change getQualifiedName to be a global function.
Split the pattern parsing code out from the dag isel emitter into it's own file.

No functionality change.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45632 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/utils/TableGen/CodeGenDAGPatterns.cpp b/utils/TableGen/CodeGenDAGPatterns.cpp
new file mode 100644
index 0000000..4d36764
--- /dev/null
+++ b/utils/TableGen/CodeGenDAGPatterns.cpp
@@ -0,0 +1,2092 @@
+//===- CodegenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CodegenDAGPatterns class, which is used to read and
+// represent the patterns present in a .td file for instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodegenDAGPatterns.h"
+#include "Record.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/Debug.h"
+//#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Streams.h"
+//#include <algorithm>
+#include <set>
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Helpers for working with extended types.
+
+/// FilterVTs - Filter a list of VT's according to a predicate.
+///
+template<typename T>
+static std::vector<MVT::ValueType> 
+FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
+  std::vector<MVT::ValueType> Result;
+  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+    if (Filter(InVTs[i]))
+      Result.push_back(InVTs[i]);
+  return Result;
+}
+
+template<typename T>
+static std::vector<unsigned char> 
+FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
+  std::vector<unsigned char> Result;
+  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+    if (Filter((MVT::ValueType)InVTs[i]))
+      Result.push_back(InVTs[i]);
+  return Result;
+}
+
+static std::vector<unsigned char>
+ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
+  std::vector<unsigned char> Result;
+  for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
+    Result.push_back(InVTs[i]);
+  return Result;
+}
+
+static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
+                             const std::vector<unsigned char> &RHS) {
+  if (LHS.size() > RHS.size()) return false;
+  for (unsigned i = 0, e = LHS.size(); i != e; ++i)
+    if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
+      return false;
+  return true;
+}
+
+/// isExtIntegerVT - Return true if the specified extended value type vector
+/// contains isInt or an integer value type.
+namespace llvm {
+namespace MVT {
+bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
+  assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
+  return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty());
+}
+
+/// isExtFloatingPointVT - Return true if the specified extended value type 
+/// vector contains isFP or a FP value type.
+bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
+  assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
+  return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty());
+}
+} // end namespace MVT.
+} // end namespace llvm.
+
+//===----------------------------------------------------------------------===//
+// SDTypeConstraint implementation
+//
+
+SDTypeConstraint::SDTypeConstraint(Record *R) {
+  OperandNo = R->getValueAsInt("OperandNum");
+  
+  if (R->isSubClassOf("SDTCisVT")) {
+    ConstraintType = SDTCisVT;
+    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
+  } else if (R->isSubClassOf("SDTCisPtrTy")) {
+    ConstraintType = SDTCisPtrTy;
+  } else if (R->isSubClassOf("SDTCisInt")) {
+    ConstraintType = SDTCisInt;
+  } else if (R->isSubClassOf("SDTCisFP")) {
+    ConstraintType = SDTCisFP;
+  } else if (R->isSubClassOf("SDTCisSameAs")) {
+    ConstraintType = SDTCisSameAs;
+    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
+  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
+    ConstraintType = SDTCisVTSmallerThanOp;
+    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 
+      R->getValueAsInt("OtherOperandNum");
+  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
+    ConstraintType = SDTCisOpSmallerThanOp;
+    x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 
+      R->getValueAsInt("BigOperandNum");
+  } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
+    ConstraintType = SDTCisIntVectorOfSameSize;
+    x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
+      R->getValueAsInt("OtherOpNum");
+  } else {
+    cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
+    exit(1);
+  }
+}
+
+/// getOperandNum - Return the node corresponding to operand #OpNo in tree
+/// N, which has NumResults results.
+TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
+                                                 TreePatternNode *N,
+                                                 unsigned NumResults) const {
+  assert(NumResults <= 1 &&
+         "We only work with nodes with zero or one result so far!");
+  
+  if (OpNo >= (NumResults + N->getNumChildren())) {
+    cerr << "Invalid operand number " << OpNo << " ";
+    N->dump();
+    cerr << '\n';
+    exit(1);
+  }
+
+  if (OpNo < NumResults)
+    return N;  // FIXME: need value #
+  else
+    return N->getChild(OpNo-NumResults);
+}
+
+/// ApplyTypeConstraint - Given a node in a pattern, apply this type
+/// constraint to the nodes operands.  This returns true if it makes a
+/// change, false otherwise.  If a type contradiction is found, throw an
+/// exception.
+bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
+                                           const SDNodeInfo &NodeInfo,
+                                           TreePattern &TP) const {
+  unsigned NumResults = NodeInfo.getNumResults();
+  assert(NumResults <= 1 &&
+         "We only work with nodes with zero or one result so far!");
+  
+  // Check that the number of operands is sane.  Negative operands -> varargs.
+  if (NodeInfo.getNumOperands() >= 0) {
+    if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
+      TP.error(N->getOperator()->getName() + " node requires exactly " +
+               itostr(NodeInfo.getNumOperands()) + " operands!");
+  }
+
+  const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
+  
+  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
+  
+  switch (ConstraintType) {
+  default: assert(0 && "Unknown constraint type!");
+  case SDTCisVT:
+    // Operand must be a particular type.
+    return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
+  case SDTCisPtrTy: {
+    // Operand must be same as target pointer type.
+    return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
+  }
+  case SDTCisInt: {
+    // If there is only one integer type supported, this must be it.
+    std::vector<MVT::ValueType> IntVTs =
+      FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
+
+    // If we found exactly one supported integer type, apply it.
+    if (IntVTs.size() == 1)
+      return NodeToApply->UpdateNodeType(IntVTs[0], TP);
+    return NodeToApply->UpdateNodeType(MVT::isInt, TP);
+  }
+  case SDTCisFP: {
+    // If there is only one FP type supported, this must be it.
+    std::vector<MVT::ValueType> FPVTs =
+      FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
+        
+    // If we found exactly one supported FP type, apply it.
+    if (FPVTs.size() == 1)
+      return NodeToApply->UpdateNodeType(FPVTs[0], TP);
+    return NodeToApply->UpdateNodeType(MVT::isFP, TP);
+  }
+  case SDTCisSameAs: {
+    TreePatternNode *OtherNode =
+      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
+    return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
+           OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
+  }
+  case SDTCisVTSmallerThanOp: {
+    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
+    // have an integer type that is smaller than the VT.
+    if (!NodeToApply->isLeaf() ||
+        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
+        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
+               ->isSubClassOf("ValueType"))
+      TP.error(N->getOperator()->getName() + " expects a VT operand!");
+    MVT::ValueType VT =
+     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
+    if (!MVT::isInteger(VT))
+      TP.error(N->getOperator()->getName() + " VT operand must be integer!");
+    
+    TreePatternNode *OtherNode =
+      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
+    
+    // It must be integer.
+    bool MadeChange = false;
+    MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
+    
+    // This code only handles nodes that have one type set.  Assert here so
+    // that we can change this if we ever need to deal with multiple value
+    // types at this point.
+    assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
+    if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
+      OtherNode->UpdateNodeType(MVT::Other, TP);  // Throw an error.
+    return false;
+  }
+  case SDTCisOpSmallerThanOp: {
+    TreePatternNode *BigOperand =
+      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
+
+    // Both operands must be integer or FP, but we don't care which.
+    bool MadeChange = false;
+    
+    // This code does not currently handle nodes which have multiple types,
+    // where some types are integer, and some are fp.  Assert that this is not
+    // the case.
+    assert(!(MVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
+             MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
+           !(MVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
+             MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
+           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
+    if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
+      MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
+    else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
+      MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
+    if (MVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
+      MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
+    else if (MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
+      MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
+
+    std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
+    
+    if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
+      VTs = FilterVTs(VTs, MVT::isInteger);
+    } else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
+      VTs = FilterVTs(VTs, MVT::isFloatingPoint);
+    } else {
+      VTs.clear();
+    }
+
+    switch (VTs.size()) {
+    default:         // Too many VT's to pick from.
+    case 0: break;   // No info yet.
+    case 1: 
+      // Only one VT of this flavor.  Cannot ever satisify the constraints.
+      return NodeToApply->UpdateNodeType(MVT::Other, TP);  // throw
+    case 2:
+      // If we have exactly two possible types, the little operand must be the
+      // small one, the big operand should be the big one.  Common with 
+      // float/double for example.
+      assert(VTs[0] < VTs[1] && "Should be sorted!");
+      MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
+      MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
+      break;
+    }    
+    return MadeChange;
+  }
+  case SDTCisIntVectorOfSameSize: {
+    TreePatternNode *OtherOperand =
+      getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
+                    N, NumResults);
+    if (OtherOperand->hasTypeSet()) {
+      if (!MVT::isVector(OtherOperand->getTypeNum(0)))
+        TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
+      MVT::ValueType IVT = OtherOperand->getTypeNum(0);
+      IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
+      return NodeToApply->UpdateNodeType(IVT, TP);
+    }
+    return false;
+  }
+  }  
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+// SDNodeInfo implementation
+//
+SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
+  EnumName    = R->getValueAsString("Opcode");
+  SDClassName = R->getValueAsString("SDClass");
+  Record *TypeProfile = R->getValueAsDef("TypeProfile");
+  NumResults = TypeProfile->getValueAsInt("NumResults");
+  NumOperands = TypeProfile->getValueAsInt("NumOperands");
+  
+  // Parse the properties.
+  Properties = 0;
+  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
+  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
+    if (PropList[i]->getName() == "SDNPCommutative") {
+      Properties |= 1 << SDNPCommutative;
+    } else if (PropList[i]->getName() == "SDNPAssociative") {
+      Properties |= 1 << SDNPAssociative;
+    } else if (PropList[i]->getName() == "SDNPHasChain") {
+      Properties |= 1 << SDNPHasChain;
+    } else if (PropList[i]->getName() == "SDNPOutFlag") {
+      Properties |= 1 << SDNPOutFlag;
+    } else if (PropList[i]->getName() == "SDNPInFlag") {
+      Properties |= 1 << SDNPInFlag;
+    } else if (PropList[i]->getName() == "SDNPOptInFlag") {
+      Properties |= 1 << SDNPOptInFlag;
+    } else {
+      cerr << "Unknown SD Node property '" << PropList[i]->getName()
+           << "' on node '" << R->getName() << "'!\n";
+      exit(1);
+    }
+  }
+  
+  
+  // Parse the type constraints.
+  std::vector<Record*> ConstraintList =
+    TypeProfile->getValueAsListOfDefs("Constraints");
+  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
+}
+
+//===----------------------------------------------------------------------===//
+// TreePatternNode implementation
+//
+
+TreePatternNode::~TreePatternNode() {
+#if 0 // FIXME: implement refcounted tree nodes!
+  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+    delete getChild(i);
+#endif
+}
+
+/// UpdateNodeType - Set the node type of N to VT if VT contains
+/// information.  If N already contains a conflicting type, then throw an
+/// exception.  This returns true if any information was updated.
+///
+bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
+                                     TreePattern &TP) {
+  assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
+  
+  if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) 
+    return false;
+  if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
+    setTypes(ExtVTs);
+    return true;
+  }
+
+  if (getExtTypeNum(0) == MVT::iPTR) {
+    if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
+      return false;
+    if (MVT::isExtIntegerInVTs(ExtVTs)) {
+      std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
+      if (FVTs.size()) {
+        setTypes(ExtVTs);
+        return true;
+      }
+    }
+  }
+  
+  if (ExtVTs[0] == MVT::isInt && MVT::isExtIntegerInVTs(getExtTypes())) {
+    assert(hasTypeSet() && "should be handled above!");
+    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
+    if (getExtTypes() == FVTs)
+      return false;
+    setTypes(FVTs);
+    return true;
+  }
+  if (ExtVTs[0] == MVT::iPTR && MVT::isExtIntegerInVTs(getExtTypes())) {
+    //assert(hasTypeSet() && "should be handled above!");
+    std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
+    if (getExtTypes() == FVTs)
+      return false;
+    if (FVTs.size()) {
+      setTypes(FVTs);
+      return true;
+    }
+  }      
+  if (ExtVTs[0] == MVT::isFP  && MVT::isExtFloatingPointInVTs(getExtTypes())) {
+    assert(hasTypeSet() && "should be handled above!");
+    std::vector<unsigned char> FVTs =
+      FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
+    if (getExtTypes() == FVTs)
+      return false;
+    setTypes(FVTs);
+    return true;
+  }
+      
+  // If we know this is an int or fp type, and we are told it is a specific one,
+  // take the advice.
+  //
+  // Similarly, we should probably set the type here to the intersection of
+  // {isInt|isFP} and ExtVTs
+  if ((getExtTypeNum(0) == MVT::isInt && MVT::isExtIntegerInVTs(ExtVTs)) ||
+      (getExtTypeNum(0) == MVT::isFP  && MVT::isExtFloatingPointInVTs(ExtVTs))){
+    setTypes(ExtVTs);
+    return true;
+  }
+  if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
+    setTypes(ExtVTs);
+    return true;
+  }
+
+  if (isLeaf()) {
+    dump();
+    cerr << " ";
+    TP.error("Type inference contradiction found in node!");
+  } else {
+    TP.error("Type inference contradiction found in node " + 
+             getOperator()->getName() + "!");
+  }
+  return true; // unreachable
+}
+
+
+void TreePatternNode::print(std::ostream &OS) const {
+  if (isLeaf()) {
+    OS << *getLeafValue();
+  } else {
+    OS << "(" << getOperator()->getName();
+  }
+  
+  // FIXME: At some point we should handle printing all the value types for 
+  // nodes that are multiply typed.
+  switch (getExtTypeNum(0)) {
+  case MVT::Other: OS << ":Other"; break;
+  case MVT::isInt: OS << ":isInt"; break;
+  case MVT::isFP : OS << ":isFP"; break;
+  case MVT::isUnknown: ; /*OS << ":?";*/ break;
+  case MVT::iPTR:  OS << ":iPTR"; break;
+  default: {
+    std::string VTName = llvm::getName(getTypeNum(0));
+    // Strip off MVT:: prefix if present.
+    if (VTName.substr(0,5) == "MVT::")
+      VTName = VTName.substr(5);
+    OS << ":" << VTName;
+    break;
+  }
+  }
+
+  if (!isLeaf()) {
+    if (getNumChildren() != 0) {
+      OS << " ";
+      getChild(0)->print(OS);
+      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
+        OS << ", ";
+        getChild(i)->print(OS);
+      }
+    }
+    OS << ")";
+  }
+  
+  if (!PredicateFn.empty())
+    OS << "<<P:" << PredicateFn << ">>";
+  if (TransformFn)
+    OS << "<<X:" << TransformFn->getName() << ">>";
+  if (!getName().empty())
+    OS << ":$" << getName();
+
+}
+void TreePatternNode::dump() const {
+  print(*cerr.stream());
+}
+
+/// isIsomorphicTo - Return true if this node is recursively isomorphic to
+/// the specified node.  For this comparison, all of the state of the node
+/// is considered, except for the assigned name.  Nodes with differing names
+/// that are otherwise identical are considered isomorphic.
+bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
+  if (N == this) return true;
+  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
+      getPredicateFn() != N->getPredicateFn() ||
+      getTransformFn() != N->getTransformFn())
+    return false;
+
+  if (isLeaf()) {
+    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
+      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
+        return DI->getDef() == NDI->getDef();
+    return getLeafValue() == N->getLeafValue();
+  }
+  
+  if (N->getOperator() != getOperator() ||
+      N->getNumChildren() != getNumChildren()) return false;
+  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+    if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
+      return false;
+  return true;
+}
+
+/// clone - Make a copy of this tree and all of its children.
+///
+TreePatternNode *TreePatternNode::clone() const {
+  TreePatternNode *New;
+  if (isLeaf()) {
+    New = new TreePatternNode(getLeafValue());
+  } else {
+    std::vector<TreePatternNode*> CChildren;
+    CChildren.reserve(Children.size());
+    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+      CChildren.push_back(getChild(i)->clone());
+    New = new TreePatternNode(getOperator(), CChildren);
+  }
+  New->setName(getName());
+  New->setTypes(getExtTypes());
+  New->setPredicateFn(getPredicateFn());
+  New->setTransformFn(getTransformFn());
+  return New;
+}
+
+/// SubstituteFormalArguments - Replace the formal arguments in this tree
+/// with actual values specified by ArgMap.
+void TreePatternNode::
+SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
+  if (isLeaf()) return;
+  
+  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
+    TreePatternNode *Child = getChild(i);
+    if (Child->isLeaf()) {
+      Init *Val = Child->getLeafValue();
+      if (dynamic_cast<DefInit*>(Val) &&
+          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
+        // We found a use of a formal argument, replace it with its value.
+        Child = ArgMap[Child->getName()];
+        assert(Child && "Couldn't find formal argument!");
+        setChild(i, Child);
+      }
+    } else {
+      getChild(i)->SubstituteFormalArguments(ArgMap);
+    }
+  }
+}
+
+
+/// InlinePatternFragments - If this pattern refers to any pattern
+/// fragments, inline them into place, giving us a pattern without any
+/// PatFrag references.
+TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
+  if (isLeaf()) return this;  // nothing to do.
+  Record *Op = getOperator();
+  
+  if (!Op->isSubClassOf("PatFrag")) {
+    // Just recursively inline children nodes.
+    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+      setChild(i, getChild(i)->InlinePatternFragments(TP));
+    return this;
+  }
+
+  // Otherwise, we found a reference to a fragment.  First, look up its
+  // TreePattern record.
+  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
+  
+  // Verify that we are passing the right number of operands.
+  if (Frag->getNumArgs() != Children.size())
+    TP.error("'" + Op->getName() + "' fragment requires " +
+             utostr(Frag->getNumArgs()) + " operands!");
+
+  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
+
+  // Resolve formal arguments to their actual value.
+  if (Frag->getNumArgs()) {
+    // Compute the map of formal to actual arguments.
+    std::map<std::string, TreePatternNode*> ArgMap;
+    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
+      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
+  
+    FragTree->SubstituteFormalArguments(ArgMap);
+  }
+  
+  FragTree->setName(getName());
+  FragTree->UpdateNodeType(getExtTypes(), TP);
+  
+  // Get a new copy of this fragment to stitch into here.
+  //delete this;    // FIXME: implement refcounting!
+  return FragTree;
+}
+
+/// getImplicitType - Check to see if the specified record has an implicit
+/// type which should be applied to it.  This infer the type of register
+/// references from the register file information, for example.
+///
+static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
+                                      TreePattern &TP) {
+  // Some common return values
+  std::vector<unsigned char> Unknown(1, MVT::isUnknown);
+  std::vector<unsigned char> Other(1, MVT::Other);
+
+  // Check to see if this is a register or a register class...
+  if (R->isSubClassOf("RegisterClass")) {
+    if (NotRegisters) 
+      return Unknown;
+    const CodeGenRegisterClass &RC = 
+      TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
+    return ConvertVTs(RC.getValueTypes());
+  } else if (R->isSubClassOf("PatFrag")) {
+    // Pattern fragment types will be resolved when they are inlined.
+    return Unknown;
+  } else if (R->isSubClassOf("Register")) {
+    if (NotRegisters) 
+      return Unknown;
+    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+    return T.getRegisterVTs(R);
+  } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
+    // Using a VTSDNode or CondCodeSDNode.
+    return Other;
+  } else if (R->isSubClassOf("ComplexPattern")) {
+    if (NotRegisters) 
+      return Unknown;
+    std::vector<unsigned char>
+    ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
+    return ComplexPat;
+  } else if (R->getName() == "ptr_rc") {
+    Other[0] = MVT::iPTR;
+    return Other;
+  } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
+             R->getName() == "zero_reg") {
+    // Placeholder.
+    return Unknown;
+  }
+  
+  TP.error("Unknown node flavor used in pattern: " + R->getName());
+  return Other;
+}
+
+/// ApplyTypeConstraints - Apply all of the type constraints relevent to
+/// this node and its children in the tree.  This returns true if it makes a
+/// change, false otherwise.  If a type contradiction is found, throw an
+/// exception.
+bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
+  CodegenDAGPatterns &CDP = TP.getDAGPatterns();
+  if (isLeaf()) {
+    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
+      // If it's a regclass or something else known, include the type.
+      return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
+    } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
+      // Int inits are always integers. :)
+      bool MadeChange = UpdateNodeType(MVT::isInt, TP);
+      
+      if (hasTypeSet()) {
+        // At some point, it may make sense for this tree pattern to have
+        // multiple types.  Assert here that it does not, so we revisit this
+        // code when appropriate.
+        assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
+        MVT::ValueType VT = getTypeNum(0);
+        for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
+          assert(getTypeNum(i) == VT && "TreePattern has too many types!");
+        
+        VT = getTypeNum(0);
+        if (VT != MVT::iPTR) {
+          unsigned Size = MVT::getSizeInBits(VT);
+          // Make sure that the value is representable for this type.
+          if (Size < 32) {
+            int Val = (II->getValue() << (32-Size)) >> (32-Size);
+            if (Val != II->getValue())
+              TP.error("Sign-extended integer value '" + itostr(II->getValue())+
+                       "' is out of range for type '" + 
+                       getEnumName(getTypeNum(0)) + "'!");
+          }
+        }
+      }
+      
+      return MadeChange;
+    }
+    return false;
+  }
+  
+  // special handling for set, which isn't really an SDNode.
+  if (getOperator()->getName() == "set") {
+    assert (getNumChildren() >= 2 && "Missing RHS of a set?");
+    unsigned NC = getNumChildren();
+    bool MadeChange = false;
+    for (unsigned i = 0; i < NC-1; ++i) {
+      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+      MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
+    
+      // Types of operands must match.
+      MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
+                                                TP);
+      MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
+                                                   TP);
+      MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+    }
+    return MadeChange;
+  } else if (getOperator()->getName() == "implicit" ||
+             getOperator()->getName() == "parallel") {
+    bool MadeChange = false;
+    for (unsigned i = 0; i < getNumChildren(); ++i)
+      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+    MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+    return MadeChange;
+  } else if (getOperator() == CDP.get_intrinsic_void_sdnode() ||
+             getOperator() == CDP.get_intrinsic_w_chain_sdnode() ||
+             getOperator() == CDP.get_intrinsic_wo_chain_sdnode()) {
+    unsigned IID = 
+    dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
+    const CodeGenIntrinsic &Int = CDP.getIntrinsicInfo(IID);
+    bool MadeChange = false;
+    
+    // Apply the result type to the node.
+    MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
+    
+    if (getNumChildren() != Int.ArgVTs.size())
+      TP.error("Intrinsic '" + Int.Name + "' expects " +
+               utostr(Int.ArgVTs.size()-1) + " operands, not " +
+               utostr(getNumChildren()-1) + " operands!");
+
+    // Apply type info to the intrinsic ID.
+    MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
+    
+    for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
+      MVT::ValueType OpVT = Int.ArgVTs[i];
+      MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
+      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+    }
+    return MadeChange;
+  } else if (getOperator()->isSubClassOf("SDNode")) {
+    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
+    
+    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
+    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+    // Branch, etc. do not produce results and top-level forms in instr pattern
+    // must have void types.
+    if (NI.getNumResults() == 0)
+      MadeChange |= UpdateNodeType(MVT::isVoid, TP);
+    
+    // If this is a vector_shuffle operation, apply types to the build_vector
+    // operation.  The types of the integers don't matter, but this ensures they
+    // won't get checked.
+    if (getOperator()->getName() == "vector_shuffle" &&
+        getChild(2)->getOperator()->getName() == "build_vector") {
+      TreePatternNode *BV = getChild(2);
+      const std::vector<MVT::ValueType> &LegalVTs
+        = CDP.getTargetInfo().getLegalValueTypes();
+      MVT::ValueType LegalIntVT = MVT::Other;
+      for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
+        if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
+          LegalIntVT = LegalVTs[i];
+          break;
+        }
+      assert(LegalIntVT != MVT::Other && "No legal integer VT?");
+            
+      for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
+        MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
+    }
+    return MadeChange;  
+  } else if (getOperator()->isSubClassOf("Instruction")) {
+    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
+    bool MadeChange = false;
+    unsigned NumResults = Inst.getNumResults();
+    
+    assert(NumResults <= 1 &&
+           "Only supports zero or one result instrs!");
+
+    CodeGenInstruction &InstInfo =
+      CDP.getTargetInfo().getInstruction(getOperator()->getName());
+    // Apply the result type to the node
+    if (NumResults == 0 || InstInfo.NumDefs == 0) {
+      MadeChange = UpdateNodeType(MVT::isVoid, TP);
+    } else {
+      Record *ResultNode = Inst.getResult(0);
+      
+      if (ResultNode->getName() == "ptr_rc") {
+        std::vector<unsigned char> VT;
+        VT.push_back(MVT::iPTR);
+        MadeChange = UpdateNodeType(VT, TP);
+      } else {
+        assert(ResultNode->isSubClassOf("RegisterClass") &&
+               "Operands should be register classes!");
+
+        const CodeGenRegisterClass &RC = 
+          CDP.getTargetInfo().getRegisterClass(ResultNode);
+        MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
+      }
+    }
+
+    unsigned ChildNo = 0;
+    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
+      Record *OperandNode = Inst.getOperand(i);
+      
+      // If the instruction expects a predicate or optional def operand, we
+      // codegen this by setting the operand to it's default value if it has a
+      // non-empty DefaultOps field.
+      if ((OperandNode->isSubClassOf("PredicateOperand") ||
+           OperandNode->isSubClassOf("OptionalDefOperand")) &&
+          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
+        continue;
+       
+      // Verify that we didn't run out of provided operands.
+      if (ChildNo >= getNumChildren())
+        TP.error("Instruction '" + getOperator()->getName() +
+                 "' expects more operands than were provided.");
+      
+      MVT::ValueType VT;
+      TreePatternNode *Child = getChild(ChildNo++);
+      if (OperandNode->isSubClassOf("RegisterClass")) {
+        const CodeGenRegisterClass &RC = 
+          CDP.getTargetInfo().getRegisterClass(OperandNode);
+        MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
+      } else if (OperandNode->isSubClassOf("Operand")) {
+        VT = getValueType(OperandNode->getValueAsDef("Type"));
+        MadeChange |= Child->UpdateNodeType(VT, TP);
+      } else if (OperandNode->getName() == "ptr_rc") {
+        MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
+      } else {
+        assert(0 && "Unknown operand type!");
+        abort();
+      }
+      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
+    }
+    
+    if (ChildNo != getNumChildren())
+      TP.error("Instruction '" + getOperator()->getName() +
+               "' was provided too many operands!");
+    
+    return MadeChange;
+  } else {
+    assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
+    
+    // Node transforms always take one operand.
+    if (getNumChildren() != 1)
+      TP.error("Node transform '" + getOperator()->getName() +
+               "' requires one operand!");
+
+    // If either the output or input of the xform does not have exact
+    // type info. We assume they must be the same. Otherwise, it is perfectly
+    // legal to transform from one type to a completely different type.
+    if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
+      bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
+      MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
+      return MadeChange;
+    }
+    return false;
+  }
+}
+
+/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
+/// RHS of a commutative operation, not the on LHS.
+static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
+  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
+    return true;
+  if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
+    return true;
+  return false;
+}
+
+
+/// canPatternMatch - If it is impossible for this pattern to match on this
+/// target, fill in Reason and return false.  Otherwise, return true.  This is
+/// used as a santity check for .td files (to prevent people from writing stuff
+/// that can never possibly work), and to prevent the pattern permuter from
+/// generating stuff that is useless.
+bool TreePatternNode::canPatternMatch(std::string &Reason, 
+                                      CodegenDAGPatterns &CDP){
+  if (isLeaf()) return true;
+
+  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+    if (!getChild(i)->canPatternMatch(Reason, CDP))
+      return false;
+
+  // If this is an intrinsic, handle cases that would make it not match.  For
+  // example, if an operand is required to be an immediate.
+  if (getOperator()->isSubClassOf("Intrinsic")) {
+    // TODO:
+    return true;
+  }
+  
+  // If this node is a commutative operator, check that the LHS isn't an
+  // immediate.
+  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
+  if (NodeInfo.hasProperty(SDNPCommutative)) {
+    // Scan all of the operands of the node and make sure that only the last one
+    // is a constant node, unless the RHS also is.
+    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
+      for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
+        if (OnlyOnRHSOfCommutative(getChild(i))) {
+          Reason="Immediate value must be on the RHS of commutative operators!";
+          return false;
+        }
+    }
+  }
+  
+  return true;
+}
+
+//===----------------------------------------------------------------------===//
+// TreePattern implementation
+//
+
+TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
+                         CodegenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+   isInputPattern = isInput;
+   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
+     Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
+}
+
+TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
+                         CodegenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+  isInputPattern = isInput;
+  Trees.push_back(ParseTreePattern(Pat));
+}
+
+TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
+                         CodegenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
+  isInputPattern = isInput;
+  Trees.push_back(Pat);
+}
+
+
+
+void TreePattern::error(const std::string &Msg) const {
+  dump();
+  throw "In " + TheRecord->getName() + ": " + Msg;
+}
+
+TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
+  DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
+  if (!OpDef) error("Pattern has unexpected operator type!");
+  Record *Operator = OpDef->getDef();
+  
+  if (Operator->isSubClassOf("ValueType")) {
+    // If the operator is a ValueType, then this must be "type cast" of a leaf
+    // node.
+    if (Dag->getNumArgs() != 1)
+      error("Type cast only takes one operand!");
+    
+    Init *Arg = Dag->getArg(0);
+    TreePatternNode *New;
+    if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
+      Record *R = DI->getDef();
+      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
+        Dag->setArg(0, new DagInit(DI,
+                                std::vector<std::pair<Init*, std::string> >()));
+        return ParseTreePattern(Dag);
+      }
+      New = new TreePatternNode(DI);
+    } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
+      New = ParseTreePattern(DI);
+    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
+      New = new TreePatternNode(II);
+      if (!Dag->getArgName(0).empty())
+        error("Constant int argument should not have a name!");
+    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
+      // Turn this into an IntInit.
+      Init *II = BI->convertInitializerTo(new IntRecTy());
+      if (II == 0 || !dynamic_cast<IntInit*>(II))
+        error("Bits value must be constants!");
+      
+      New = new TreePatternNode(dynamic_cast<IntInit*>(II));
+      if (!Dag->getArgName(0).empty())
+        error("Constant int argument should not have a name!");
+    } else {
+      Arg->dump();
+      error("Unknown leaf value for tree pattern!");
+      return 0;
+    }
+    
+    // Apply the type cast.
+    New->UpdateNodeType(getValueType(Operator), *this);
+    New->setName(Dag->getArgName(0));
+    return New;
+  }
+  
+  // Verify that this is something that makes sense for an operator.
+  if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
+      !Operator->isSubClassOf("Instruction") && 
+      !Operator->isSubClassOf("SDNodeXForm") &&
+      !Operator->isSubClassOf("Intrinsic") &&
+      Operator->getName() != "set" &&
+      Operator->getName() != "implicit" &&
+      Operator->getName() != "parallel")
+    error("Unrecognized node '" + Operator->getName() + "'!");
+  
+  //  Check to see if this is something that is illegal in an input pattern.
+  if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
+                         Operator->isSubClassOf("SDNodeXForm")))
+    error("Cannot use '" + Operator->getName() + "' in an input pattern!");
+  
+  std::vector<TreePatternNode*> Children;
+  
+  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
+    Init *Arg = Dag->getArg(i);
+    if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
+      Children.push_back(ParseTreePattern(DI));
+      if (Children.back()->getName().empty())
+        Children.back()->setName(Dag->getArgName(i));
+    } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
+      Record *R = DefI->getDef();
+      // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
+      // TreePatternNode if its own.
+      if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
+        Dag->setArg(i, new DagInit(DefI,
+                              std::vector<std::pair<Init*, std::string> >()));
+        --i;  // Revisit this node...
+      } else {
+        TreePatternNode *Node = new TreePatternNode(DefI);
+        Node->setName(Dag->getArgName(i));
+        Children.push_back(Node);
+        
+        // Input argument?
+        if (R->getName() == "node") {
+          if (Dag->getArgName(i).empty())
+            error("'node' argument requires a name to match with operand list");
+          Args.push_back(Dag->getArgName(i));
+        }
+      }
+    } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
+      TreePatternNode *Node = new TreePatternNode(II);
+      if (!Dag->getArgName(i).empty())
+        error("Constant int argument should not have a name!");
+      Children.push_back(Node);
+    } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
+      // Turn this into an IntInit.
+      Init *II = BI->convertInitializerTo(new IntRecTy());
+      if (II == 0 || !dynamic_cast<IntInit*>(II))
+        error("Bits value must be constants!");
+      
+      TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
+      if (!Dag->getArgName(i).empty())
+        error("Constant int argument should not have a name!");
+      Children.push_back(Node);
+    } else {
+      cerr << '"';
+      Arg->dump();
+      cerr << "\": ";
+      error("Unknown leaf value for tree pattern!");
+    }
+  }
+  
+  // If the operator is an intrinsic, then this is just syntactic sugar for for
+  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and 
+  // convert the intrinsic name to a number.
+  if (Operator->isSubClassOf("Intrinsic")) {
+    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
+    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
+
+    // If this intrinsic returns void, it must have side-effects and thus a
+    // chain.
+    if (Int.ArgVTs[0] == MVT::isVoid) {
+      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
+    } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
+      // Has side-effects, requires chain.
+      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
+    } else {
+      // Otherwise, no chain.
+      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
+    }
+    
+    TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
+    Children.insert(Children.begin(), IIDNode);
+  }
+  
+  return new TreePatternNode(Operator, Children);
+}
+
+/// InferAllTypes - Infer/propagate as many types throughout the expression
+/// patterns as possible.  Return true if all types are infered, false
+/// otherwise.  Throw an exception if a type contradiction is found.
+bool TreePattern::InferAllTypes() {
+  bool MadeChange = true;
+  while (MadeChange) {
+    MadeChange = false;
+    for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
+  }
+  
+  bool HasUnresolvedTypes = false;
+  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
+    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
+  return !HasUnresolvedTypes;
+}
+
+void TreePattern::print(std::ostream &OS) const {
+  OS << getRecord()->getName();
+  if (!Args.empty()) {
+    OS << "(" << Args[0];
+    for (unsigned i = 1, e = Args.size(); i != e; ++i)
+      OS << ", " << Args[i];
+    OS << ")";
+  }
+  OS << ": ";
+  
+  if (Trees.size() > 1)
+    OS << "[\n";
+  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
+    OS << "\t";
+    Trees[i]->print(OS);
+    OS << "\n";
+  }
+
+  if (Trees.size() > 1)
+    OS << "]\n";
+}
+
+void TreePattern::dump() const { print(*cerr.stream()); }
+
+//===----------------------------------------------------------------------===//
+// CodegenDAGPatterns implementation
+//
+
+// FIXME: REMOVE OSTREAM ARGUMENT
+CodegenDAGPatterns::CodegenDAGPatterns(RecordKeeper &R, std::ostream &OS)
+  : Records(R) {
+    
+  Intrinsics = LoadIntrinsics(Records);
+  ParseNodeInfo();
+  ParseNodeTransforms(OS);
+  ParseComplexPatterns();
+  ParsePatternFragments(OS);
+  ParseDefaultOperands();
+  ParseInstructions();
+  ParsePatterns();
+  
+  // Generate variants.  For example, commutative patterns can match
+  // multiple ways.  Add them to PatternsToMatch as well.
+  GenerateVariants();
+}
+
+CodegenDAGPatterns::~CodegenDAGPatterns() {
+  for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
+       E = PatternFragments.end(); I != E; ++I)
+    delete I->second;
+}
+
+
+Record *CodegenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
+  Record *N = Records.getDef(Name);
+  if (!N || !N->isSubClassOf("SDNode")) {
+    cerr << "Error getting SDNode '" << Name << "'!\n";
+    exit(1);
+  }
+  return N;
+}
+
+// Parse all of the SDNode definitions for the target, populating SDNodes.
+void CodegenDAGPatterns::ParseNodeInfo() {
+  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
+  while (!Nodes.empty()) {
+    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
+    Nodes.pop_back();
+  }
+
+  // Get the buildin intrinsic nodes.
+  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
+  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
+  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
+}
+
+/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
+/// map, and emit them to the file as functions.
+void CodegenDAGPatterns::ParseNodeTransforms(std::ostream &OS) {
+  OS << "\n// Node transformations.\n";
+  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
+  while (!Xforms.empty()) {
+    Record *XFormNode = Xforms.back();
+    Record *SDNode = XFormNode->getValueAsDef("Opcode");
+    std::string Code = XFormNode->getValueAsCode("XFormFunction");
+    SDNodeXForms.insert(std::make_pair(XFormNode,
+                                       std::make_pair(SDNode, Code)));
+
+    if (!Code.empty()) {
+      std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
+      const char *C2 = ClassName == "SDNode" ? "N" : "inN";
+
+      OS << "inline SDOperand Transform_" << XFormNode->getName()
+         << "(SDNode *" << C2 << ") {\n";
+      if (ClassName != "SDNode")
+        OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
+      OS << Code << "\n}\n";
+    }
+
+    Xforms.pop_back();
+  }
+}
+
+void CodegenDAGPatterns::ParseComplexPatterns() {
+  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
+  while (!AMs.empty()) {
+    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
+    AMs.pop_back();
+  }
+}
+
+
+/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
+/// file, building up the PatternFragments map.  After we've collected them all,
+/// inline fragments together as necessary, so that there are no references left
+/// inside a pattern fragment to a pattern fragment.
+///
+/// This also emits all of the predicate functions to the output file.
+///
+void CodegenDAGPatterns::ParsePatternFragments(std::ostream &OS) {
+  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
+  
+  // First step, parse all of the fragments and emit predicate functions.
+  OS << "\n// Predicate functions.\n";
+  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
+    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
+    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
+    PatternFragments[Fragments[i]] = P;
+    
+    // Validate the argument list, converting it to map, to discard duplicates.
+    std::vector<std::string> &Args = P->getArgList();
+    std::set<std::string> OperandsMap(Args.begin(), Args.end());
+    
+    if (OperandsMap.count(""))
+      P->error("Cannot have unnamed 'node' values in pattern fragment!");
+    
+    // Parse the operands list.
+    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
+    DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
+    // Special cases: ops == outs == ins. Different names are used to
+    // improve readibility.
+    if (!OpsOp ||
+        (OpsOp->getDef()->getName() != "ops" &&
+         OpsOp->getDef()->getName() != "outs" &&
+         OpsOp->getDef()->getName() != "ins"))
+      P->error("Operands list should start with '(ops ... '!");
+    
+    // Copy over the arguments.       
+    Args.clear();
+    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
+      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
+          static_cast<DefInit*>(OpsList->getArg(j))->
+          getDef()->getName() != "node")
+        P->error("Operands list should all be 'node' values.");
+      if (OpsList->getArgName(j).empty())
+        P->error("Operands list should have names for each operand!");
+      if (!OperandsMap.count(OpsList->getArgName(j)))
+        P->error("'" + OpsList->getArgName(j) +
+                 "' does not occur in pattern or was multiply specified!");
+      OperandsMap.erase(OpsList->getArgName(j));
+      Args.push_back(OpsList->getArgName(j));
+    }
+    
+    if (!OperandsMap.empty())
+      P->error("Operands list does not contain an entry for operand '" +
+               *OperandsMap.begin() + "'!");
+
+    // If there is a code init for this fragment, emit the predicate code and
+    // keep track of the fact that this fragment uses it.
+    std::string Code = Fragments[i]->getValueAsCode("Predicate");
+    if (!Code.empty()) {
+      if (P->getOnlyTree()->isLeaf())
+        OS << "inline bool Predicate_" << Fragments[i]->getName()
+           << "(SDNode *N) {\n";
+      else {
+        std::string ClassName =
+          getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
+        const char *C2 = ClassName == "SDNode" ? "N" : "inN";
+      
+        OS << "inline bool Predicate_" << Fragments[i]->getName()
+           << "(SDNode *" << C2 << ") {\n";
+        if (ClassName != "SDNode")
+          OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
+      }
+      OS << Code << "\n}\n";
+      P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
+    }
+    
+    // If there is a node transformation corresponding to this, keep track of
+    // it.
+    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
+    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
+      P->getOnlyTree()->setTransformFn(Transform);
+  }
+  
+  OS << "\n\n";
+
+  // Now that we've parsed all of the tree fragments, do a closure on them so
+  // that there are not references to PatFrags left inside of them.
+  for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
+       E = PatternFragments.end(); I != E; ++I) {
+    TreePattern *ThePat = I->second;
+    ThePat->InlinePatternFragments();
+        
+    // Infer as many types as possible.  Don't worry about it if we don't infer
+    // all of them, some may depend on the inputs of the pattern.
+    try {
+      ThePat->InferAllTypes();
+    } catch (...) {
+      // If this pattern fragment is not supported by this target (no types can
+      // satisfy its constraints), just ignore it.  If the bogus pattern is
+      // actually used by instructions, the type consistency error will be
+      // reported there.
+    }
+    
+    // If debugging, print out the pattern fragment result.
+    DEBUG(ThePat->dump());
+  }
+}
+
+void CodegenDAGPatterns::ParseDefaultOperands() {
+  std::vector<Record*> DefaultOps[2];
+  DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
+  DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
+
+  // Find some SDNode.
+  assert(!SDNodes.empty() && "No SDNodes parsed?");
+  Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
+  
+  for (unsigned iter = 0; iter != 2; ++iter) {
+    for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
+      DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
+    
+      // Clone the DefaultInfo dag node, changing the operator from 'ops' to
+      // SomeSDnode so that we can parse this.
+      std::vector<std::pair<Init*, std::string> > Ops;
+      for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
+        Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
+                                     DefaultInfo->getArgName(op)));
+      DagInit *DI = new DagInit(SomeSDNode, Ops);
+    
+      // Create a TreePattern to parse this.
+      TreePattern P(DefaultOps[iter][i], DI, false, *this);
+      assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
+
+      // Copy the operands over into a DAGDefaultOperand.
+      DAGDefaultOperand DefaultOpInfo;
+    
+      TreePatternNode *T = P.getTree(0);
+      for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
+        TreePatternNode *TPN = T->getChild(op);
+        while (TPN->ApplyTypeConstraints(P, false))
+          /* Resolve all types */;
+      
+        if (TPN->ContainsUnresolvedType())
+          if (iter == 0)
+            throw "Value #" + utostr(i) + " of PredicateOperand '" +
+              DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
+          else
+            throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
+              DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
+      
+        DefaultOpInfo.DefaultOps.push_back(TPN);
+      }
+
+      // Insert it into the DefaultOperands map so we can find it later.
+      DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
+    }
+  }
+}
+
+/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
+/// instruction input.  Return true if this is a real use.
+static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
+                      std::map<std::string, TreePatternNode*> &InstInputs,
+                      std::vector<Record*> &InstImpInputs) {
+  // No name -> not interesting.
+  if (Pat->getName().empty()) {
+    if (Pat->isLeaf()) {
+      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
+      if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
+        I->error("Input " + DI->getDef()->getName() + " must be named!");
+      else if (DI && DI->getDef()->isSubClassOf("Register")) 
+        InstImpInputs.push_back(DI->getDef());
+        ;
+    }
+    return false;
+  }
+
+  Record *Rec;
+  if (Pat->isLeaf()) {
+    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
+    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
+    Rec = DI->getDef();
+  } else {
+    assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
+    Rec = Pat->getOperator();
+  }
+
+  // SRCVALUE nodes are ignored.
+  if (Rec->getName() == "srcvalue")
+    return false;
+
+  TreePatternNode *&Slot = InstInputs[Pat->getName()];
+  if (!Slot) {
+    Slot = Pat;
+  } else {
+    Record *SlotRec;
+    if (Slot->isLeaf()) {
+      SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
+    } else {
+      assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
+      SlotRec = Slot->getOperator();
+    }
+    
+    // Ensure that the inputs agree if we've already seen this input.
+    if (Rec != SlotRec)
+      I->error("All $" + Pat->getName() + " inputs must agree with each other");
+    if (Slot->getExtTypes() != Pat->getExtTypes())
+      I->error("All $" + Pat->getName() + " inputs must agree with each other");
+  }
+  return true;
+}
+
+/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
+/// part of "I", the instruction), computing the set of inputs and outputs of
+/// the pattern.  Report errors if we see anything naughty.
+void CodegenDAGPatterns::
+FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
+                            std::map<std::string, TreePatternNode*> &InstInputs,
+                            std::map<std::string, TreePatternNode*>&InstResults,
+                            std::vector<Record*> &InstImpInputs,
+                            std::vector<Record*> &InstImpResults) {
+  if (Pat->isLeaf()) {
+    bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
+    if (!isUse && Pat->getTransformFn())
+      I->error("Cannot specify a transform function for a non-input value!");
+    return;
+  } else if (Pat->getOperator()->getName() == "implicit") {
+    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
+      TreePatternNode *Dest = Pat->getChild(i);
+      if (!Dest->isLeaf())
+        I->error("implicitly defined value should be a register!");
+    
+      DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
+      if (!Val || !Val->getDef()->isSubClassOf("Register"))
+        I->error("implicitly defined value should be a register!");
+      InstImpResults.push_back(Val->getDef());
+    }
+    return;
+  } else if (Pat->getOperator()->getName() != "set") {
+    // If this is not a set, verify that the children nodes are not void typed,
+    // and recurse.
+    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
+      if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
+        I->error("Cannot have void nodes inside of patterns!");
+      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
+                                  InstImpInputs, InstImpResults);
+    }
+    
+    // If this is a non-leaf node with no children, treat it basically as if
+    // it were a leaf.  This handles nodes like (imm).
+    bool isUse = false;
+    if (Pat->getNumChildren() == 0)
+      isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
+    
+    if (!isUse && Pat->getTransformFn())
+      I->error("Cannot specify a transform function for a non-input value!");
+    return;
+  } 
+  
+  // Otherwise, this is a set, validate and collect instruction results.
+  if (Pat->getNumChildren() == 0)
+    I->error("set requires operands!");
+  
+  if (Pat->getTransformFn())
+    I->error("Cannot specify a transform function on a set node!");
+  
+  // Check the set destinations.
+  unsigned NumDests = Pat->getNumChildren()-1;
+  for (unsigned i = 0; i != NumDests; ++i) {
+    TreePatternNode *Dest = Pat->getChild(i);
+    if (!Dest->isLeaf())
+      I->error("set destination should be a register!");
+    
+    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
+    if (!Val)
+      I->error("set destination should be a register!");
+
+    if (Val->getDef()->isSubClassOf("RegisterClass") ||
+        Val->getDef()->getName() == "ptr_rc") {
+      if (Dest->getName().empty())
+        I->error("set destination must have a name!");
+      if (InstResults.count(Dest->getName()))
+        I->error("cannot set '" + Dest->getName() +"' multiple times");
+      InstResults[Dest->getName()] = Dest;
+    } else if (Val->getDef()->isSubClassOf("Register")) {
+      InstImpResults.push_back(Val->getDef());
+    } else {
+      I->error("set destination should be a register!");
+    }
+  }
+    
+  // Verify and collect info from the computation.
+  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
+                              InstInputs, InstResults,
+                              InstImpInputs, InstImpResults);
+}
+
+/// ParseInstructions - Parse all of the instructions, inlining and resolving
+/// any fragments involved.  This populates the Instructions list with fully
+/// resolved instructions.
+void CodegenDAGPatterns::ParseInstructions() {
+  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
+  
+  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
+    ListInit *LI = 0;
+    
+    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
+      LI = Instrs[i]->getValueAsListInit("Pattern");
+    
+    // If there is no pattern, only collect minimal information about the
+    // instruction for its operand list.  We have to assume that there is one
+    // result, as we have no detailed info.
+    if (!LI || LI->getSize() == 0) {
+      std::vector<Record*> Results;
+      std::vector<Record*> Operands;
+      
+      CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
+
+      if (InstInfo.OperandList.size() != 0) {
+        if (InstInfo.NumDefs == 0) {
+          // These produce no results
+          for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
+            Operands.push_back(InstInfo.OperandList[j].Rec);
+        } else {
+          // Assume the first operand is the result.
+          Results.push_back(InstInfo.OperandList[0].Rec);
+      
+          // The rest are inputs.
+          for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
+            Operands.push_back(InstInfo.OperandList[j].Rec);
+        }
+      }
+      
+      // Create and insert the instruction.
+      std::vector<Record*> ImpResults;
+      std::vector<Record*> ImpOperands;
+      Instructions.insert(std::make_pair(Instrs[i], 
+                          DAGInstruction(0, Results, Operands, ImpResults,
+                                         ImpOperands)));
+      continue;  // no pattern.
+    }
+    
+    // Parse the instruction.
+    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
+    // Inline pattern fragments into it.
+    I->InlinePatternFragments();
+    
+    // Infer as many types as possible.  If we cannot infer all of them, we can
+    // never do anything with this instruction pattern: report it to the user.
+    if (!I->InferAllTypes())
+      I->error("Could not infer all types in pattern!");
+    
+    // InstInputs - Keep track of all of the inputs of the instruction, along 
+    // with the record they are declared as.
+    std::map<std::string, TreePatternNode*> InstInputs;
+    
+    // InstResults - Keep track of all the virtual registers that are 'set'
+    // in the instruction, including what reg class they are.
+    std::map<std::string, TreePatternNode*> InstResults;
+
+    std::vector<Record*> InstImpInputs;
+    std::vector<Record*> InstImpResults;
+    
+    // Verify that the top-level forms in the instruction are of void type, and
+    // fill in the InstResults map.
+    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
+      TreePatternNode *Pat = I->getTree(j);
+      if (Pat->getExtTypeNum(0) != MVT::isVoid)
+        I->error("Top-level forms in instruction pattern should have"
+                 " void types");
+
+      // Find inputs and outputs, and verify the structure of the uses/defs.
+      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
+                                  InstImpInputs, InstImpResults);
+    }
+
+    // Now that we have inputs and outputs of the pattern, inspect the operands
+    // list for the instruction.  This determines the order that operands are
+    // added to the machine instruction the node corresponds to.
+    unsigned NumResults = InstResults.size();
+
+    // Parse the operands list from the (ops) list, validating it.
+    assert(I->getArgList().empty() && "Args list should still be empty here!");
+    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
+
+    // Check that all of the results occur first in the list.
+    std::vector<Record*> Results;
+    TreePatternNode *Res0Node = NULL;
+    for (unsigned i = 0; i != NumResults; ++i) {
+      if (i == CGI.OperandList.size())
+        I->error("'" + InstResults.begin()->first +
+                 "' set but does not appear in operand list!");
+      const std::string &OpName = CGI.OperandList[i].Name;
+      
+      // Check that it exists in InstResults.
+      TreePatternNode *RNode = InstResults[OpName];
+      if (RNode == 0)
+        I->error("Operand $" + OpName + " does not exist in operand list!");
+        
+      if (i == 0)
+        Res0Node = RNode;
+      Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
+      if (R == 0)
+        I->error("Operand $" + OpName + " should be a set destination: all "
+                 "outputs must occur before inputs in operand list!");
+      
+      if (CGI.OperandList[i].Rec != R)
+        I->error("Operand $" + OpName + " class mismatch!");
+      
+      // Remember the return type.
+      Results.push_back(CGI.OperandList[i].Rec);
+      
+      // Okay, this one checks out.
+      InstResults.erase(OpName);
+    }
+
+    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
+    // the copy while we're checking the inputs.
+    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
+
+    std::vector<TreePatternNode*> ResultNodeOperands;
+    std::vector<Record*> Operands;
+    for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
+      CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
+      const std::string &OpName = Op.Name;
+      if (OpName.empty())
+        I->error("Operand #" + utostr(i) + " in operands list has no name!");
+
+      if (!InstInputsCheck.count(OpName)) {
+        // If this is an predicate operand or optional def operand with an
+        // DefaultOps set filled in, we can ignore this.  When we codegen it,
+        // we will do so as always executed.
+        if (Op.Rec->isSubClassOf("PredicateOperand") ||
+            Op.Rec->isSubClassOf("OptionalDefOperand")) {
+          // Does it have a non-empty DefaultOps field?  If so, ignore this
+          // operand.
+          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
+            continue;
+        }
+        I->error("Operand $" + OpName +
+                 " does not appear in the instruction pattern");
+      }
+      TreePatternNode *InVal = InstInputsCheck[OpName];
+      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
+      
+      if (InVal->isLeaf() &&
+          dynamic_cast<DefInit*>(InVal->getLeafValue())) {
+        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
+        if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
+          I->error("Operand $" + OpName + "'s register class disagrees"
+                   " between the operand and pattern");
+      }
+      Operands.push_back(Op.Rec);
+      
+      // Construct the result for the dest-pattern operand list.
+      TreePatternNode *OpNode = InVal->clone();
+      
+      // No predicate is useful on the result.
+      OpNode->setPredicateFn("");
+      
+      // Promote the xform function to be an explicit node if set.
+      if (Record *Xform = OpNode->getTransformFn()) {
+        OpNode->setTransformFn(0);
+        std::vector<TreePatternNode*> Children;
+        Children.push_back(OpNode);
+        OpNode = new TreePatternNode(Xform, Children);
+      }
+      
+      ResultNodeOperands.push_back(OpNode);
+    }
+    
+    if (!InstInputsCheck.empty())
+      I->error("Input operand $" + InstInputsCheck.begin()->first +
+               " occurs in pattern but not in operands list!");
+
+    TreePatternNode *ResultPattern =
+      new TreePatternNode(I->getRecord(), ResultNodeOperands);
+    // Copy fully inferred output node type to instruction result pattern.
+    if (NumResults > 0)
+      ResultPattern->setTypes(Res0Node->getExtTypes());
+
+    // Create and insert the instruction.
+    // FIXME: InstImpResults and InstImpInputs should not be part of
+    // DAGInstruction.
+    DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
+    Instructions.insert(std::make_pair(I->getRecord(), TheInst));
+
+    // Use a temporary tree pattern to infer all types and make sure that the
+    // constructed result is correct.  This depends on the instruction already
+    // being inserted into the Instructions map.
+    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
+    Temp.InferAllTypes();
+
+    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
+    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
+    
+    DEBUG(I->dump());
+  }
+   
+  // If we can, convert the instructions to be patterns that are matched!
+  for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
+       E = Instructions.end(); II != E; ++II) {
+    DAGInstruction &TheInst = II->second;
+    TreePattern *I = TheInst.getPattern();
+    if (I == 0) continue;  // No pattern.
+
+    // FIXME: Assume only the first tree is the pattern. The others are clobber
+    // nodes.
+    TreePatternNode *Pattern = I->getTree(0);
+    TreePatternNode *SrcPattern;
+    if (Pattern->getOperator()->getName() == "set") {
+      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
+    } else{
+      // Not a set (store or something?)
+      SrcPattern = Pattern;
+    }
+    
+    std::string Reason;
+    if (!SrcPattern->canPatternMatch(Reason, *this))
+      I->error("Instruction can never match: " + Reason);
+    
+    Record *Instr = II->first;
+    TreePatternNode *DstPattern = TheInst.getResultPattern();
+    PatternsToMatch.
+      push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
+                               SrcPattern, DstPattern, TheInst.getImpResults(),
+                               Instr->getValueAsInt("AddedComplexity")));
+  }
+}
+
+void CodegenDAGPatterns::ParsePatterns() {
+  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
+
+  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
+    DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
+    DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
+    Record *Operator = OpDef->getDef();
+    TreePattern *Pattern;
+    if (Operator->getName() != "parallel")
+      Pattern = new TreePattern(Patterns[i], Tree, true, *this);
+    else {
+      std::vector<Init*> Values;
+      for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j)
+        Values.push_back(Tree->getArg(j));
+      ListInit *LI = new ListInit(Values);
+      Pattern = new TreePattern(Patterns[i], LI, true, *this);
+    }
+
+    // Inline pattern fragments into it.
+    Pattern->InlinePatternFragments();
+    
+    ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
+    if (LI->getSize() == 0) continue;  // no pattern.
+    
+    // Parse the instruction.
+    TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
+    
+    // Inline pattern fragments into it.
+    Result->InlinePatternFragments();
+
+    if (Result->getNumTrees() != 1)
+      Result->error("Cannot handle instructions producing instructions "
+                    "with temporaries yet!");
+    
+    bool IterateInference;
+    bool InferredAllPatternTypes, InferredAllResultTypes;
+    do {
+      // Infer as many types as possible.  If we cannot infer all of them, we
+      // can never do anything with this pattern: report it to the user.
+      InferredAllPatternTypes = Pattern->InferAllTypes();
+      
+      // Infer as many types as possible.  If we cannot infer all of them, we
+      // can never do anything with this pattern: report it to the user.
+      InferredAllResultTypes = Result->InferAllTypes();
+
+      // Apply the type of the result to the source pattern.  This helps us
+      // resolve cases where the input type is known to be a pointer type (which
+      // is considered resolved), but the result knows it needs to be 32- or
+      // 64-bits.  Infer the other way for good measure.
+      IterateInference = Pattern->getTree(0)->
+        UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
+      IterateInference |= Result->getTree(0)->
+        UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
+    } while (IterateInference);
+
+    // Verify that we inferred enough types that we can do something with the
+    // pattern and result.  If these fire the user has to add type casts.
+    if (!InferredAllPatternTypes)
+      Pattern->error("Could not infer all types in pattern!");
+    if (!InferredAllResultTypes)
+      Result->error("Could not infer all types in pattern result!");
+    
+    // Validate that the input pattern is correct.
+    std::map<std::string, TreePatternNode*> InstInputs;
+    std::map<std::string, TreePatternNode*> InstResults;
+    std::vector<Record*> InstImpInputs;
+    std::vector<Record*> InstImpResults;
+    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
+      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
+                                  InstInputs, InstResults,
+                                  InstImpInputs, InstImpResults);
+
+    // Promote the xform function to be an explicit node if set.
+    TreePatternNode *DstPattern = Result->getOnlyTree();
+    std::vector<TreePatternNode*> ResultNodeOperands;
+    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
+      TreePatternNode *OpNode = DstPattern->getChild(ii);
+      if (Record *Xform = OpNode->getTransformFn()) {
+        OpNode->setTransformFn(0);
+        std::vector<TreePatternNode*> Children;
+        Children.push_back(OpNode);
+        OpNode = new TreePatternNode(Xform, Children);
+      }
+      ResultNodeOperands.push_back(OpNode);
+    }
+    DstPattern = Result->getOnlyTree();
+    if (!DstPattern->isLeaf())
+      DstPattern = new TreePatternNode(DstPattern->getOperator(),
+                                       ResultNodeOperands);
+    DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
+    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
+    Temp.InferAllTypes();
+
+    std::string Reason;
+    if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
+      Pattern->error("Pattern can never match: " + Reason);
+    
+    PatternsToMatch.
+      push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
+                               Pattern->getTree(0),
+                               Temp.getOnlyTree(), InstImpResults,
+                               Patterns[i]->getValueAsInt("AddedComplexity")));
+  }
+}
+
+/// CombineChildVariants - Given a bunch of permutations of each child of the
+/// 'operator' node, put them together in all possible ways.
+static void CombineChildVariants(TreePatternNode *Orig, 
+               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
+                                 std::vector<TreePatternNode*> &OutVariants,
+                                 CodegenDAGPatterns &CDP) {
+  // Make sure that each operand has at least one variant to choose from.
+  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
+    if (ChildVariants[i].empty())
+      return;
+        
+  // The end result is an all-pairs construction of the resultant pattern.
+  std::vector<unsigned> Idxs;
+  Idxs.resize(ChildVariants.size());
+  bool NotDone = true;
+  while (NotDone) {
+    // Create the variant and add it to the output list.
+    std::vector<TreePatternNode*> NewChildren;
+    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
+      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
+    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
+    
+    // Copy over properties.
+    R->setName(Orig->getName());
+    R->setPredicateFn(Orig->getPredicateFn());
+    R->setTransformFn(Orig->getTransformFn());
+    R->setTypes(Orig->getExtTypes());
+    
+    // If this pattern cannot every match, do not include it as a variant.
+    std::string ErrString;
+    if (!R->canPatternMatch(ErrString, CDP)) {
+      delete R;
+    } else {
+      bool AlreadyExists = false;
+      
+      // Scan to see if this pattern has already been emitted.  We can get
+      // duplication due to things like commuting:
+      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
+      // which are the same pattern.  Ignore the dups.
+      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
+        if (R->isIsomorphicTo(OutVariants[i])) {
+          AlreadyExists = true;
+          break;
+        }
+      
+      if (AlreadyExists)
+        delete R;
+      else
+        OutVariants.push_back(R);
+    }
+    
+    // Increment indices to the next permutation.
+    NotDone = false;
+    // Look for something we can increment without causing a wrap-around.
+    for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
+      if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
+        NotDone = true;   // Found something to increment.
+        break;
+      }
+      Idxs[IdxsIdx] = 0;
+    }
+  }
+}
+
+/// CombineChildVariants - A helper function for binary operators.
+///
+static void CombineChildVariants(TreePatternNode *Orig, 
+                                 const std::vector<TreePatternNode*> &LHS,
+                                 const std::vector<TreePatternNode*> &RHS,
+                                 std::vector<TreePatternNode*> &OutVariants,
+                                 CodegenDAGPatterns &CDP) {
+  std::vector<std::vector<TreePatternNode*> > ChildVariants;
+  ChildVariants.push_back(LHS);
+  ChildVariants.push_back(RHS);
+  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP);
+}  
+
+
+static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
+                                     std::vector<TreePatternNode *> &Children) {
+  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
+  Record *Operator = N->getOperator();
+  
+  // Only permit raw nodes.
+  if (!N->getName().empty() || !N->getPredicateFn().empty() ||
+      N->getTransformFn()) {
+    Children.push_back(N);
+    return;
+  }
+
+  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
+    Children.push_back(N->getChild(0));
+  else
+    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
+
+  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
+    Children.push_back(N->getChild(1));
+  else
+    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
+}
+
+/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
+/// the (potentially recursive) pattern by using algebraic laws.
+///
+static void GenerateVariantsOf(TreePatternNode *N,
+                               std::vector<TreePatternNode*> &OutVariants,
+                               CodegenDAGPatterns &CDP) {
+  // We cannot permute leaves.
+  if (N->isLeaf()) {
+    OutVariants.push_back(N);
+    return;
+  }
+
+  // Look up interesting info about the node.
+  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
+
+  // If this node is associative, reassociate.
+  if (NodeInfo.hasProperty(SDNPAssociative)) {
+    // Reassociate by pulling together all of the linked operators 
+    std::vector<TreePatternNode*> MaximalChildren;
+    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
+
+    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
+    // permutations.
+    if (MaximalChildren.size() == 3) {
+      // Find the variants of all of our maximal children.
+      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
+      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP);
+      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP);
+      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP);
+      
+      // There are only two ways we can permute the tree:
+      //   (A op B) op C    and    A op (B op C)
+      // Within these forms, we can also permute A/B/C.
+      
+      // Generate legal pair permutations of A/B/C.
+      std::vector<TreePatternNode*> ABVariants;
+      std::vector<TreePatternNode*> BAVariants;
+      std::vector<TreePatternNode*> ACVariants;
+      std::vector<TreePatternNode*> CAVariants;
+      std::vector<TreePatternNode*> BCVariants;
+      std::vector<TreePatternNode*> CBVariants;
+      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP);
+      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP);
+      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP);
+      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP);
+      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP);
+      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP);
+
+      // Combine those into the result: (x op x) op x
+      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP);
+      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP);
+      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP);
+      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP);
+      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP);
+      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP);
+
+      // Combine those into the result: x op (x op x)
+      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP);
+      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP);
+      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP);
+      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP);
+      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP);
+      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP);
+      return;
+    }
+  }
+  
+  // Compute permutations of all children.
+  std::vector<std::vector<TreePatternNode*> > ChildVariants;
+  ChildVariants.resize(N->getNumChildren());
+  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP);
+
+  // Build all permutations based on how the children were formed.
+  CombineChildVariants(N, ChildVariants, OutVariants, CDP);
+
+  // If this node is commutative, consider the commuted order.
+  if (NodeInfo.hasProperty(SDNPCommutative)) {
+    assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
+    // Don't count children which are actually register references.
+    unsigned NC = 0;
+    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+      TreePatternNode *Child = N->getChild(i);
+      if (Child->isLeaf())
+        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
+          Record *RR = DI->getDef();
+          if (RR->isSubClassOf("Register"))
+            continue;
+        }
+      NC++;
+    }
+    // Consider the commuted order.
+    if (NC == 2)
+      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
+                           OutVariants, CDP);
+  }
+}
+
+
+// GenerateVariants - Generate variants.  For example, commutative patterns can
+// match multiple ways.  Add them to PatternsToMatch as well.
+void CodegenDAGPatterns::GenerateVariants() {
+  DOUT << "Generating instruction variants.\n";
+  
+  // Loop over all of the patterns we've collected, checking to see if we can
+  // generate variants of the instruction, through the exploitation of
+  // identities.  This permits the target to provide agressive matching without
+  // the .td file having to contain tons of variants of instructions.
+  //
+  // Note that this loop adds new patterns to the PatternsToMatch list, but we
+  // intentionally do not reconsider these.  Any variants of added patterns have
+  // already been added.
+  //
+  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
+    std::vector<TreePatternNode*> Variants;
+    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
+
+    assert(!Variants.empty() && "Must create at least original variant!");
+    Variants.erase(Variants.begin());  // Remove the original pattern.
+
+    if (Variants.empty())  // No variants for this pattern.
+      continue;
+
+    DOUT << "FOUND VARIANTS OF: ";
+    DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
+    DOUT << "\n";
+
+    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
+      TreePatternNode *Variant = Variants[v];
+
+      DOUT << "  VAR#" << v <<  ": ";
+      DEBUG(Variant->dump());
+      DOUT << "\n";
+      
+      // Scan to see if an instruction or explicit pattern already matches this.
+      bool AlreadyExists = false;
+      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
+        // Check to see if this variant already exists.
+        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
+          DOUT << "  *** ALREADY EXISTS, ignoring variant.\n";
+          AlreadyExists = true;
+          break;
+        }
+      }
+      // If we already have it, ignore the variant.
+      if (AlreadyExists) continue;
+
+      // Otherwise, add it to the list of patterns we have.
+      PatternsToMatch.
+        push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
+                                 Variant, PatternsToMatch[i].getDstPattern(),
+                                 PatternsToMatch[i].getDstRegs(),
+                                 PatternsToMatch[i].getAddedComplexity()));
+    }
+
+    DOUT << "\n";
+  }
+}
+