Change a bunch of isVolatile() checks to check for atomic load/store as well.

No tests; these changes aren't really interesting in the sense that the logic is the same for volatile and atomic.

I believe this completes all of the changes necessary for the optimizer to handle loads and stores correctly.  I'm going to try and come up with some additional testing, though.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139533 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Transforms/Scalar/JumpThreading.cpp b/lib/Transforms/Scalar/JumpThreading.cpp
index b500d5b..f410af3 100644
--- a/lib/Transforms/Scalar/JumpThreading.cpp
+++ b/lib/Transforms/Scalar/JumpThreading.cpp
@@ -811,8 +811,8 @@
 /// important optimization that encourages jump threading, and needs to be run
 /// interlaced with other jump threading tasks.
 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
-  // Don't hack volatile loads.
-  if (LI->isVolatile()) return false;
+  // Don't hack volatile/atomic loads.
+  if (!LI->isSimple()) return false;
 
   // If the load is defined in a block with exactly one predecessor, it can't be
   // partially redundant.