Table-driven disassembler for the X86 architecture (16-, 32-, and 64-bit 
incarnations), integrated into the MC framework.  

The disassembler is table-driven, using a custom TableGen backend to 
generate hierarchical tables optimized for fast decode.  The disassembler 
consumes MemoryObjects and produces arrays of MCInsts, adhering to the 
abstract base class MCDisassembler (llvm/MC/MCDisassembler.h).

The disassembler is documented in detail in

- lib/Target/X86/Disassembler/X86Disassembler.cpp (disassembler runtime)
- utils/TableGen/DisassemblerEmitter.cpp (table emitter)

You can test the disassembler by running llvm-mc -disassemble for i386
or x86_64 targets.  Please let me know if you encounter any problems
with it.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91749 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h b/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h
new file mode 100644
index 0000000..b226257
--- /dev/null
+++ b/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h
@@ -0,0 +1,354 @@
+/*===- X86DisassemblerDecoderCommon.h - Disassembler decoder -------*- C -*-==*
+ *
+ *                     The LLVM Compiler Infrastructure
+ *
+ * This file is distributed under the University of Illinois Open Source
+ * License. See LICENSE.TXT for details.
+ *
+ *===----------------------------------------------------------------------===*
+ *
+ * This file is part of the X86 Disassembler.
+ * It contains common definitions used by both the disassembler and the table
+ *  generator.
+ * Documentation for the disassembler can be found in X86Disassembler.h.
+ *
+ *===----------------------------------------------------------------------===*/
+
+/*
+ * This header file provides those definitions that need to be shared between
+ * the decoder and the table generator in a C-friendly manner.
+ */
+
+#ifndef X86DISASSEMBLERDECODERCOMMON_H
+#define X86DISASSEMBLERDECODERCOMMON_H
+
+#include "llvm/System/DataTypes.h"
+
+#define INSTRUCTIONS_SYM  x86DisassemblerInstrSpecifiers
+#define CONTEXTS_SYM      x86DisassemblerContexts
+#define ONEBYTE_SYM       x86DisassemblerOneByteOpcodes
+#define TWOBYTE_SYM       x86DisassemblerTwoByteOpcodes
+#define THREEBYTE38_SYM   x86DisassemblerThreeByte38Opcodes
+#define THREEBYTE3A_SYM   x86DisassemblerThreeByte3AOpcodes
+
+#define INSTRUCTIONS_STR  "x86DisassemblerInstrSpecifiers"
+#define CONTEXTS_STR      "x86DisassemblerContexts"
+#define ONEBYTE_STR       "x86DisassemblerOneByteOpcodes"
+#define TWOBYTE_STR       "x86DisassemblerTwoByteOpcodes"
+#define THREEBYTE38_STR   "x86DisassemblerThreeByte38Opcodes"
+#define THREEBYTE3A_STR   "x86DisassemblerThreeByte3AOpcodes"
+
+/*
+ * Attributes of an instruction that must be known before the opcode can be
+ * processed correctly.  Most of these indicate the presence of particular
+ * prefixes, but ATTR_64BIT is simply an attribute of the decoding context.
+ */
+#define ATTRIBUTE_BITS          \
+  ENUM_ENTRY(ATTR_NONE,   0x00) \
+  ENUM_ENTRY(ATTR_64BIT,  0x01) \
+  ENUM_ENTRY(ATTR_XS,     0x02) \
+  ENUM_ENTRY(ATTR_XD,     0x04) \
+  ENUM_ENTRY(ATTR_REXW,   0x08) \
+  ENUM_ENTRY(ATTR_OPSIZE, 0x10)
+
+#define ENUM_ENTRY(n, v) n = v,
+enum attributeBits {
+  ATTRIBUTE_BITS
+  ATTR_max
+};
+#undef ENUM_ENTRY
+
+/*
+ * Combinations of the above attributes that are relevant to instruction
+ * decode.  Although other combinations are possible, they can be reduced to
+ * these without affecting the ultimately decoded instruction.
+ */
+
+/*           Class name           Rank  Rationale for rank assignment         */
+#define INSTRUCTION_CONTEXTS                                                   \
+  ENUM_ENTRY(IC,                    0,  "says nothing about the instruction")  \
+  ENUM_ENTRY(IC_64BIT,              1,  "says the instruction applies in "     \
+                                        "64-bit mode but no more")             \
+  ENUM_ENTRY(IC_OPSIZE,             3,  "requires an OPSIZE prefix, so "       \
+                                        "operands change width")               \
+  ENUM_ENTRY(IC_XD,                 2,  "may say something about the opcode "  \
+                                        "but not the operands")                \
+  ENUM_ENTRY(IC_XS,                 2,  "may say something about the opcode "  \
+                                        "but not the operands")                \
+  ENUM_ENTRY(IC_64BIT_REXW,         4,  "requires a REX.W prefix, so operands "\
+                                        "change width; overrides IC_OPSIZE")   \
+  ENUM_ENTRY(IC_64BIT_OPSIZE,       3,  "Just as meaningful as IC_OPSIZE")     \
+  ENUM_ENTRY(IC_64BIT_XD,           5,  "XD instructions are SSE; REX.W is "   \
+                                        "secondary")                           \
+  ENUM_ENTRY(IC_64BIT_XS,           5,  "Just as meaningful as IC_64BIT_XD")   \
+  ENUM_ENTRY(IC_64BIT_REXW_XS,      6,  "OPSIZE could mean a different "       \
+                                        "opcode")                              \
+  ENUM_ENTRY(IC_64BIT_REXW_XD,      6,  "Just as meaningful as "               \
+                                        "IC_64BIT_REXW_XS")                    \
+  ENUM_ENTRY(IC_64BIT_REXW_OPSIZE,  7,  "The Dynamic Duo!  Prefer over all "   \
+                                        "else because this changes most "      \
+                                        "operands' meaning")
+
+#define ENUM_ENTRY(n, r, d) n,    
+typedef enum {
+  INSTRUCTION_CONTEXTS
+  IC_max
+} InstructionContext;
+#undef ENUM_ENTRY
+
+/*
+ * Opcode types, which determine which decode table to use, both in the Intel
+ * manual and also for the decoder.
+ */
+typedef enum {
+  ONEBYTE       = 0,
+  TWOBYTE       = 1,
+  THREEBYTE_38  = 2,
+  THREEBYTE_3A  = 3
+} OpcodeType;
+
+/*
+ * The following structs are used for the hierarchical decode table.  After
+ * determining the instruction's class (i.e., which IC_* constant applies to
+ * it), the decoder reads the opcode.  Some instructions require specific
+ * values of the ModR/M byte, so the ModR/M byte indexes into the final table.
+ *
+ * If a ModR/M byte is not required, "required" is left unset, and the values
+ * for each instructionID are identical.
+ */
+ 
+typedef uint16_t InstrUID;
+
+/*
+ * ModRMDecisionType - describes the type of ModR/M decision, allowing the 
+ * consumer to determine the number of entries in it.
+ *
+ * MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded
+ *                  instruction is the same.
+ * MODRM_SPLITRM  - If the ModR/M byte is between 0x00 and 0xbf, the opcode
+ *                  corresponds to one instruction; otherwise, it corresponds to
+ *                  a different instruction.
+ * MODRM_FULL     - Potentially, each value of the ModR/M byte could correspond
+ *                  to a different instruction.
+ */
+
+#define MODRMTYPES            \
+  ENUM_ENTRY(MODRM_ONEENTRY)  \
+  ENUM_ENTRY(MODRM_SPLITRM)   \
+  ENUM_ENTRY(MODRM_FULL)
+
+#define ENUM_ENTRY(n) n,    
+typedef enum {
+  MODRMTYPES
+  MODRM_max
+} ModRMDecisionType;
+#undef ENUM_ENTRY
+
+/*
+ * ModRMDecision - Specifies whether a ModR/M byte is needed and (if so) which 
+ *  instruction each possible value of the ModR/M byte corresponds to.  Once
+ *  this information is known, we have narrowed down to a single instruction.
+ */
+struct ModRMDecision {
+  uint8_t     modrm_type;
+  
+  /* The macro below must be defined wherever this file is included. */
+  INSTRUCTION_IDS
+};
+
+/*
+ * OpcodeDecision - Specifies which set of ModR/M->instruction tables to look at
+ *   given a particular opcode.
+ */
+struct OpcodeDecision {
+  struct ModRMDecision modRMDecisions[256];
+};
+
+/*
+ * ContextDecision - Specifies which opcode->instruction tables to look at given
+ *   a particular context (set of attributes).  Since there are many possible
+ *   contexts, the decoder first uses CONTEXTS_SYM to determine which context
+ *   applies given a specific set of attributes.  Hence there are only IC_max
+ *   entries in this table, rather than 2^(ATTR_max).
+ */
+struct ContextDecision {
+  struct OpcodeDecision opcodeDecisions[IC_max];
+};
+
+/* 
+ * Physical encodings of instruction operands.
+ */
+
+#define ENCODINGS                                                              \
+  ENUM_ENTRY(ENCODING_NONE,   "")                                              \
+  ENUM_ENTRY(ENCODING_REG,    "Register operand in ModR/M byte.")              \
+  ENUM_ENTRY(ENCODING_RM,     "R/M operand in ModR/M byte.")                   \
+  ENUM_ENTRY(ENCODING_CB,     "1-byte code offset (possible new CS value)")    \
+  ENUM_ENTRY(ENCODING_CW,     "2-byte")                                        \
+  ENUM_ENTRY(ENCODING_CD,     "4-byte")                                        \
+  ENUM_ENTRY(ENCODING_CP,     "6-byte")                                        \
+  ENUM_ENTRY(ENCODING_CO,     "8-byte")                                        \
+  ENUM_ENTRY(ENCODING_CT,     "10-byte")                                       \
+  ENUM_ENTRY(ENCODING_IB,     "1-byte immediate")                              \
+  ENUM_ENTRY(ENCODING_IW,     "2-byte")                                        \
+  ENUM_ENTRY(ENCODING_ID,     "4-byte")                                        \
+  ENUM_ENTRY(ENCODING_IO,     "8-byte")                                        \
+  ENUM_ENTRY(ENCODING_RB,     "(AL..DIL, R8L..R15L) Register code added to "   \
+                              "the opcode byte")                               \
+  ENUM_ENTRY(ENCODING_RW,     "(AX..DI, R8W..R15W)")                           \
+  ENUM_ENTRY(ENCODING_RD,     "(EAX..EDI, R8D..R15D)")                         \
+  ENUM_ENTRY(ENCODING_RO,     "(RAX..RDI, R8..R15)")                           \
+  ENUM_ENTRY(ENCODING_I,      "Position on floating-point stack added to the " \
+                              "opcode byte")                                   \
+                                                                               \
+  ENUM_ENTRY(ENCODING_Iv,     "Immediate of operand size")                     \
+  ENUM_ENTRY(ENCODING_Ia,     "Immediate of address size")                     \
+  ENUM_ENTRY(ENCODING_Rv,     "Register code of operand size added to the "    \
+                              "opcode byte")                                   \
+  ENUM_ENTRY(ENCODING_DUP,    "Duplicate of another operand; ID is encoded "   \
+                              "in type")
+
+#define ENUM_ENTRY(n, d) n,    
+  typedef enum {
+    ENCODINGS
+    ENCODING_max
+  } OperandEncoding;
+#undef ENUM_ENTRY
+
+/* 
+ * Semantic interpretations of instruction operands.
+ */
+
+#define TYPES                                                                  \
+  ENUM_ENTRY(TYPE_NONE,       "")                                              \
+  ENUM_ENTRY(TYPE_REL8,       "1-byte immediate address")                      \
+  ENUM_ENTRY(TYPE_REL16,      "2-byte")                                        \
+  ENUM_ENTRY(TYPE_REL32,      "4-byte")                                        \
+  ENUM_ENTRY(TYPE_REL64,      "8-byte")                                        \
+  ENUM_ENTRY(TYPE_PTR1616,    "2+2-byte segment+offset address")               \
+  ENUM_ENTRY(TYPE_PTR1632,    "2+4-byte")                                      \
+  ENUM_ENTRY(TYPE_PTR1664,    "2+8-byte")                                      \
+  ENUM_ENTRY(TYPE_R8,         "1-byte register operand")                       \
+  ENUM_ENTRY(TYPE_R16,        "2-byte")                                        \
+  ENUM_ENTRY(TYPE_R32,        "4-byte")                                        \
+  ENUM_ENTRY(TYPE_R64,        "8-byte")                                        \
+  ENUM_ENTRY(TYPE_IMM8,       "1-byte immediate operand")                      \
+  ENUM_ENTRY(TYPE_IMM16,      "2-byte")                                        \
+  ENUM_ENTRY(TYPE_IMM32,      "4-byte")                                        \
+  ENUM_ENTRY(TYPE_IMM64,      "8-byte")                                        \
+  ENUM_ENTRY(TYPE_RM8,        "1-byte register or memory operand")             \
+  ENUM_ENTRY(TYPE_RM16,       "2-byte")                                        \
+  ENUM_ENTRY(TYPE_RM32,       "4-byte")                                        \
+  ENUM_ENTRY(TYPE_RM64,       "8-byte")                                        \
+  ENUM_ENTRY(TYPE_M,          "Memory operand")                                \
+  ENUM_ENTRY(TYPE_M8,         "1-byte")                                        \
+  ENUM_ENTRY(TYPE_M16,        "2-byte")                                        \
+  ENUM_ENTRY(TYPE_M32,        "4-byte")                                        \
+  ENUM_ENTRY(TYPE_M64,        "8-byte")                                        \
+  ENUM_ENTRY(TYPE_M128,       "16-byte (SSE/SSE2)")                            \
+  ENUM_ENTRY(TYPE_M1616,      "2+2-byte segment+offset address")               \
+  ENUM_ENTRY(TYPE_M1632,      "2+4-byte")                                      \
+  ENUM_ENTRY(TYPE_M1664,      "2+8-byte")                                      \
+  ENUM_ENTRY(TYPE_M16_32,     "2+4-byte two-part memory operand (LIDT, LGDT)") \
+  ENUM_ENTRY(TYPE_M16_16,     "2+2-byte (BOUND)")                              \
+  ENUM_ENTRY(TYPE_M32_32,     "4+4-byte (BOUND)")                              \
+  ENUM_ENTRY(TYPE_M16_64,     "2+8-byte (LIDT, LGDT)")                         \
+  ENUM_ENTRY(TYPE_MOFFS8,     "1-byte memory offset (relative to segment "     \
+                              "base)")                                         \
+  ENUM_ENTRY(TYPE_MOFFS16,    "2-byte")                                        \
+  ENUM_ENTRY(TYPE_MOFFS32,    "4-byte")                                        \
+  ENUM_ENTRY(TYPE_MOFFS64,    "8-byte")                                        \
+  ENUM_ENTRY(TYPE_SREG,       "Byte with single bit set: 0 = ES, 1 = CS, "     \
+                              "2 = SS, 3 = DS, 4 = FS, 5 = GS")                \
+  ENUM_ENTRY(TYPE_M32FP,      "32-bit IEE754 memory floating-point operand")   \
+  ENUM_ENTRY(TYPE_M64FP,      "64-bit")                                        \
+  ENUM_ENTRY(TYPE_M80FP,      "80-bit extended")                               \
+  ENUM_ENTRY(TYPE_M16INT,     "2-byte memory integer operand for use in "      \
+                              "floating-point instructions")                   \
+  ENUM_ENTRY(TYPE_M32INT,     "4-byte")                                        \
+  ENUM_ENTRY(TYPE_M64INT,     "8-byte")                                        \
+  ENUM_ENTRY(TYPE_ST,         "Position on the floating-point stack")          \
+  ENUM_ENTRY(TYPE_MM,         "MMX register operand")                          \
+  ENUM_ENTRY(TYPE_MM32,       "4-byte MMX register or memory operand")         \
+  ENUM_ENTRY(TYPE_MM64,       "8-byte")                                        \
+  ENUM_ENTRY(TYPE_XMM,        "XMM register operand")                          \
+  ENUM_ENTRY(TYPE_XMM32,      "4-byte XMM register or memory operand")         \
+  ENUM_ENTRY(TYPE_XMM64,      "8-byte")                                        \
+  ENUM_ENTRY(TYPE_XMM128,     "16-byte")                                       \
+  ENUM_ENTRY(TYPE_XMM0,       "Implicit use of XMM0")                          \
+  ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand")                      \
+  ENUM_ENTRY(TYPE_DEBUGREG,   "Debug register operand")                        \
+  ENUM_ENTRY(TYPE_CR32,       "4-byte control register operand")               \
+  ENUM_ENTRY(TYPE_CR64,       "8-byte")                                        \
+                                                                               \
+  ENUM_ENTRY(TYPE_Mv,         "Memory operand of operand size")                \
+  ENUM_ENTRY(TYPE_Rv,         "Register operand of operand size")              \
+  ENUM_ENTRY(TYPE_IMMv,       "Immediate operand of operand size")             \
+  ENUM_ENTRY(TYPE_RELv,       "Immediate address of operand size")             \
+  ENUM_ENTRY(TYPE_DUP0,       "Duplicate of operand 0")                        \
+  ENUM_ENTRY(TYPE_DUP1,       "operand 1")                                     \
+  ENUM_ENTRY(TYPE_DUP2,       "operand 2")                                     \
+  ENUM_ENTRY(TYPE_DUP3,       "operand 3")                                     \
+  ENUM_ENTRY(TYPE_DUP4,       "operand 4")                                     \
+  ENUM_ENTRY(TYPE_M512,       "512-bit FPU/MMX/XMM/MXCSR state")
+
+#define ENUM_ENTRY(n, d) n,    
+typedef enum {
+  TYPES
+  TYPE_max
+} OperandType;
+#undef ENUM_ENTRY
+
+/* 
+ * OperandSpecifier - The specification for how to extract and interpret one
+ *   operand.
+ */
+struct OperandSpecifier {
+  OperandEncoding  encoding;
+  OperandType      type;
+};
+
+/*
+ * Indicates where the opcode modifier (if any) is to be found.  Extended
+ * opcodes with AddRegFrm have the opcode modifier in the ModR/M byte.
+ */
+
+#define MODIFIER_TYPES        \
+  ENUM_ENTRY(MODIFIER_NONE)   \
+  ENUM_ENTRY(MODIFIER_OPCODE) \
+  ENUM_ENTRY(MODIFIER_MODRM)
+
+#define ENUM_ENTRY(n) n,
+typedef enum {
+  MODIFIER_TYPES
+  MODIFIER_max
+} ModifierType;
+#undef ENUM_ENTRY
+
+#define X86_MAX_OPERANDS 5
+
+/*
+ * The specification for how to extract and interpret a full instruction and
+ * its operands.
+ */
+struct InstructionSpecifier {
+  ModifierType modifierType;
+  uint8_t modifierBase;
+  struct OperandSpecifier operands[X86_MAX_OPERANDS];
+  
+  /* The macro below must be defined wherever this file is included. */
+  INSTRUCTION_SPECIFIER_FIELDS
+};
+
+/*
+ * Decoding mode for the Intel disassembler.  16-bit, 32-bit, and 64-bit mode
+ * are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode,
+ * respectively.
+ */
+typedef enum {
+  MODE_16BIT,
+  MODE_32BIT,
+  MODE_64BIT
+} DisassemblerMode;
+
+#endif