Change Thumb2 jumptable codegen to one that uses two level jumps:

Before:
      adr r12, #LJTI3_0_0
      ldr pc, [r12, +r0, lsl #2]
LJTI3_0_0:
      .long    LBB3_24
      .long    LBB3_30
      .long    LBB3_31
      .long    LBB3_32

After:
      adr r12, #LJTI3_0_0
      add pc, r12, +r0, lsl #2
LJTI3_0_0:
      b.w    LBB3_24
      b.w    LBB3_30
      b.w    LBB3_31
      b.w    LBB3_32

This has several advantages.
1. This will make it easier to optimize this to a TBB / TBH instruction +
   (smaller) table.
2. This eliminate the need for ugly asm printer hack to force the address
   into thumb addresses (bit 0 is one).
3. Same codegen for pic and non-pic.
4. This eliminate the need to align the table so constantpool island pass
   won't have to over-estimate the size.

Based on my calculation, the later is probably slightly faster as well since
ldr pc with shifter address is very slow. That is, it should be a win as long
as the HW implementation can do a reasonable job of branch predict the second
branch.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77024 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/ARM/ARMISelLowering.h b/lib/Target/ARM/ARMISelLowering.h
index abe8ca9..10f9cea 100644
--- a/lib/Target/ARM/ARMISelLowering.h
+++ b/lib/Target/ARM/ARMISelLowering.h
@@ -40,6 +40,7 @@
       tCALL,        // Thumb function call.
       BRCOND,       // Conditional branch.
       BR_JT,        // Jumptable branch.
+      BR2_JT,       // Jumptable branch (2 level - jumptable entry is a jump).
       RET_FLAG,     // Return with a flag operand.
 
       PIC_ADD,      // Add with a PC operand and a PIC label.