Tony Mak | 6c4cc67 | 2018-09-17 11:48:50 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2018 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | // Contains classes that can execute different models/parts of a model. |
| 18 | |
| 19 | #ifndef LIBTEXTCLASSIFIER_ANNOTATOR_MODEL_EXECUTOR_H_ |
| 20 | #define LIBTEXTCLASSIFIER_ANNOTATOR_MODEL_EXECUTOR_H_ |
| 21 | |
| 22 | #include <memory> |
| 23 | |
| 24 | #include "annotator/types.h" |
| 25 | #include "utils/base/logging.h" |
| 26 | #include "utils/tensor-view.h" |
| 27 | #include "utils/tflite-model-executor.h" |
| 28 | |
| 29 | namespace libtextclassifier3 { |
| 30 | |
| 31 | // Executor for the text selection prediction and classification models. |
| 32 | class ModelExecutor : public TfLiteModelExecutor { |
| 33 | public: |
| 34 | static std::unique_ptr<ModelExecutor> FromModelSpec( |
| 35 | const tflite::Model* model_spec) { |
| 36 | auto model = TfLiteModelFromModelSpec(model_spec); |
| 37 | if (!model) { |
| 38 | return nullptr; |
| 39 | } |
| 40 | return std::unique_ptr<ModelExecutor>(new ModelExecutor(std::move(model))); |
| 41 | } |
| 42 | |
| 43 | static std::unique_ptr<ModelExecutor> FromBuffer( |
| 44 | const flatbuffers::Vector<uint8_t>* model_spec_buffer) { |
| 45 | auto model = TfLiteModelFromBuffer(model_spec_buffer); |
| 46 | if (!model) { |
| 47 | return nullptr; |
| 48 | } |
| 49 | return std::unique_ptr<ModelExecutor>(new ModelExecutor(std::move(model))); |
| 50 | } |
| 51 | |
| 52 | TensorView<float> ComputeLogits(const TensorView<float>& features, |
| 53 | tflite::Interpreter* interpreter) const; |
| 54 | |
| 55 | protected: |
| 56 | explicit ModelExecutor(std::unique_ptr<const tflite::FlatBufferModel> model) |
| 57 | : TfLiteModelExecutor(std::move(model)) {} |
| 58 | |
| 59 | static const int kInputIndexFeatures = 0; |
| 60 | static const int kOutputIndexLogits = 0; |
| 61 | }; |
| 62 | |
| 63 | // Executor for embedding sparse features into a dense vector. |
| 64 | class EmbeddingExecutor { |
| 65 | public: |
| 66 | virtual ~EmbeddingExecutor() {} |
| 67 | |
| 68 | // Embeds the sparse_features into a dense embedding and adds (+) it |
| 69 | // element-wise to the dest vector. |
| 70 | virtual bool AddEmbedding(const TensorView<int>& sparse_features, float* dest, |
| 71 | int dest_size) const = 0; |
| 72 | |
| 73 | // Returns true when the model is ready to be used, false otherwise. |
| 74 | virtual bool IsReady() const { return true; } |
| 75 | }; |
| 76 | |
| 77 | class TFLiteEmbeddingExecutor : public EmbeddingExecutor { |
| 78 | public: |
| 79 | static std::unique_ptr<TFLiteEmbeddingExecutor> FromBuffer( |
| 80 | const flatbuffers::Vector<uint8_t>* model_spec_buffer, int embedding_size, |
Tony Mak | df54e74 | 2019-03-26 14:04:00 +0000 | [diff] [blame] | 81 | int quantization_bits, |
| 82 | const Model_::EmbeddingPruningMask* embedding_pruning_mask = nullptr); |
Tony Mak | 6c4cc67 | 2018-09-17 11:48:50 +0100 | [diff] [blame] | 83 | |
| 84 | // Embeds the sparse_features into a dense embedding and adds (+) it |
| 85 | // element-wise to the dest vector. |
| 86 | bool AddEmbedding(const TensorView<int>& sparse_features, float* dest, |
| 87 | int dest_size) const; |
| 88 | |
Tony Mak | df54e74 | 2019-03-26 14:04:00 +0000 | [diff] [blame] | 89 | // Auxiliary function for computing prefixes used in implementation of |
| 90 | // efficient mask indexing data structure. |
| 91 | void ComputePrefixCounts(); |
| 92 | |
| 93 | // Function implementing mask indexing based on efficient data structure |
| 94 | int PruneBucketId(int bucket_id) const; |
| 95 | |
Tony Mak | 6c4cc67 | 2018-09-17 11:48:50 +0100 | [diff] [blame] | 96 | protected: |
| 97 | explicit TFLiteEmbeddingExecutor( |
| 98 | std::unique_ptr<TfLiteModelExecutor> executor, int quantization_bits, |
| 99 | int num_buckets, int bytes_per_embedding, int output_embedding_size, |
| 100 | const TfLiteTensor* scales, const TfLiteTensor* embeddings, |
Tony Mak | df54e74 | 2019-03-26 14:04:00 +0000 | [diff] [blame] | 101 | std::unique_ptr<tflite::Interpreter> interpreter, |
| 102 | const Model_::EmbeddingPruningMask* embedding_pruning_mask = nullptr); |
Tony Mak | 6c4cc67 | 2018-09-17 11:48:50 +0100 | [diff] [blame] | 103 | |
| 104 | std::unique_ptr<TfLiteModelExecutor> executor_; |
| 105 | |
| 106 | int quantization_bits_; |
| 107 | int num_buckets_ = -1; |
| 108 | int bytes_per_embedding_ = -1; |
| 109 | int output_embedding_size_ = -1; |
| 110 | const TfLiteTensor* scales_ = nullptr; |
| 111 | const TfLiteTensor* embeddings_ = nullptr; |
| 112 | |
| 113 | // NOTE: This interpreter is used in a read-only way (as a storage for the |
| 114 | // model params), thus is still thread-safe. |
| 115 | std::unique_ptr<tflite::Interpreter> interpreter_; |
Tony Mak | df54e74 | 2019-03-26 14:04:00 +0000 | [diff] [blame] | 116 | |
| 117 | std::vector<uint64> pruning_mask_; |
| 118 | std::vector<uint16> prefix_counts_; |
| 119 | int full_num_buckets_ = -1; |
| 120 | |
| 121 | // Index of row of embedding table corresponding to all pruned buckets. |
| 122 | int pruned_row_bucket_id_ = -1; |
Tony Mak | 6c4cc67 | 2018-09-17 11:48:50 +0100 | [diff] [blame] | 123 | }; |
| 124 | |
| 125 | } // namespace libtextclassifier3 |
| 126 | |
| 127 | #endif // LIBTEXTCLASSIFIER_ANNOTATOR_MODEL_EXECUTOR_H_ |