instcombine: Migrate math library call simplifications

This patch migrates the math library call simplifications from the
simplify-libcalls pass into the instcombine library call simplifier.

I have typically migrated just one simplifier at a time, but the math
simplifiers are interdependent because:

   1. CosOpt, PowOpt, and Exp2Opt all depend on UnaryDoubleFPOpt.
   2. CosOpt, PowOpt, Exp2Opt, and UnaryDoubleFPOpt all depend on
      the option -enable-double-float-shrink.

These two factors made migrating each of these simplifiers individually
more of a pain than it would be worth.  So, I migrated them all together.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167815 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
index 9a46f25..feef2cc 100644
--- a/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -44,6 +44,7 @@
 #include "llvm/Target/TargetLibraryInfo.h"
 #include "llvm/Transforms/Utils/Local.h"
 #include "llvm/Support/CFG.h"
+#include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/GetElementPtrTypeIterator.h"
 #include "llvm/Support/PatternMatch.h"
@@ -65,6 +66,11 @@
 STATISTIC(NumFactor   , "Number of factorizations");
 STATISTIC(NumReassoc  , "Number of reassociations");
 
+static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
+                                   cl::init(false),
+                                   cl::desc("Enable unsafe double to float "
+                                            "shrinking for math lib calls"));
+
 // Initialization Routines
 void llvm::initializeInstCombine(PassRegistry &Registry) {
   initializeInstCombinerPass(Registry);
@@ -2374,7 +2380,7 @@
   InstCombinerLibCallSimplifier(const DataLayout *TD,
                                 const TargetLibraryInfo *TLI,
                                 InstCombiner *IC)
-    : LibCallSimplifier(TD, TLI) {
+    : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
     this->IC = IC;
   }
 
diff --git a/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
index 17d07cd..8f31cd1 100644
--- a/lib/Transforms/Scalar/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
@@ -39,10 +39,6 @@
 STATISTIC(NumSimplified, "Number of library calls simplified");
 STATISTIC(NumAnnotated, "Number of attributes added to library functions");
 
-static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
-                                   cl::init(false),
-                                   cl::desc("Enable unsafe double to float "
-                                            "shrinking for math lib calls"));
 //===----------------------------------------------------------------------===//
 // Optimizer Base Class
 //===----------------------------------------------------------------------===//
@@ -101,192 +97,6 @@
 
 namespace {
 //===----------------------------------------------------------------------===//
-// Math Library Optimizations
-//===----------------------------------------------------------------------===//
-
-//===---------------------------------------===//
-// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
-
-struct UnaryDoubleFPOpt : public LibCallOptimization {
-  bool CheckRetType;
-  UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    FunctionType *FT = Callee->getFunctionType();
-    if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
-        !FT->getParamType(0)->isDoubleTy())
-      return 0;
-
-    if (CheckRetType) {
-      // Check if all the uses for function like 'sin' are converted to float.
-      for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
-          ++UseI) {
-        FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
-        if (Cast == 0 || !Cast->getType()->isFloatTy())
-          return 0;
-      }
-    }
-
-    // If this is something like 'floor((double)floatval)', convert to floorf.
-    FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
-    if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
-      return 0;
-
-    // floor((double)floatval) -> (double)floorf(floatval)
-    Value *V = Cast->getOperand(0);
-    V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
-    return B.CreateFPExt(V, B.getDoubleTy());
-  }
-};
-
-//===---------------------------------------===//
-// 'cos*' Optimizations
-struct CosOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    Value *Ret = NULL;
-    if (UnsafeFPShrink && Callee->getName() == "cos" &&
-        TLI->has(LibFunc::cosf)) {
-      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
-      Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
-    }
-
-    FunctionType *FT = Callee->getFunctionType();
-    // Just make sure this has 1 argument of FP type, which matches the
-    // result type.
-    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
-        !FT->getParamType(0)->isFloatingPointTy())
-      return Ret;
-
-    // cos(-x) -> cos(x)
-    Value *Op1 = CI->getArgOperand(0);
-    if (BinaryOperator::isFNeg(Op1)) {
-      BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
-      return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
-    }
-    return Ret;
-  }
-};
-
-//===---------------------------------------===//
-// 'pow*' Optimizations
-
-struct PowOpt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    Value *Ret = NULL;
-    if (UnsafeFPShrink && Callee->getName() == "pow" &&
-        TLI->has(LibFunc::powf)) {
-      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
-      Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
-    }
-
-    FunctionType *FT = Callee->getFunctionType();
-    // Just make sure this has 2 arguments of the same FP type, which match the
-    // result type.
-    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
-        FT->getParamType(0) != FT->getParamType(1) ||
-        !FT->getParamType(0)->isFloatingPointTy())
-      return Ret;
-
-    Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
-    if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
-      if (Op1C->isExactlyValue(1.0))  // pow(1.0, x) -> 1.0
-        return Op1C;
-      if (Op1C->isExactlyValue(2.0))  // pow(2.0, x) -> exp2(x)
-        return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
-    }
-
-    ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
-    if (Op2C == 0) return Ret;
-
-    if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
-      return ConstantFP::get(CI->getType(), 1.0);
-
-    if (Op2C->isExactlyValue(0.5)) {
-      // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
-      // This is faster than calling pow, and still handles negative zero
-      // and negative infinity correctly.
-      // TODO: In fast-math mode, this could be just sqrt(x).
-      // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
-      Value *Inf = ConstantFP::getInfinity(CI->getType());
-      Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
-      Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
-                                         Callee->getAttributes());
-      Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
-                                         Callee->getAttributes());
-      Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
-      Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
-      return Sel;
-    }
-
-    if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
-      return Op1;
-    if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
-      return B.CreateFMul(Op1, Op1, "pow2");
-    if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
-      return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
-                          Op1, "powrecip");
-    return 0;
-  }
-};
-
-//===---------------------------------------===//
-// 'exp2' Optimizations
-
-struct Exp2Opt : public LibCallOptimization {
-  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
-    Value *Ret = NULL;
-    if (UnsafeFPShrink && Callee->getName() == "exp2" &&
-        TLI->has(LibFunc::exp2)) {
-      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
-      Ret = UnsafeUnaryDoubleFP.CallOptimizer(Callee, CI, B);
-    }
-
-    FunctionType *FT = Callee->getFunctionType();
-    // Just make sure this has 1 argument of FP type, which matches the
-    // result type.
-    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
-        !FT->getParamType(0)->isFloatingPointTy())
-      return Ret;
-
-    Value *Op = CI->getArgOperand(0);
-    // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
-    // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
-    Value *LdExpArg = 0;
-    if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
-      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
-        LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
-    } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
-      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
-        LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
-    }
-
-    if (LdExpArg) {
-      const char *Name;
-      if (Op->getType()->isFloatTy())
-        Name = "ldexpf";
-      else if (Op->getType()->isDoubleTy())
-        Name = "ldexp";
-      else
-        Name = "ldexpl";
-
-      Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
-      if (!Op->getType()->isFloatTy())
-        One = ConstantExpr::getFPExtend(One, Op->getType());
-
-      Module *M = Caller->getParent();
-      Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
-                                             Op->getType(),
-                                             B.getInt32Ty(), NULL);
-      CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
-      if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
-        CI->setCallingConv(F->getCallingConv());
-
-      return CI;
-    }
-    return Ret;
-  }
-};
-
-//===----------------------------------------------------------------------===//
 // Integer Optimizations
 //===----------------------------------------------------------------------===//
 
@@ -768,9 +578,6 @@
     TargetLibraryInfo *TLI;
 
     StringMap<LibCallOptimization*> Optimizations;
-    // Math Library Optimizations
-    CosOpt Cos; PowOpt Pow; Exp2Opt Exp2;
-    UnaryDoubleFPOpt UnaryDoubleFP, UnsafeUnaryDoubleFP;
     // Integer Optimizations
     FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
     ToAsciiOpt ToAscii;
@@ -782,8 +589,7 @@
     bool Modified;  // This is only used by doInitialization.
   public:
     static char ID; // Pass identification
-    SimplifyLibCalls() : FunctionPass(ID), UnaryDoubleFP(false),
-                         UnsafeUnaryDoubleFP(true) {
+    SimplifyLibCalls() : FunctionPass(ID) {
       initializeSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
     }
     void AddOpt(LibFunc::Func F, LibCallOptimization* Opt);
@@ -833,59 +639,6 @@
 /// Optimizations - Populate the Optimizations map with all the optimizations
 /// we know.
 void SimplifyLibCalls::InitOptimizations() {
-  // Math Library Optimizations
-  Optimizations["cosf"] = &Cos;
-  Optimizations["cos"] = &Cos;
-  Optimizations["cosl"] = &Cos;
-  Optimizations["powf"] = &Pow;
-  Optimizations["pow"] = &Pow;
-  Optimizations["powl"] = &Pow;
-  Optimizations["llvm.pow.f32"] = &Pow;
-  Optimizations["llvm.pow.f64"] = &Pow;
-  Optimizations["llvm.pow.f80"] = &Pow;
-  Optimizations["llvm.pow.f128"] = &Pow;
-  Optimizations["llvm.pow.ppcf128"] = &Pow;
-  Optimizations["exp2l"] = &Exp2;
-  Optimizations["exp2"] = &Exp2;
-  Optimizations["exp2f"] = &Exp2;
-  Optimizations["llvm.exp2.ppcf128"] = &Exp2;
-  Optimizations["llvm.exp2.f128"] = &Exp2;
-  Optimizations["llvm.exp2.f80"] = &Exp2;
-  Optimizations["llvm.exp2.f64"] = &Exp2;
-  Optimizations["llvm.exp2.f32"] = &Exp2;
-
-  AddOpt(LibFunc::ceil, LibFunc::ceilf, &UnaryDoubleFP);
-  AddOpt(LibFunc::fabs, LibFunc::fabsf, &UnaryDoubleFP);
-  AddOpt(LibFunc::floor, LibFunc::floorf, &UnaryDoubleFP);
-  AddOpt(LibFunc::rint, LibFunc::rintf, &UnaryDoubleFP);
-  AddOpt(LibFunc::round, LibFunc::roundf, &UnaryDoubleFP);
-  AddOpt(LibFunc::nearbyint, LibFunc::nearbyintf, &UnaryDoubleFP);
-  AddOpt(LibFunc::trunc, LibFunc::truncf, &UnaryDoubleFP);
-
-  if(UnsafeFPShrink) {
-    AddOpt(LibFunc::acos, LibFunc::acosf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::acosh, LibFunc::acoshf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::asin, LibFunc::asinf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::asinh, LibFunc::asinhf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::atan, LibFunc::atanf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::atanh, LibFunc::atanhf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::cbrt, LibFunc::cbrtf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::cosh, LibFunc::coshf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::exp, LibFunc::expf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::exp10, LibFunc::exp10f, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::expm1, LibFunc::expm1f, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::log, LibFunc::logf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::log10, LibFunc::log10f, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::log1p, LibFunc::log1pf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::log2, LibFunc::log2f, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::logb, LibFunc::logbf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::sin, LibFunc::sinf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::sinh, LibFunc::sinhf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::sqrt, LibFunc::sqrtf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::tan, LibFunc::tanf, &UnsafeUnaryDoubleFP);
-    AddOpt(LibFunc::tanh, LibFunc::tanhf, &UnsafeUnaryDoubleFP);
-  }
-
   // Integer Optimizations
   Optimizations["ffs"] = &FFS;
   Optimizations["ffsl"] = &FFS;
diff --git a/lib/Transforms/Utils/SimplifyLibCalls.cpp b/lib/Transforms/Utils/SimplifyLibCalls.cpp
index 2028118..cceec66 100644
--- a/lib/Transforms/Utils/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -20,6 +20,7 @@
 #include "llvm/Analysis/ValueTracking.h"
 #include "llvm/Function.h"
 #include "llvm/IRBuilder.h"
+#include "llvm/Module.h"
 #include "llvm/LLVMContext.h"
 #include "llvm/Target/TargetLibraryInfo.h"
 #include "llvm/Transforms/Utils/BuildLibCalls.h"
@@ -1023,6 +1024,194 @@
   }
 };
 
+//===----------------------------------------------------------------------===//
+// Math Library Optimizations
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
+
+struct UnaryDoubleFPOpt : public LibCallOptimization {
+  bool CheckRetType;
+  UnaryDoubleFPOpt(bool CheckReturnType): CheckRetType(CheckReturnType) {}
+  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+    FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
+        !FT->getParamType(0)->isDoubleTy())
+      return 0;
+
+    if (CheckRetType) {
+      // Check if all the uses for function like 'sin' are converted to float.
+      for (Value::use_iterator UseI = CI->use_begin(); UseI != CI->use_end();
+          ++UseI) {
+        FPTruncInst *Cast = dyn_cast<FPTruncInst>(*UseI);
+        if (Cast == 0 || !Cast->getType()->isFloatTy())
+          return 0;
+      }
+    }
+
+    // If this is something like 'floor((double)floatval)', convert to floorf.
+    FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getArgOperand(0));
+    if (Cast == 0 || !Cast->getOperand(0)->getType()->isFloatTy())
+      return 0;
+
+    // floor((double)floatval) -> (double)floorf(floatval)
+    Value *V = Cast->getOperand(0);
+    V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
+    return B.CreateFPExt(V, B.getDoubleTy());
+  }
+};
+
+struct UnsafeFPLibCallOptimization : public LibCallOptimization {
+  bool UnsafeFPShrink;
+  UnsafeFPLibCallOptimization(bool UnsafeFPShrink) {
+    this->UnsafeFPShrink = UnsafeFPShrink;
+  }
+};
+
+struct CosOpt : public UnsafeFPLibCallOptimization {
+  CosOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+    Value *Ret = NULL;
+    if (UnsafeFPShrink && Callee->getName() == "cos" &&
+        TLI->has(LibFunc::cosf)) {
+      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+    }
+
+    FunctionType *FT = Callee->getFunctionType();
+    // Just make sure this has 1 argument of FP type, which matches the
+    // result type.
+    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+        !FT->getParamType(0)->isFloatingPointTy())
+      return Ret;
+
+    // cos(-x) -> cos(x)
+    Value *Op1 = CI->getArgOperand(0);
+    if (BinaryOperator::isFNeg(Op1)) {
+      BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
+      return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
+    }
+    return Ret;
+  }
+};
+
+struct PowOpt : public UnsafeFPLibCallOptimization {
+  PowOpt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+    Value *Ret = NULL;
+    if (UnsafeFPShrink && Callee->getName() == "pow" &&
+        TLI->has(LibFunc::powf)) {
+      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+    }
+
+    FunctionType *FT = Callee->getFunctionType();
+    // Just make sure this has 2 arguments of the same FP type, which match the
+    // result type.
+    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+        FT->getParamType(0) != FT->getParamType(1) ||
+        !FT->getParamType(0)->isFloatingPointTy())
+      return Ret;
+
+    Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
+    if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+      if (Op1C->isExactlyValue(1.0))  // pow(1.0, x) -> 1.0
+        return Op1C;
+      if (Op1C->isExactlyValue(2.0))  // pow(2.0, x) -> exp2(x)
+        return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
+    }
+
+    ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
+    if (Op2C == 0) return Ret;
+
+    if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
+      return ConstantFP::get(CI->getType(), 1.0);
+
+    if (Op2C->isExactlyValue(0.5)) {
+      // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
+      // This is faster than calling pow, and still handles negative zero
+      // and negative infinity correctly.
+      // TODO: In fast-math mode, this could be just sqrt(x).
+      // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
+      Value *Inf = ConstantFP::getInfinity(CI->getType());
+      Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
+      Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B,
+                                         Callee->getAttributes());
+      Value *FAbs = EmitUnaryFloatFnCall(Sqrt, "fabs", B,
+                                         Callee->getAttributes());
+      Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
+      Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
+      return Sel;
+    }
+
+    if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
+      return Op1;
+    if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
+      return B.CreateFMul(Op1, Op1, "pow2");
+    if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
+      return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0),
+                          Op1, "powrecip");
+    return 0;
+  }
+};
+
+struct Exp2Opt : public UnsafeFPLibCallOptimization {
+  Exp2Opt(bool UnsafeFPShrink) : UnsafeFPLibCallOptimization(UnsafeFPShrink) {}
+  virtual Value *callOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
+    Value *Ret = NULL;
+    if (UnsafeFPShrink && Callee->getName() == "exp2" &&
+        TLI->has(LibFunc::exp2)) {
+      UnaryDoubleFPOpt UnsafeUnaryDoubleFP(true);
+      Ret = UnsafeUnaryDoubleFP.callOptimizer(Callee, CI, B);
+    }
+
+    FunctionType *FT = Callee->getFunctionType();
+    // Just make sure this has 1 argument of FP type, which matches the
+    // result type.
+    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+        !FT->getParamType(0)->isFloatingPointTy())
+      return Ret;
+
+    Value *Op = CI->getArgOperand(0);
+    // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
+    // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
+    Value *LdExpArg = 0;
+    if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
+      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
+        LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
+    } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
+      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
+        LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
+    }
+
+    if (LdExpArg) {
+      const char *Name;
+      if (Op->getType()->isFloatTy())
+        Name = "ldexpf";
+      else if (Op->getType()->isDoubleTy())
+        Name = "ldexp";
+      else
+        Name = "ldexpl";
+
+      Constant *One = ConstantFP::get(*Context, APFloat(1.0f));
+      if (!Op->getType()->isFloatTy())
+        One = ConstantExpr::getFPExtend(One, Op->getType());
+
+      Module *M = Caller->getParent();
+      Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
+                                             Op->getType(),
+                                             B.getInt32Ty(), NULL);
+      CallInst *CI = B.CreateCall2(Callee, One, LdExpArg);
+      if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
+        CI->setCallingConv(F->getCallingConv());
+
+      return CI;
+    }
+    return Ret;
+  }
+};
+
 } // End anonymous namespace.
 
 namespace llvm {
@@ -1031,6 +1220,7 @@
   const DataLayout *TD;
   const TargetLibraryInfo *TLI;
   const LibCallSimplifier *LCS;
+  bool UnsafeFPShrink;
   StringMap<LibCallOptimization*> Optimizations;
 
   // Fortified library call optimizations.
@@ -1064,14 +1254,23 @@
   MemMoveOpt MemMove;
   MemSetOpt MemSet;
 
+  // Math library call optimizations.
+  UnaryDoubleFPOpt UnaryDoubleFP, UnsafeUnaryDoubleFP;
+  CosOpt Cos; PowOpt Pow; Exp2Opt Exp2;
+
   void initOptimizations();
   void addOpt(LibFunc::Func F, LibCallOptimization* Opt);
+  void addOpt(LibFunc::Func F1, LibFunc::Func F2, LibCallOptimization* Opt);
 public:
   LibCallSimplifierImpl(const DataLayout *TD, const TargetLibraryInfo *TLI,
-                        const LibCallSimplifier *LCS) {
+                        const LibCallSimplifier *LCS,
+                        bool UnsafeFPShrink = false)
+    : UnaryDoubleFP(false), UnsafeUnaryDoubleFP(true),
+      Cos(UnsafeFPShrink), Pow(UnsafeFPShrink), Exp2(UnsafeFPShrink) {
     this->TD = TD;
     this->TLI = TLI;
     this->LCS = LCS;
+    this->UnsafeFPShrink = UnsafeFPShrink;
   }
 
   Value *optimizeCall(CallInst *CI);
@@ -1115,6 +1314,59 @@
   addOpt(LibFunc::memcpy, &MemCpy);
   addOpt(LibFunc::memmove, &MemMove);
   addOpt(LibFunc::memset, &MemSet);
+
+  // Math library call optimizations.
+  addOpt(LibFunc::ceil, LibFunc::ceilf, &UnaryDoubleFP);
+  addOpt(LibFunc::fabs, LibFunc::fabsf, &UnaryDoubleFP);
+  addOpt(LibFunc::floor, LibFunc::floorf, &UnaryDoubleFP);
+  addOpt(LibFunc::rint, LibFunc::rintf, &UnaryDoubleFP);
+  addOpt(LibFunc::round, LibFunc::roundf, &UnaryDoubleFP);
+  addOpt(LibFunc::nearbyint, LibFunc::nearbyintf, &UnaryDoubleFP);
+  addOpt(LibFunc::trunc, LibFunc::truncf, &UnaryDoubleFP);
+
+  if(UnsafeFPShrink) {
+    addOpt(LibFunc::acos, LibFunc::acosf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::acosh, LibFunc::acoshf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::asin, LibFunc::asinf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::asinh, LibFunc::asinhf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::atan, LibFunc::atanf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::atanh, LibFunc::atanhf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::cbrt, LibFunc::cbrtf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::cosh, LibFunc::coshf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::exp, LibFunc::expf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::exp10, LibFunc::exp10f, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::expm1, LibFunc::expm1f, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::log, LibFunc::logf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::log10, LibFunc::log10f, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::log1p, LibFunc::log1pf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::log2, LibFunc::log2f, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::logb, LibFunc::logbf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::sin, LibFunc::sinf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::sinh, LibFunc::sinhf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::sqrt, LibFunc::sqrtf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::tan, LibFunc::tanf, &UnsafeUnaryDoubleFP);
+    addOpt(LibFunc::tanh, LibFunc::tanhf, &UnsafeUnaryDoubleFP);
+  }
+
+  addOpt(LibFunc::cosf, &Cos);
+  addOpt(LibFunc::cos, &Cos);
+  addOpt(LibFunc::cosl, &Cos);
+  addOpt(LibFunc::powf, &Pow);
+  addOpt(LibFunc::pow, &Pow);
+  addOpt(LibFunc::powl, &Pow);
+  Optimizations["llvm.pow.f32"] = &Pow;
+  Optimizations["llvm.pow.f64"] = &Pow;
+  Optimizations["llvm.pow.f80"] = &Pow;
+  Optimizations["llvm.pow.f128"] = &Pow;
+  Optimizations["llvm.pow.ppcf128"] = &Pow;
+  addOpt(LibFunc::exp2l, &Exp2);
+  addOpt(LibFunc::exp2, &Exp2);
+  addOpt(LibFunc::exp2f, &Exp2);
+  Optimizations["llvm.exp2.ppcf128"] = &Exp2;
+  Optimizations["llvm.exp2.f128"] = &Exp2;
+  Optimizations["llvm.exp2.f80"] = &Exp2;
+  Optimizations["llvm.exp2.f64"] = &Exp2;
+  Optimizations["llvm.exp2.f32"] = &Exp2;
 }
 
 Value *LibCallSimplifierImpl::optimizeCall(CallInst *CI) {
@@ -1135,9 +1387,16 @@
     Optimizations[TLI->getName(F)] = Opt;
 }
 
+void LibCallSimplifierImpl::addOpt(LibFunc::Func F1, LibFunc::Func F2,
+                                   LibCallOptimization* Opt) {
+  if (TLI->has(F1) && TLI->has(F2))
+    Optimizations[TLI->getName(F1)] = Opt;
+}
+
 LibCallSimplifier::LibCallSimplifier(const DataLayout *TD,
-                                     const TargetLibraryInfo *TLI) {
-  Impl = new LibCallSimplifierImpl(TD, TLI, this);
+                                     const TargetLibraryInfo *TLI,
+                                     bool UnsafeFPShrink) {
+  Impl = new LibCallSimplifierImpl(TD, TLI, this, UnsafeFPShrink);
 }
 
 LibCallSimplifier::~LibCallSimplifier() {