Clean up the handling of the x87 fp stack to make it more robust.

Drop the FpMov instructions, use plain COPY instead.

Drop the FpSET/GET instruction for accessing fixed stack positions.
Instead use normal COPY to/from ST registers around inline assembly, and
provide a single new FpPOP_RETVAL instruction that can access the return
value(s) from a call. This is still necessary since you cannot tell from
the CALL instruction alone if it returns anything on the FP stack. Teach
fast isel to use this.

This provides a much more robust way of handling fixed stack registers -
we can tolerate arbitrary FP stack instructions inserted around calls
and inline assembly. Live range splitting could sometimes break x87 code
by inserting spill code in unfortunate places.

As a bonus we handle floating point inline assembly correctly now.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134018 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/X86/X86FloatingPoint.cpp b/lib/Target/X86/X86FloatingPoint.cpp
index e16f217..3fb5493 100644
--- a/lib/Target/X86/X86FloatingPoint.cpp
+++ b/lib/Target/X86/X86FloatingPoint.cpp
@@ -37,6 +37,7 @@
 #include "llvm/CodeGen/MachineInstrBuilder.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
 #include "llvm/CodeGen/Passes.h"
+#include "llvm/InlineAsm.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/raw_ostream.h"
@@ -134,11 +135,36 @@
     unsigned Stack[8];          // FP<n> Registers in each stack slot...
     unsigned StackTop;          // The current top of the FP stack.
 
+    enum {
+      NumFPRegs = 16            // Including scratch pseudo-registers.
+    };
+
     // For each live FP<n> register, point to its Stack[] entry.
     // The first entries correspond to FP0-FP6, the rest are scratch registers
     // used when we need slightly different live registers than what the
     // register allocator thinks.
-    unsigned RegMap[16];
+    unsigned RegMap[NumFPRegs];
+
+    // Pending fixed registers - Inline assembly needs FP registers to appear
+    // in fixed stack slot positions. This is handled by copying FP registers
+    // to ST registers before the instruction, and copying back after the
+    // instruction.
+    //
+    // This is modeled with pending ST registers. NumPendingSTs is the number
+    // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
+    // register that holds the ST value. The ST registers are not moved into
+    // place until immediately before the instruction that needs them.
+    //
+    // It can happen that we need an ST register to be live when no FP register
+    // holds the value:
+    //
+    //   %ST0 = COPY %FP4<kill>
+    //
+    // When that happens, we allocate a scratch FP register to hold the ST
+    // value. That means every register in PendingST must be live.
+
+    unsigned NumPendingSTs;
+    unsigned char PendingST[8];
 
     // Set up our stack model to match the incoming registers to MBB.
     void setupBlockStack();
@@ -152,13 +178,15 @@
         dbgs() << " FP" << Stack[i];
         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
       }
+      for (unsigned i = 0; i != NumPendingSTs; ++i)
+        dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
       dbgs() << "\n";
     }
 
     /// getSlot - Return the stack slot number a particular register number is
     /// in.
     unsigned getSlot(unsigned RegNo) const {
-      assert(RegNo < array_lengthof(RegMap) && "Regno out of range!");
+      assert(RegNo < NumFPRegs && "Regno out of range!");
       return RegMap[RegNo];
     }
 
@@ -170,12 +198,17 @@
 
     /// getScratchReg - Return an FP register that is not currently in use.
     unsigned getScratchReg() {
-      for (int i = array_lengthof(RegMap) - 1; i >= 8; --i)
+      for (int i = NumFPRegs - 1; i >= 8; --i)
         if (!isLive(i))
           return i;
       llvm_unreachable("Ran out of scratch FP registers");
     }
 
+    /// isScratchReg - Returns trus if RegNo is a scratch FP register.
+    bool isScratchReg(unsigned RegNo) {
+      return RegNo > 8 && RegNo < NumFPRegs;
+    }
+
     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
     unsigned getStackEntry(unsigned STi) const {
       if (STi >= StackTop)
@@ -191,7 +224,7 @@
 
     // pushReg - Push the specified FP<n> register onto the stack.
     void pushReg(unsigned Reg) {
-      assert(Reg < array_lengthof(RegMap) && "Register number out of range!");
+      assert(Reg < NumFPRegs && "Register number out of range!");
       if (StackTop >= 8)
         report_fatal_error("Stack overflow!");
       Stack[StackTop] = Reg;
@@ -261,7 +294,14 @@
     void handleCondMovFP(MachineBasicBlock::iterator &I);
     void handleSpecialFP(MachineBasicBlock::iterator &I);
 
-    bool translateCopy(MachineInstr*);
+    // Check if a COPY instruction is using FP registers.
+    bool isFPCopy(MachineInstr *MI) {
+      unsigned DstReg = MI->getOperand(0).getReg();
+      unsigned SrcReg = MI->getOperand(1).getReg();
+
+      return X86::RFP80RegClass.contains(DstReg) ||
+        X86::RFP80RegClass.contains(SrcReg);
+    }
   };
   char FPS::ID = 0;
 }
@@ -351,6 +391,7 @@
 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
   bool Changed = false;
   MBB = &BB;
+  NumPendingSTs = 0;
 
   setupBlockStack();
 
@@ -362,7 +403,7 @@
     if (MI->isInlineAsm())
       FPInstClass = X86II::SpecialFP;
 
-    if (MI->isCopy() && translateCopy(MI))
+    if (MI->isCopy() && isFPCopy(MI))
       FPInstClass = X86II::SpecialFP;
 
     if (FPInstClass == X86II::NotFP)
@@ -891,7 +932,8 @@
       continue;
     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
     moveToTop(Reg, I);
-    moveToTop(OldReg, I);
+    if (FixCount > 0)
+      moveToTop(OldReg, I);
   }
   DEBUG(dumpStack());
 }
@@ -1249,142 +1291,309 @@
   MachineInstr *MI = I;
   switch (MI->getOpcode()) {
   default: llvm_unreachable("Unknown SpecialFP instruction!");
-  case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
-  case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
-  case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
-    assert(StackTop == 0 && "Stack should be empty after a call!");
-    pushReg(getFPReg(MI->getOperand(0)));
-    break;
-  case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
-  case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
-  case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
-    // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
-    // The pattern we expect is:
-    //  CALL
-    //  FP1 = FpGET_ST0
-    //  FP4 = FpGET_ST1
-    //
-    // At this point, we've pushed FP1 on the top of stack, so it should be
-    // present if it isn't dead.  If it was dead, we already emitted a pop to
-    // remove it from the stack and StackTop = 0.
-    
-    // Push FP4 as top of stack next.
-    pushReg(getFPReg(MI->getOperand(0)));
-
-    // If StackTop was 0 before we pushed our operand, then ST(0) must have been
-    // dead.  In this case, the ST(1) value is the only thing that is live, so
-    // it should be on the TOS (after the pop that was emitted) and is.  Just
-    // continue in this case.
-    if (StackTop == 1)
-      break;
-    
-    // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
-    // elements so that our accounting is correct.
-    unsigned RegOnTop = getStackEntry(0);
-    unsigned RegNo = getStackEntry(1);
-    
-    // Swap the slots the regs are in.
-    std::swap(RegMap[RegNo], RegMap[RegOnTop]);
-    
-    // Swap stack slot contents.
-    if (RegMap[RegOnTop] >= StackTop)
-      report_fatal_error("Access past stack top!");
-    std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
-    break;
-  }
-  case X86::FpSET_ST0_32:
-  case X86::FpSET_ST0_64:
-  case X86::FpSET_ST0_80: {
-    // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
-    // arguments that use an st constraint. We expect a sequence of
-    // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
-    unsigned Op0 = getFPReg(MI->getOperand(0));
-
-    if (!MI->killsRegister(X86::FP0 + Op0)) {
-      // Duplicate Op0 into a temporary on the stack top.
-      duplicateToTop(Op0, getScratchReg(), I);
-    } else {
-      // Op0 is killed, so just swap it into position.
-      moveToTop(Op0, I);
-    }
-    --StackTop;   // "Forget" we have something on the top of stack!
-    break;
-  }
-  case X86::FpSET_ST1_32:
-  case X86::FpSET_ST1_64:
-  case X86::FpSET_ST1_80: {
-    // Set up st(1) for inline asm. We are assuming that st(0) has already been
-    // set up by FpSET_ST0, and our StackTop is off by one because of it.
-    unsigned Op0 = getFPReg(MI->getOperand(0));
-    // Restore the actual StackTop from before Fp_SET_ST0.
-    // Note we can't handle Fp_SET_ST1 without a preceding Fp_SET_ST0, and we
-    // are not enforcing the constraint.
-    ++StackTop;
-    unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
-    if (!MI->killsRegister(X86::FP0 + Op0)) {
-      duplicateToTop(Op0, getScratchReg(), I);
-      moveToTop(RegOnTop, I);
-    } else if (getSTReg(Op0) != X86::ST1) {
-      // We have the wrong value at st(1). Shuffle! Untested!
-      moveToTop(getStackEntry(1), I);
-      moveToTop(Op0, I);
-      moveToTop(RegOnTop, I);
-    }
-    assert(StackTop >= 2 && "Too few live registers");
-    StackTop -= 2; // "Forget" both st(0) and st(1).
-    break;
-  }
-  case X86::MOV_Fp3232:
-  case X86::MOV_Fp3264:
-  case X86::MOV_Fp6432:
-  case X86::MOV_Fp6464: 
-  case X86::MOV_Fp3280:
-  case X86::MOV_Fp6480:
-  case X86::MOV_Fp8032:
-  case X86::MOV_Fp8064: 
-  case X86::MOV_Fp8080: {
+  case TargetOpcode::COPY: {
+    // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
     const MachineOperand &MO1 = MI->getOperand(1);
-    unsigned SrcReg = getFPReg(MO1);
-
     const MachineOperand &MO0 = MI->getOperand(0);
-    unsigned DestReg = getFPReg(MO0);
-    if (MI->killsRegister(X86::FP0+SrcReg)) {
+    unsigned DstST = MO0.getReg() - X86::ST0;
+    unsigned SrcST = MO1.getReg() - X86::ST0;
+    bool KillsSrc = MI->killsRegister(MO1.getReg());
+
+    // ST = COPY FP. Set up a pending ST register.
+    if (DstST < 8) {
+      unsigned SrcFP = getFPReg(MO1);
+      assert(isLive(SrcFP) && "Cannot copy dead register");
+      assert(!MO0.isDead() && "Cannot copy to dead ST register");
+
+      // Unallocated STs are marked as the nonexistent FP255.
+      while (NumPendingSTs <= DstST)
+        PendingST[NumPendingSTs++] = NumFPRegs;
+
+      // STi could still be live from a previous inline asm.
+      if (isScratchReg(PendingST[DstST])) {
+        DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
+                     << '\n');
+        freeStackSlotBefore(MI, PendingST[DstST]);
+      }
+
+      // When the source is killed, allocate a scratch FP register.
+      if (KillsSrc) {
+        unsigned Slot = getSlot(SrcFP);
+        unsigned SR = getScratchReg();
+        PendingST[DstST] = SR;
+        Stack[Slot] = SR;
+        RegMap[SR] = Slot;
+      } else
+        PendingST[DstST] = SrcFP;
+      break;
+    }
+
+    // FP = COPY ST. Extract fixed stack value.
+    // Any instruction defining ST registers must have assigned them to a
+    // scratch register.
+    if (SrcST < 8) {
+      unsigned DstFP = getFPReg(MO0);
+      assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
+      assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
+      unsigned SrcFP = PendingST[SrcST];
+      assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
+      assert(isLive(SrcFP) && "Scratch holding ST is dead");
+
+      // DstFP steals the stack slot from SrcFP.
+      unsigned Slot = getSlot(SrcFP);
+      Stack[Slot] = DstFP;
+      RegMap[DstFP] = Slot;
+
+      // Always treat the ST as killed.
+      PendingST[SrcST] = NumFPRegs;
+      while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
+        --NumPendingSTs;
+      break;
+    }
+
+    // FP <- FP copy.
+    unsigned DstFP = getFPReg(MO0);
+    unsigned SrcFP = getFPReg(MO1);
+    assert(isLive(SrcFP) && "Cannot copy dead register");
+    if (KillsSrc) {
       // If the input operand is killed, we can just change the owner of the
       // incoming stack slot into the result.
-      unsigned Slot = getSlot(SrcReg);
-      assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
-      Stack[Slot] = DestReg;
-      RegMap[DestReg] = Slot;
-
+      unsigned Slot = getSlot(SrcFP);
+      Stack[Slot] = DstFP;
+      RegMap[DstFP] = Slot;
     } else {
-      // For FMOV we just duplicate the specified value to a new stack slot.
+      // For COPY we just duplicate the specified value to a new stack slot.
       // This could be made better, but would require substantial changes.
-      duplicateToTop(SrcReg, DestReg, I);
-    }
+      duplicateToTop(SrcFP, DstFP, I);
     }
     break;
+  }
+
+  case X86::FpPOP_RETVAL: {
+    // The FpPOP_RETVAL instruction is used after calls that return a value on
+    // the floating point stack. We cannot model this with ST defs since CALL
+    // instructions have fixed clobber lists. This instruction is interpreted
+    // to mean that there is one more live register on the stack than we
+    // thought.
+    //
+    // This means that StackTop does not match the hardware stack between a
+    // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
+    // between CALL and FpPOP_RETVAL as long as they don't overflow the
+    // hardware stack.
+    unsigned DstFP = getFPReg(MI->getOperand(0));
+
+    // Move existing stack elements up to reflect reality.
+    assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
+    if (StackTop) {
+      std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
+      for (unsigned i = 0; i != NumFPRegs; ++i)
+        ++RegMap[i];
+    }
+    ++StackTop;
+
+    // DstFP is the new bottom of the stack.
+    Stack[0] = DstFP;
+    RegMap[DstFP] = 0;
+
+    // DstFP will be killed by processBasicBlock if this was a dead def.
+    break;
+  }
+
   case TargetOpcode::INLINEASM: {
     // The inline asm MachineInstr currently only *uses* FP registers for the
     // 'f' constraint.  These should be turned into the current ST(x) register
-    // in the machine instr.  Also, any kills should be explicitly popped after
-    // the inline asm.
-    unsigned Kills = 0;
+    // in the machine instr.
+    //
+    // There are special rules for x87 inline assembly. The compiler must know
+    // exactly how many registers are popped and pushed implicitly by the asm.
+    // Otherwise it is not possible to restore the stack state after the inline
+    // asm.
+    //
+    // There are 3 kinds of input operands:
+    //
+    // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
+    //    popped input operand must be in a fixed stack slot, and it is either
+    //    tied to an output operand, or in the clobber list. The MI has ST use
+    //    and def operands for these inputs.
+    //
+    // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
+    //    preserved by the inline asm. The fixed stack slots must be STn-STm
+    //    following the popped inputs. A fixed input operand cannot be tied to
+    //    an output or appear in the clobber list. The MI has ST use operands
+    //    and no defs for these inputs.
+    //
+    // 3. Preserved inputs. These inputs use the "f" constraint which is
+    //    represented as an FP register. The inline asm won't change these
+    //    stack slots.
+    //
+    // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
+    // registers do not count as output operands. The inline asm changes the
+    // stack as if it popped all the popped inputs and then pushed all the
+    // output operands.
+
+    // Scan the assembly for ST registers used, defined and clobbered. We can
+    // only tell clobbers from defs by looking at the asm descriptor.
+    unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
+    unsigned NumOps = 0;
+    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
+         i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
+      unsigned Flags = MI->getOperand(i).getImm();
+      NumOps = InlineAsm::getNumOperandRegisters(Flags);
+      if (NumOps != 1)
+        continue;
+      const MachineOperand &MO = MI->getOperand(i + 1);
+      if (!MO.isReg())
+        continue;
+      unsigned STReg = MO.getReg() - X86::ST0;
+      if (STReg >= 8)
+        continue;
+
+      switch (InlineAsm::getKind(Flags)) {
+      case InlineAsm::Kind_RegUse:
+        STUses |= (1u << STReg);
+        break;
+      case InlineAsm::Kind_RegDef:
+      case InlineAsm::Kind_RegDefEarlyClobber:
+        STDefs |= (1u << STReg);
+        if (MO.isDead())
+          STDeadDefs |= (1u << STReg);
+        break;
+      case InlineAsm::Kind_Clobber:
+        STClobbers |= (1u << STReg);
+        break;
+      default:
+        break;
+      }
+    }
+
+    if (STUses && !isMask_32(STUses))
+      report_fatal_error("Inline asm fixed inputs"
+                         " must be last on the x87 stack");
+    unsigned NumSTUses = CountTrailingOnes_32(STUses);
+
+    // Defs must be contiguous from the stack top. ST0-STn.
+    if (STDefs && !isMask_32(STDefs))
+      report_fatal_error("Inline asm fixed outputs"
+                         " must be last on the x87 stack");
+    unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
+
+    // So must the clobbered stack slots. ST0-STm, m >= n.
+    if (STClobbers && !isMask_32(STDefs | STClobbers))
+      report_fatal_error("Inline asm clobbers must be last on the x87 stack");
+
+    // Popped inputs are the ones that are also clobbered or defined.
+    unsigned STPopped = STUses & (STDefs | STClobbers);
+    if (STPopped && !isMask_32(STPopped))
+      report_fatal_error("Inline asm popped inputs"
+                         " must be last on the x87 stack");
+    unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
+
+    DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
+                 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
+
+    // Scan the instruction for FP uses corresponding to "f" constraints.
+    // Collect FP registers to kill afer the instruction.
+    // Always kill all the scratch regs.
+    unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
+    unsigned FPUsed = 0;
     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
       MachineOperand &Op = MI->getOperand(i);
       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
         continue;
-      assert(Op.isUse() && "Only handle inline asm uses right now");
-      
+      if (!Op.isUse())
+        report_fatal_error("Illegal \"f\" output constraint in inline asm");
       unsigned FPReg = getFPReg(Op);
-      Op.setReg(getSTReg(FPReg));
-      
+      FPUsed |= 1U << FPReg;
+
       // If we kill this operand, make sure to pop it from the stack after the
       // asm.  We just remember it for now, and pop them all off at the end in
       // a batch.
       if (Op.isKill())
-        Kills |= 1U << FPReg;
+        FPKills |= 1U << FPReg;
     }
 
+    // The popped inputs will be killed by the instruction, so duplicate them
+    // if the FP register needs to be live after the instruction, or if it is
+    // used in the instruction itself. We effectively treat the popped inputs
+    // as early clobbers.
+    for (unsigned i = 0; i < NumSTPopped; ++i) {
+      if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
+        continue;
+      unsigned SR = getScratchReg();
+      duplicateToTop(PendingST[i], SR, I);
+      DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
+                   << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
+      PendingST[i] = SR;
+    }
+
+    // Make sure we have a unique live register for every fixed use. Some of
+    // them could be undef uses, and we need to emit LD_F0 instructions.
+    for (unsigned i = 0; i < NumSTUses; ++i) {
+      if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
+        // Check for shared assignments.
+        for (unsigned j = 0; j < i; ++j) {
+          if (PendingST[j] != PendingST[i])
+            continue;
+          // STi and STj are inn the same register, create a copy.
+          unsigned SR = getScratchReg();
+          duplicateToTop(PendingST[i], SR, I);
+          DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
+                       << unsigned(PendingST[i])
+                       << " to avoid collision with ST" << j << '\n');
+          PendingST[i] = SR;
+        }
+        continue;
+      }
+      unsigned SR = getScratchReg();
+      DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
+      BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
+      pushReg(SR);
+      PendingST[i] = SR;
+      if (NumPendingSTs == i)
+        ++NumPendingSTs;
+    }
+    assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
+
+    // Now we can rearrange the live registers to match what was requested.
+    shuffleStackTop(PendingST, NumPendingSTs, I);
+    DEBUG({dbgs() << "Before asm: "; dumpStack();});
+
+    // With the stack layout fixed, rewrite the FP registers.
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand &Op = MI->getOperand(i);
+      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
+        continue;
+      unsigned FPReg = getFPReg(Op);
+      Op.setReg(getSTReg(FPReg));
+    }
+
+    // Simulate the inline asm popping its inputs and pushing its outputs.
+    StackTop -= NumSTPopped;
+
+    // Hold the fixed output registers in scratch FP registers. They will be
+    // transferred to real FP registers by copies.
+    NumPendingSTs = 0;
+    for (unsigned i = 0; i < NumSTDefs; ++i) {
+      unsigned SR = getScratchReg();
+      pushReg(SR);
+      FPKills &= ~(1u << SR);
+    }
+    for (unsigned i = 0; i < NumSTDefs; ++i)
+      PendingST[NumPendingSTs++] = getStackEntry(i);
+    DEBUG({dbgs() << "After asm: "; dumpStack();});
+
+    // If any of the ST defs were dead, pop them immediately. Our caller only
+    // handles dead FP defs.
+    MachineBasicBlock::iterator InsertPt = MI;
+    for (unsigned i = 0; STDefs & (1u << i); ++i) {
+      if (!(STDeadDefs & (1u << i)))
+        continue;
+      freeStackSlotAfter(InsertPt, PendingST[i]);
+      PendingST[i] = NumFPRegs;
+    }
+    while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
+      --NumPendingSTs;
+
     // If this asm kills any FP registers (is the last use of them) we must
     // explicitly emit pop instructions for them.  Do this now after the asm has
     // executed so that the ST(x) numbers are not off (which would happen if we
@@ -1392,16 +1601,16 @@
     //
     // Note: this might be a non-optimal pop sequence.  We might be able to do
     // better by trying to pop in stack order or something.
-    MachineBasicBlock::iterator InsertPt = MI;
-    while (Kills) {
-      unsigned FPReg = CountTrailingZeros_32(Kills);
-      freeStackSlotAfter(InsertPt, FPReg);
-      Kills &= ~(1U << FPReg);
+    while (FPKills) {
+      unsigned FPReg = CountTrailingZeros_32(FPKills);
+      if (isLive(FPReg))
+        freeStackSlotAfter(InsertPt, FPReg);
+      FPKills &= ~(1U << FPReg);
     }
     // Don't delete the inline asm!
     return;
   }
-      
+
   case X86::RET:
   case X86::RETI:
     // If RET has an FP register use operand, pass the first one in ST(0) and
@@ -1499,33 +1708,3 @@
   } else
     --I;
 }
-
-// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
-bool FPS::translateCopy(MachineInstr *MI) {
-  unsigned DstReg = MI->getOperand(0).getReg();
-  unsigned SrcReg = MI->getOperand(1).getReg();
-
-  if (DstReg == X86::ST0) {
-    MI->setDesc(TII->get(X86::FpSET_ST0_80));
-    MI->RemoveOperand(0);
-    return true;
-  }
-  if (DstReg == X86::ST1) {
-    MI->setDesc(TII->get(X86::FpSET_ST1_80));
-    MI->RemoveOperand(0);
-    return true;
-  }
-  if (SrcReg == X86::ST0) {
-    MI->setDesc(TII->get(X86::FpGET_ST0_80));
-    return true;
-  }
-  if (SrcReg == X86::ST1) {
-    MI->setDesc(TII->get(X86::FpGET_ST1_80));
-    return true;
-  }
-  if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
-    MI->setDesc(TII->get(X86::MOV_Fp8080));
-    return true;
-  }
-  return false;
-}