remove the AllowAggressive argument to FoldOpIntoPhi. It is forced to false in the
first line of the function because it isn't a good idea, even for compares.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123566 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
index 919c623..6d05466 100644
--- a/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -512,12 +512,7 @@
/// has a PHI node as operand #0, see if we can fold the instruction into the
/// PHI (which is only possible if all operands to the PHI are constants).
///
-/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
-/// that would normally be unprofitable because they strongly encourage jump
-/// threading.
-Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
- bool AllowAggressive) {
- AllowAggressive = false;
+Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
PHINode *PN = cast<PHINode>(I.getOperand(0));
unsigned NumPHIValues = PN->getNumIncomingValues();
if (NumPHIValues == 0)
@@ -525,7 +520,7 @@
// We normally only transform phis with a single use, unless we're trying
// hard to make jump threading happen.
- if (!PN->hasOneUse() && !AllowAggressive)
+ if (!PN->hasOneUse())
return 0;
// Check to see if all of the operands of the PHI are simple constants
@@ -560,7 +555,7 @@
// operation in that block. However, if this is a critical edge, we would be
// inserting the computation one some other paths (e.g. inside a loop). Only
// do this if the pred block is unconditionally branching into the phi block.
- if (NonConstBB != 0 && !AllowAggressive) {
+ if (NonConstBB != 0) {
BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
if (!BI || !BI->isUnconditional()) return 0;
}