286 <section title="Forward Error Correction (FEC)">
287
288 <t>
289 The voice mode of Opus allows for "in-band" forward error correction (FEC)
290 data to be embedded into the bit stream of Opus. This FEC scheme adds
291 redundant information about the previous packet (n-1) to the current
292 output packet n. For
293 each frame, the encoder decides whether to use FEC based on (1) an
294 externally-provided estimate of the channel's packet loss rate; (2) an
295 externally-provided estimate of the channel's capacity; (3) the
296 sensitivity of the audio or speech signal to packet loss; (4) whether
297 the receiving decoder has indicated it can take advantage of "in-band"
298 FEC information. The decision to send "in-band" FEC information is
299 entirely controlled by the encoder and therefore no special precautions
300 for the payload have to be taken.
301 </t>
302
303 <t>
304 On the receiving side, the decoder can take advantage of this
305 additional information when, in case of a packet loss, the next packet
306 is available. In order to use the FEC data, the jitter buffer needs
307 to provide access to payloads with the FEC data. The decoder API function
308 has a flag to indicate that a FEC frame rather than a regular frame should
309 be decoded. If no FEC data is available for the current frame, the decoder
310 will consider the frame lost and invokes the frame loss concealment.
311 </t>
312
313 <t>
314 If the FEC scheme is not implemented on the receiving side, FEC
315 SHOULD NOT be used, as it leads to an inefficient usage of network
316 resources. Decoder support for FEC SHOULD be indicated at the time a
317 session is set up.
318 </t>
319
320 </section>
321
322 <section title='Stereo Operation'>
323
324 <t>
325 Opus allows for transmission of stereo audio signals. This operation
326 is signaled in-band in the Opus payload and no special arrangement
327 is required in the payload format. Any implementation of the Opus
328 decoder MUST be capable of receiving stereo signals.
329 </t>
330 <t>
331 If a decoder can not take advantage of the benefits of a stereo signal
332 this SHOULD be indicated at the time a session is set up. In that case
333 the sending side SHOULD NOT send stereo signals as it leads to an
334 inefficient usage of the network.
335 </t>
336
337 </section>
338
339 </section>
340
341 <section title='Opus RTP Payload Format' anchor='opus-rtp-payload-format'>
342 <t>The payload format for Opus consists of the RTP header and Opus payload
343 data.</t>
344 <section title='RTP Header Usage'>
345 <t>The format of the RTP header is specified in <xref target="RFC3550"/>. The Opus
346 payload format uses the fields of the RTP header consistent with this
347 specification.</t>
348
349 <t>The payload length of Opus is a multiple number of octets and
350 therefore no padding is required. The payload MAY be padded by an
351 integer number of octets according to <xref target="RFC3550"/>.</t>
352
353 <t>The marker bit (M) of the RTP header has no function in combination
354 with Opus and MAY be ignored.</t>
355
356 <t>The RTP payload type for Opus has not been assigned statically and is
357 expected to be assigned dynamically.</t>
358
359 <t>The receiving side MUST be prepared to receive duplicates of RTP
360 packets. Only one of those payloads MUST be provided to the Opus decoder
361 for decoding and others MUST be discarded.</t>
362
363 <t>Opus supports 5 different audio bandwidths which may be adjusted during
364 the duration of a call. The RTP timestamp clock frequency is defined as
365 the highest supported sampling frequency of Opus, i.e. 48000 Hz, for all
366 modes and sampling rates of Opus. The unit
367 for the timestamp is samples per single (mono) channel. The RTP timestamp corresponds to the
368 sample time of the first encoded sample in the encoded frame. For sampling
369 rates lower than 48000 Hz the number of samples has to be multiplied with
370 a multiplier according to <xref target="fs-upsample-factors"/> to determine
371 the RTP timestamp.</t>
372
373 <texttable anchor='fs-upsample-factors'>
374 <ttcol align='center'>fs (Hz)</ttcol>
375 <ttcol align='center'>Multiplier</ttcol>
376 <c>8000</c>
377 <c>6</c>
378 <c>12000</c>
379 <c>4</c>
380 <c>16000</c>
381 <c>3</c>
382 <c>24000</c>
383 <c>2</c>
384 <c>48000</c>
385 <c>1</c>
386 <postamble>
387 fs specifies the audio sampling frequency in Hertz (Hz); Multiplier is the
388 value that the number of samples have to be multiplied with to calculate
389 the RTP timestamp.
390 </postamble>
391 </texttable>
392 </section>
393
394 <section title='Payload Structure'>
395 <t>
396 The Opus encoder can be set to output encoded frames representing 2.5, 5, 10, 20,
397 40, or 60 ms of speech or audio data. Further, an arbitrary number of frames can be
398 combined into a packet. The maximum packet length is limited to the amount of encoded
399 data representing 120 ms of speech or audio data. The packetization of encoded data
400 is purely done by the Opus encoder and therefore only one packet output from the Opus
401 encoder MUST be used as a payload.
402 </t>
403
404 <t><xref target='payload-structure'/> shows the structure combined with the RTP header.</t>
405
406 <figure anchor="payload-structure"
407 title="Payload Structure with RTP header">
408 <artwork>
409 <![CDATA[
410+----------+--------------+
411|RTP Header| Opus Payload |
412+----------+--------------+
413 ]]>
414 </artwork>
415 </figure>
416
417 <t>
418 <xref target='opus-packetization'/> shows supported frame sizes for different modes
419 and sampling rates of Opus and how the timestamp needs to be incremented for
420 packetization.
421 </t>
422
423 <texttable anchor='opus-packetization'>
424 <ttcol align='center'>Mode</ttcol>
425 <ttcol align='center'>fs</ttcol>
426 <ttcol align='center'>2.5</ttcol>
427 <ttcol align='center'>5</ttcol>
428 <ttcol align='center'>10</ttcol>
429 <ttcol align='center'>20</ttcol>
430 <ttcol align='center'>40</ttcol>
431 <ttcol align='center'>60</ttcol>
432 <c>ts incr</c>
433 <c>all</c>
434 <c>120</c>
435 <c>240</c>
436 <c>480</c>
437 <c>960</c>
438 <c>1920</c>
439 <c>2880</c>
440 <c>voice</c>
441 <c>nb/mb/wb/swb/fb</c>
442 <c></c>
443 <c></c>
444 <c>x</c>
445 <c>x</c>
446 <c>x</c>
447 <c>x</c>
448 <c>audio</c>
449 <c>nb/wb/swb/fb</c>
450 <c>x</c>
451 <c>x</c>
452 <c>x</c>
453 <c>x</c>
454 <c></c>
455 <c></c>
456 <postamble>
457 Mode specifies the Opus mode of operation; fs specifies the audio sampling
458 frequency in Hertz (Hz); 2.5, 5, 10, 20, 40, and 60 represent the duration of
459 encoded speech or audio data in a packet; ts incr specifies the
460 value the timestamp needs to be incremented for the representing packet size.
461 For multiple frames in a packet these values have to be multiplied with the
462 respective number of frames.
463 </postamble>
464 </texttable>
465
466 </section>
467
468 </section>
469
470 <section title='Congestion Control'>
471
472 <t>The adaptive nature of the Opus codec allows for an efficient
473 congestion control.</t>
474
475 <t>The target bitrate of Opus can be adjusted at any point in time and
476 thus allowing for an efficient congestion control. Furthermore, the amount
477 of encoded speech or audio data encoded in a
478 single packet can be used for congestion control since the transmission
479 rate is inversely proportional to these frame sizes. A lower packet
480 transmission rate reduces the amount of header overhead but at the same
481 time increases latency and error sensitivity and should be done with care.</t>
482
483 <t>It is RECOMMENDED that congestion control is applied during the
484 transmission of Opus encoded data.</t>
485 </section>
486
487 <section title='IANA Considerations'>
488 <t>One media subtype (audio/opus) has been defined and registered as
489 described in the following section.</t>
490
491 <section title='Opus Media Type Registration'>
492 <t>Media type registration is done according to <xref
493 target="RFC4288"/> and <xref target="RFC4855"/>.<vspace
494 blankLines='1'/></t>
495
496 <t>Type name: audio<vspace blankLines='1'/></t>
497 <t>Subtype name: opus<vspace blankLines='1'/></t>
498
499 <t>Required parameters:</t>
500 <t><list style="hanging">
501 <t hangText="rate:"> RTP timestamp clock rate is incremented with
502 48000 Hz clock rate for all modes of Opus and all sampling
503 frequencies. For audio sampling rates other than 48000 Hz the rate
504 has to be adjusted to 48000 Hz according to <xref target="fs-upsample-factors"/>.
505 </t>
506 </list></t>
507
508 <t>Optional parameters:</t>
509
510 <t><list style="hanging">
511 <t hangText="maxcodedaudiobandwidth:">
512 a hint about the maximum audio bandwidth that the receiver is capable of rendering.
513 The decoder MUST be capable of decoding
514 any audio bandwidth but due to hardware limitations only signals
515 up to the specified audio bandwidth can be processed. Sending signals
516 with higher audio bandwidth results in higher than necessary network
517 usage and encoding complexity, so an encoder SHOULD NOT encode
518 frequencies above the audio bandwidth specified by maxcodedaudiobandwidth.
519 Possible values are nb, mb, wb, swb, fb. By default, the receiver
520 is assumed to have no limitations, i.e. fb.
521 <vspace blankLines='1'/>
522 </t>
523
524 <t hangText="maxptime:"> the decoder's maximum length of time in
525 milliseconds rounded up to the next full integer value represented
526 by the media in a packet that can be
527 encapsulated in a received packet according to Section 6 of
528 <xref target="RFC4566"/>. Possible values are 3, 5, 10, 20, 40,
529 and 60 or an arbitrary multiple of Opus frame sizes rounded up to
530 the next full integer value up to a maximum value of 120 as
531 defined in <xref target='opus-rtp-payload-format'/>. If no value is
532 specified, 120 is assumed as default. This value is a recommendation
533 by the decoding side to ensure the best
534 performance for the decoder. The decoder MUST be
535 capable of accepting any allowed packet sizes to
536 ensure maximum compatibility.
537 <vspace blankLines='1'/></t>
538
539 <t hangText="ptime:"> the decoder's recommended length of time in
540 milliseconds rounded up to the next full integer value represented
541 by the media in a packet according to
542 Section 6 of <xref target="RFC4566"/>. Possible values are
543 3, 5, 10, 20, 40, or 60 or an arbitrary multiple of Opus frame sizes
544 rounded up to the next full integer value up to a maximum
545 value of 120 as defined in <xref
546 target='opus-rtp-payload-format'/>. If no value is
547 specified, 20 is assumed as default. If ptime is greater than
548 maxptime, ptime MUST be ignored. This parameter MAY be changed
549 during a session. This value is a recommendation by the decoding
550 side to ensure the best
551 performance for the decoder. The decoder MUST be
552 capable of accepting any allowed packet sizes to
553 ensure maximum compatibility.
554 <vspace blankLines='1'/></t>
555
556 <t hangText="minptime:"> the decoder's minimum length of time in
557 milliseconds rounded up to the next full integer value represented
558 by the media in a packet that SHOULD
559 be encapsulated in a received packet according to Section 6 of <xref
560 target="RFC4566"/>. Possible values are 3, 5, 10, 20, 40, and 60
561 or an arbitrary multiple of Opus frame sizes rounded up to the next
562 full integer value up to a maximum value of 120
563 as defined in <xref target='opus-rtp-payload-format'/>. If no value is
564 specified, 3 is assumed as default. This value is a recommendation
565 by the decoding side to ensure the best
566 performance for the decoder. The decoder MUST be
567 capable to accept any allowed packet sizes to
568 ensure maximum compatibility.
569 <vspace blankLines='1'/></t>
570
571 <t hangText="maxaveragebitrate:"> specifies the maximum average
572 receive bitrate of a session in bits per second (b/s). The actual
573 value of the bitrate may vary as it is dependent on the
574 characteristics of the media in a packet. Note that the maximum
575 average bitrate MAY be modified dynamically during a session. Any
576 positive integer is allowed but values outside the range between
577 6000 and 510000 SHOULD be ignored. If no value is specified, the
578 maximum value specified in <xref target='bitrate_by_bandwidth'/>
579 for the corresponding mode of Opus and corresponding maxcodedaudiobandwidth:
580 will be the default.<vspace blankLines='1'/></t>
581
582 <t hangText="stereo:">
583 specifies whether the decoder prefers receiving stereo or mono signals.
584 Possible values are 1 and 0 where 1 specifies that stereo signals are preferred
585 and 0 specifies that only mono signals are preferred.
586 Independent of the stereo parameter every receiver MUST be able to receive and
587 decode stereo signals but sending stereo signals to a receiver that signaled a
588 preference for mono signals may result in higher than necessary network
589 utilisation and encoding complexity. If no value is specified, mono
590 is assumed (stereo=0).<vspace blankLines='1'/>
591 </t>
592
593 <t hangText="cbr:">
594 specifies if the decoder prefers the use of a constant bitrate versus
595 variable bitrate. Possible values are 1 and 0 where 1 specifies constant
596 bitrate and 0 specifies variable bitrate. If no value is specified, cbr
597 is assumed to be 0. Note that the maximum average bitrate may still be
598 changed, e.g. to adapt to changing network conditions.<vspace blankLines='1'/>
599 </t>
600
601 <t hangText="useinbandfec:"> specifies that Opus in-band FEC is
602 supported by the decoder and MAY be used during a
603 session. Possible values are 1 and 0. It is RECOMMENDED to provide
604 0 in case FEC is not implemented on the receiving side. If no
605 value is specified, useinbandfec is assumed to be 1.<vspace blankLines='1'/></t>
606
607 <t hangText="usedtx:"> specifies if the decoder prefers the use of
608 DTX. Possible values are 1 and 0. If no value is specified, usedtx
609 is assumed to be 0.<vspace blankLines='1'/></t>
610 </list></t>
611
612 <t>Encoding considerations:<vspace blankLines='1'/></t>
613 <t><list style="hanging">
614 <t>Opus media type is framed and consists of binary data according
615 to Section 4.8 in <xref target="RFC4288"/>.</t>
616 </list></t>
617
618 <t>Security considerations: </t>
619 <t><list style="hanging">
620 <t>See <xref target='security-considerations'/> of this document.</t>
621 </list></t>
622
623 <t>Interoperability considerations: none<vspace blankLines='1'/></t>
624 <t>Published specification: none<vspace blankLines='1'/></t>
625
626 <t>Applications that use this media type: </t>
627 <t><list style="hanging">
628 <t>Any application that requires the transport of
629 speech or audio data may use this media type. Some examples are,
630 but not limited to, audio and video conferencing, Voice over IP,
631 media streaming.</t>
632 </list></t>
633
634 <t>Person & email address to contact for further information:</t>
635 <t><list style="hanging">
636 <t>SILK Support silksupport@skype.net</t>
637 <t>Jean-Marc Valin jmvalin@jmvalin.ca</t>
638 </list></t>
639
640 <t>Intended usage: COMMON<vspace blankLines='1'/></t>
641
642 <t>Restrictions on usage:<vspace blankLines='1'/></t>
643
644 <t><list style="hanging">
645 <t>For transfer over RTP, the RTP payload format (<xref
646 target='opus-rtp-payload-format'/> of this document) SHALL be
647 used.</t>
648 </list></t>
649
650 <t>Author:</t>
651 <t><list style="hanging">
652 <t>Julian Spittka julian.spittka@skype.net<vspace blankLines='1'/></t>
653 <t>Koen Vos koen.vos@skype.net<vspace blankLines='1'/></t>
654 <t>Jean-Marc Valin jmvalin@jmvalin.ca<vspace blankLines='1'/></t>
655 </list></t>
656
657 <t> Change controller: TBD</t>
658 </section>
659
660 <section title='Mapping to SDP Parameters'>
661 <t>The information described in the media type specification has a
662 specific mapping to fields in the Session Description Protocol (SDP)
663 <xref target="RFC4566"/>, which is commonly used to describe RTP
664 sessions. When SDP is used to specify sessions employing the Opus codec,
665 the mapping is as follows:</t>
666
667 <t>
668 <list style="symbols">
669 <t>The media type ("audio") goes in SDP "m=" as the media name.</t>
670
671 <t>The media subtype ("opus") goes in SDP "a=rtpmap" as the encoding
672 name. The RTP clock rate in "a=rtpmap" MUST be mapped to the required
673 media type parameter "rate".</t>
674
675 <t>The optional media type parameters "ptime" and "maxptime" are
676 mapped to "a=ptime" and "a=maxptime" attributes, respectively, in the
677 SDP.</t>
678
679 <t>All remaining media type parameters are mapped to the "a=fmtp"
680 attribute in the SDP by copying them directly from the media type
681 parameter string as a semicolon-separated list of parameter=value
682 pairs (e.g. maxaveragebitrate=20000).</t>
683 </list>
684 </t>
685
686 <t>Below are some examples of SDP session descriptions for Opus:</t>
687
688 <t>Example 1: Standard session with 48000 Hz clock rate</t>
689 <figure>
690 <artwork>
691 <![CDATA[
692 m=audio 54312 RTP/AVP 101
693 a=rtpmap:101 opus/48000
694 ]]>
695 </artwork>
696 </figure>
697
698
699 <t>Example 2: 16000 Hz clock rate, maximum packet size of 40 ms,
700 recommended packet size of 40 ms, maximum average bitrate of 20000 bps,
701 stereo signals are preferred, FEC is allowed, DTX is not allowed</t>
702
703 <figure>
704 <artwork>
705 <![CDATA[
706 m=audio 54312 RTP/AVP 101
707 a=rtpmap:101 opus/48000
708 a=fmtp:101 maxcodedaudiobandwidth=wb; maxaveragebitrate=20000;
709 stereo=1; useinbandfec=1; usedtx=0
710 a=ptime:40
711 a=maxptime:40
712 ]]>
713 </artwork>
714 </figure>
715
716 <section title='Offer-Answer Model Considerations for Opus'>
717
718 <t>When using the offer-answer procedure described in <xref
719 target="RFC3264"/> to negotiate the use of Opus, the following
720 considerations apply:</t>
721
722 <t><list style="symbols">
723
724 <t>Opus supports several clock rates. For signaling purposes only
725 the highest, i.e. 48000, is used. The actual clock rate of the
726 corresponding media is signaled inside the payload and is not
727 subject to this payload format description. The decoder MUST be
728 capable to decode every received clock rate. An example
729 is shown below:
730
731 <figure>
732 <artwork>
733 <![CDATA[
734 m=audio 54312 RTP/AVP 100
735 a=rtpmap:100 opus/48000
736 ]]>
737 </artwork>
738 </figure>
739 </t>
740
741 <t>The parameters "ptime" and "maxptime" are unidirectional
742 receive-only parameters and typically will not compromise
743 interoperability; however, dependent on the set values of the
744 parameters the performance of the application may suffer. <xref
745 target="RFC3264"/> defines the SDP offer-answer handling of the
746 "ptime" parameter. The "maxptime" parameter MUST be handled in the
747 same way.</t>
748
749 <t>
750 The parameter "minptime" is a unidirectional
751 receive-only parameters and typically will not compromise
752 interoperability; however, dependent on the set values of the
753 parameter the performance of the application may suffer and should be
754 set with care.
755 </t>
756
757 <t>
758 The parameter "maxcodedaudiobandwidth" is a unidirectional receive-only
759 parameter that reflects limitations of the local receiver. The sender
760 of the other side SHOULD NOT send with an audio bandwidth higher than
761 "maxcodedaudiobandwidth" as this would lead to inefficient use of network resources. The "maxcodedaudiobandwidth" parameter does not
762 affect interoperability. Also, this parameter SHOULD NOT be used
763 to adjust the audio bandwidth as a function of the bitrates, as this
764 is the responsability of the Opus encoder implementation.
765 </t>
766
767 <t>The parameter "maxaveragebitrate" is a unidirectional receive-only
768 parameter that reflects limitations of the local receiver. The sender
769 of the other side MUST NOT send with an average bitrate higher than
770 "maxaveragebitrate" as it might overload the network and/or
771 receiver. The parameter "maxaveragebitrate" typically will not
772 compromise interoperability; however, dependent on the set value of
773 the parameter the performance of the application may suffer and should
774 be set with care.</t>
775
776 <t>If the parameter "maxaveragebitrate" is below the range specified
777 in <xref target='bitrate_by_bandwidth'/> the session MUST be rejected.</t>
778
779 <t>
780 The parameter "stereo" is a unidirectional receive-only
781 parameter.
782 </t>
783
784 <t>
785 The parameter "cbr" is a unidirectional receive-only
786 parameter.
787 </t>
788
789 <t>The parameter "useinbandfec" is a unidirectional receive-only
790 parameter.</t>
791
792 <t>The parameter "usedtx" is a unidirectional receive-only
793 parameter.</t>
794
795 <t>Any unknown parameter in an offer MUST be ignored by the receiver
796 and MUST be removed from the answer.</t>
797
798 </list></t>
799 </section>
800
801 <section title='Declarative SDP Considerations for Opus'>
802
803 <t>For declarative use of SDP such as in Session Announcement Protocol
804 (SAP), <xref target="RFC2974"/>, and RTSP, <xref target="RFC2326"/>, for
805 Opus, the following needs to be considered:</t>
806
807 <t><list style="symbols">
808
809 <t>The values for "maxptime", "ptime", "minptime", "maxcodedaudiobandwidth", and
810 "maxaveragebitrate" should be selected carefully to ensure that a
811 reasonable performance can be achieved for the participants of a session.</t>
812
813 <t>
814 The values for "maxptime", "ptime", and "minptime" of the payload
815 format configuration are recommendations by the decoding side to ensure
816 the best performance for the decoder. The decoder MUST be
817 capable to accept any allowed packet sizes to
818 ensure maximum compatibility.
819 </t>
820
821 <t>All other parameters of the payload format configuration are declarative
822 and a participant MUST use the configurations that are provided for
823 the session. More than one configuration may be provided if necessary
824 by declaring multiple RTP payload types; however, the number of types
825 should be kept small.</t>
826 </list></t>
827 </section>
828 </section>
829 </section>
830
831 <section title='Security Considerations' anchor='security-considerations'>
832
833 <t>All RTP packets using the payload format defined in this specification
834 are subject to the general security considerations discussed in the RTP
835 specification <xref target="RFC3550"/> and any profile from
836 e.g. <xref target="RFC3711"/> or <xref target="RFC3551"/>.</t>
837
838 <t>This payload format transports Opus encoded speech or audio data,
839 hence, security issues include confidentiality, integrity protection, and
840 authentication of the speech or audio itself. The Opus payload format does
841 not have any built-in security mechanisms. Any suitable external
842 mechanisms, such as SRTP <xref target="RFC3711"/>, MAY be used.</t>
843
844 <t>This payload format and the Opus encoding do not exhibit any
845 significant non-uniformity in the receiver-end computational load and thus
846 are unlikely to pose a denial-of-service threat due to the receipt of
847 pathological datagrams.</t>
848 </section>
849
850 <section title='Acknowledgements'>
851 <t>TBD</t>
852 </section>
853 </middle>
854
855 <back>
856 <references title="Normative References">
857 &rfc2119;
858 &rfc3550;
859 &rfc3711;
860 &rfc3551;
861 &rfc4288;
862 &rfc4855;
863 &rfc4566;
864 &rfc3264;
865 &rfc2974;
866 &rfc2326;
867 </references>
868
869
870 <section title='Informational References'>
871 <t><list style="hanging">
872 <t>[codec] http://datatracker.ietf.org/wg/codec/</t>
873 <t>[Opus] http://datatracker.ietf.org/doc/draft-ietf-codec-opus/</t>
874 </list></t>
875 </section>
876
877 </back>
878</rfc>