Description of the SPARC as a target architecture.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp b/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp
new file mode 100644
index 0000000..13384b8
--- /dev/null
+++ b/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp
@@ -0,0 +1,1456 @@
+// $Id$
+//***************************************************************************
+// File:
+//	SparcInstrSelection.cpp
+// 
+// Purpose:
+//	
+// History:
+//	7/02/01	 -  Vikram Adve  -  Created
+//***************************************************************************
+
+
+//************************** System Include Files **************************/
+
+#include <assert.h>
+
+//*************************** User Include Files ***************************/
+
+#include "llvm/Type.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/SymbolTable.h"
+#include "llvm/Value.h"
+#include "llvm/Instruction.h"
+#include "llvm/InstrTypes.h"
+#include "llvm/iTerminators.h"
+#include "llvm/iMemory.h"
+#include "llvm/iOther.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Method.h"
+#include "llvm/ConstPoolVals.h"
+#include "llvm/LLC/CompileContext.h"
+#include "llvm/Codegen/Sparc.h"
+#include "llvm/Codegen/MachineInstr.h"
+#include "llvm/Codegen/InstrForest.h"
+#include "llvm/Codegen/InstrSelection.h"
+
+
+//******************** Internal Data Declarations ************************/
+
+// to be used later
+struct BranchPattern {
+  bool	        flipCondition; // should the sense of the test be reversed
+  BasicBlock*	targetBB;      // which basic block to branch to
+  MachineInstr* extraBranch;   // if neither branch is fall-through, then this
+                               // BA must be inserted after the cond'l one
+};
+
+//************************* Forward Declarations ***************************/
+
+
+static MachineOpCode	ChooseBprInstruction	(const InstructionNode* instrNode);
+
+static MachineOpCode	ChooseBccInstruction	(const InstructionNode* instrNode,
+						 bool& isFPBranch);
+
+static MachineOpCode	ChooseBpccInstruction	(const InstructionNode* instrNode,
+						 const BinaryOperator* setCCInstr);
+
+static MachineOpCode	ChooseBfpccInstruction	(const InstructionNode* instrNode,
+						 const BinaryOperator* setCCInstr);
+
+static MachineOpCode	ChooseConvertToFloatInstr(const InstructionNode* instrNode,
+						  const Type* opType);
+
+static MachineOpCode	ChooseConvertToIntInstr	(const InstructionNode* instrNode,
+						 const Type* opType);
+
+static MachineOpCode	ChooseAddInstruction	(const InstructionNode* instrNode);
+
+static MachineOpCode	ChooseSubInstruction	(const InstructionNode* instrNode);
+
+static MachineOpCode	ChooseFcmpInstruction	(const InstructionNode* instrNode);
+
+static MachineOpCode	ChooseMulInstruction	(const InstructionNode* instrNode,
+						 bool checkCasts);
+
+static MachineOpCode	ChooseDivInstruction	(const InstructionNode* instrNode);
+
+static MachineOpCode	ChooseLoadInstruction	(const Type* resultType);
+
+static MachineOpCode	ChooseStoreInstruction	(const Type* valueType);
+
+static void		SetOperandsForMemInstr	(MachineInstr* minstr,
+					 const InstructionNode* vmInstrNode,
+					 const TargetMachine& targetMachine);
+
+static void		SetMemOperands_Internal	(MachineInstr* minstr,
+					 const InstructionNode* vmInstrNode,
+					 Value* ptrVal,
+					 Value* arrayOffsetVal,
+					 const vector<ConstPoolVal*>& idxVec,
+					 const TargetMachine& targetMachine);
+
+static unsigned		FixConstantOperands(const InstructionNode* vmInstrNode,
+					 MachineInstr** mvec,
+					 unsigned numInstr,
+					 TargetMachine& targetMachine);
+
+static unsigned		InsertLoadConstInstructions(unsigned loadConstFlags,
+				         const InstructionNode* vmInstrNode,
+					 MachineInstr** mvec,
+					 unsigned numInstr);
+
+static MachineInstr*	MakeOneLoadConstInstr(Instruction* vmInstr,
+					      Value* val);
+
+
+//******************* Externally Visible Functions *************************/
+
+
+//------------------------------------------------------------------------ 
+// External Function: ThisIsAChainRule
+//
+// Purpose:
+//   Check if a given BURG rule is a chain rule.
+//------------------------------------------------------------------------ 
+
+extern bool
+ThisIsAChainRule(int eruleno)
+{
+  switch(eruleno)
+    {
+    case 111:	// stmt:  reg
+    case 112:	// stmt:  boolconst
+    case 113:	// stmt:  bool
+    case 121:
+    case 122:
+    case 123:
+    case 124:
+    case 125:
+    case 126:
+    case 127:
+    case 128:
+    case 129:
+    case 130:
+    case 131:
+    case 132:
+    case 153: return true; break;
+      
+    default: return false; break;
+    }
+}
+
+//------------------------------------------------------------------------ 
+// External Function: GetInstructionsByRule
+//
+// Purpose:
+//   Choose machine instructions for the SPARC according to the
+//   patterns chosen by the BURG-generated parser.
+//------------------------------------------------------------------------ 
+
+unsigned
+GetInstructionsByRule(InstructionNode* subtreeRoot,
+		      int ruleForNode,
+		      short* nts,
+		      CompileContext& ccontext,
+		      MachineInstr** mvec)
+{
+  int numInstr = 1;			// initialize for common case
+  bool checkCast = false;		// initialize here to use fall-through
+  Value *leftVal, *rightVal;
+  const Type* opType;
+  int nextRule;
+  BranchPattern brPattern;
+  
+  mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL;	// just for safety
+  
+  switch(ruleForNode) {
+  case 1:	// stmt:   Ret
+  case 2:	// stmt:   RetValue(reg)
+		// NOTE: Prepass of register allocation is responsible
+		//	 for moving return value to appropriate register.
+		// Mark the return-address register as a hidden virtual reg.
+    {		
+    Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
+					subtreeRoot->getInstruction(), NULL);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
+    
+    mvec[0] = new MachineInstr(RETURN);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, returnReg);
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+			          (int64_t) 0);
+
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    break;
+    }  
+    
+  case 3:	// stmt:   Store(reg,reg)
+  case 4:	// stmt:   Store(reg,ptrreg)
+    mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType()));
+    SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 5:	// stmt:   BrUncond
+    mvec[0] = new MachineInstr(BA);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
+	      ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+    
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    break;
+    
+  case 6:	// stmt:   BrCond(boolconst)
+    // boolconst => boolean was computed with `%b = setCC type reg1 constant'
+    // If the constant is ZERO, we can use the branch-on-integer-register
+    // instructions and avoid the SUBcc instruction entirely.
+    // Otherwise this is just the same as case 5, so just fall through.
+    {
+    InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
+    assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+    ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
+    
+    if (constVal->getType()->isIntegral()
+	&& ((constVal->getType()->isSigned()
+	     && ((ConstPoolSInt*) constVal)->getValue()==0)
+	    || (constVal->getType()->isUnsigned()
+		&& ((ConstPoolUInt*) constVal)->getValue()== 0)))
+      {
+	// Whew!  Ok, that was zero after all...
+	// Use the left child of the setCC instruction as the first argument!
+	mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
+	mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+		      subtreeRoot->leftChild()->leftChild()->getValue());
+	mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+	      ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+	mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+	
+	mvec[numInstr++] = new MachineInstr(BA); // false branch
+	mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+	break;
+      }
+    // ELSE FALL THROUGH
+    }
+    
+  case 7:	// stmt:   BrCond(bool)
+    // bool => boolean was computed with `%b = setcc type reg1 reg2'
+    // Need to check whether the type was a FP, signed int or unsigned int,
+    // nad check the branching condition in order to choose the branch to use.
+    // Also, for FP branches, an extra operand specifies which FCCn reg to use.
+    // 
+    {
+    bool isFPBranch;
+    mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
+    
+    int opNum = 0;
+    if (isFPBranch)
+	mvec[0]->SetMachineOperand(opNum++, MachineOperand::MO_CCRegister,
+				  subtreeRoot->leftChild()->getValue());
+    
+    mvec[0]->SetMachineOperand(opNum, MachineOperand::MO_PCRelativeDisp,
+	      ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+    
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    
+    mvec[numInstr++] = new MachineInstr(BA); // false branch
+    mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+    break;
+    }
+  
+  case 8:	// stmt:   BrCond(boolreg)
+    // bool => boolean is stored in an existing register.
+    // Just use the branch-on-integer-register instruction!
+    // 
+    mvec[0] = new MachineInstr(BRNZ);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+			         subtreeRoot->leftChild()->getValue());
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+	      ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    break;
+    
+  case 9:	// stmt:   Switch(reg)
+    assert(0 && "*** SWITCH instruction is not implemented yet.");
+    numInstr = 0;
+    break;
+    
+  case 10:	// reg:   VRegList(reg, reg)
+    assert(0 && "VRegList should never be the topmost non-chain rule");
+    break;
+    
+  case 21:	// reg:   Not(reg):	Implemented as reg = reg XOR-NOT 0
+    mvec[0] = new MachineInstr(XNOR);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+			          subtreeRoot->leftChild()->getValue());
+    mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+    mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register,
+				 subtreeRoot->getValue());
+    break;
+    
+  case 22:	// reg:   ToBoolTy(reg):
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() || opType == Type::BoolTy);
+    numInstr = 0;
+    break;
+    
+  case 23:	// reg:   ToUByteTy(reg)
+  case 25:	// reg:   ToUShortTy(reg)
+  case 27:	// reg:   ToUIntTy(reg)
+  case 29:	// reg:   ToULongTy(reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() || opType == Type::BoolTy);
+    numInstr = 0;
+    break;
+    
+  case 24:	// reg:   ToSByteTy(reg)
+  case 26:	// reg:   ToShortTy(reg)
+  case 28:	// reg:   ToIntTy(reg)
+  case 30:	// reg:   ToLongTy(reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    if (opType->isIntegral() || opType == Type::BoolTy)
+      numInstr = 0;
+    else
+      {
+	mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType));
+	Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+      }
+    break;
+    
+  case 31:	// reg:   ToFloatTy(reg):
+  case 32:	// reg:   ToDoubleTy(reg):
+    
+    // If this instruction has a parent (a user) in the tree 
+    // and the user is translated as an FsMULd instruction,
+    // then the cast is unnecessary.  So check that first.
+    // In the future, we'll want to do the same for the FdMULq instruction,
+    // so do the check here instead of only for ToFloatTy(reg).
+    // 
+    if (subtreeRoot->parent() != NULL &&
+	((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
+      {
+	numInstr = 0;
+      }
+    else
+      {
+	opType = subtreeRoot->leftChild()->getValue()->getType();
+	mvec[0] = new MachineInstr(ChooseConvertToFloatInstr(subtreeRoot, opType));
+	Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+      }
+    break;
+    
+  case 19:	// reg:   ToArrayTy(reg):
+  case 20:	// reg:   ToPointerTy(reg):
+    numInstr = 0;
+    break;
+    
+  case 33:	// reg:   Add(reg, reg)
+    mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 34:	// reg:   Sub(reg, reg)
+    mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 135:	// reg:   Mul(todouble, todouble)
+    checkCast = true;
+    // FALL THROUGH 
+    
+  case 35:	// reg:   Mul(reg, reg)
+    mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 36:	// reg:   Div(reg, reg)
+    mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 37:	// reg:   Rem(reg, reg)
+    assert(0 && "REM instruction unimplemented for the SPARC.");
+    break;
+    
+  case 38:	// reg:   And(reg, reg)
+    mvec[0] = new MachineInstr(AND);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 138:	// reg:   And(reg, not)
+    mvec[0] = new MachineInstr(ANDN);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 39:	// reg:   Or(reg, reg)
+    mvec[0] = new MachineInstr(ORN);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 139:	// reg:   Or(reg, not)
+    mvec[0] = new MachineInstr(ORN);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 40:	// reg:   Xor(reg, reg)
+    mvec[0] = new MachineInstr(XOR);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 140:	// reg:   Xor(reg, not)
+    mvec[0] = new MachineInstr(XNOR);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 41:	// boolconst:   SetCC(reg, Constant)
+    // Check if this is an integer comparison, and
+    // there is a parent, and the parent decided to use
+    // a branch-on-integer-register instead of branch-on-condition-code.
+    // If so, the SUBcc instruction is not required.
+    // (However, we must still check for constants to be loaded from
+    // the constant pool so that such a load can be associated with
+    // this instruction.)
+    // 
+    // Otherwise this is just the same as case 7, so just fall through.
+    // 
+    if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
+	subtreeRoot->parent() != NULL)
+      {
+	InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
+	assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode);
+	const vector<MachineInstr*>&
+	  minstrVec = parentNode->getInstruction()->getMachineInstrVec();
+	MachineOpCode parentOpCode;
+	if (minstrVec.size() == 1 &&
+	    (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
+	    parentOpCode <= BRGEZ)
+	  {
+	    numInstr = 0;
+	    break;
+	  }
+      }
+    // ELSE FALL THROUGH
+    
+  case 42:	// bool:   SetCC(reg, reg):
+    if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral())
+      {
+	// integer condition: destination should be %g0
+	mvec[0] = new MachineInstr(SUBcc);
+	Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget(),
+			      /*canDiscardResult*/ true);
+      }
+    else
+      {
+	// FP condition: dest should be a FCCn register chosen by reg-alloc
+	mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
+	
+	leftVal = subtreeRoot->leftChild()->getValue();
+	rightVal = subtreeRoot->rightChild()->getValue();
+	mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+				     subtreeRoot->getValue());
+	mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, leftVal);
+	mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, rightVal);
+      }
+    break;
+    
+  case 43:	// boolreg: VReg
+    numInstr = 0;
+    break;
+
+  case 51:	// reg:   Load(reg)
+  case 52:	// reg:   Load(ptrreg)
+  case 53:	// reg:   LoadIdx(reg,reg)
+  case 54:	// reg:   LoadIdx(ptrreg,reg)
+    mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType()));
+    SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 55:	// reg:   GetElemPtr(reg)
+  case 56:	// reg:   GetElemPtrIdx(reg,reg)
+    if (subtreeRoot->parent() != NULL)
+      {
+	// Check if the parent was an array access.
+	// If so, we still need to generate this instruction.
+	MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction();
+	const PointerType* ptrType =
+	  (const PointerType*) memInst->getPtrOperand()->getType();
+	if (! ptrType->getValueType()->isArrayType())
+	  {// we don't need a separate instr
+	    numInstr = 0;
+	    break;
+	  }
+      }
+    // else in all other cases we need to a separate ADD instruction
+    mvec[0] = new MachineInstr(ADD);
+    SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 57:	// reg:   Alloca: Implement as 2 instructions:
+    		//	sub %sp, tmp -> %sp
+    {		//	add %sp, 0   -> result
+    Instruction* instr = subtreeRoot->getInstruction();
+    const PointerType* instrType = (const PointerType*) instr->getType();
+    assert(instrType->isPointerType());
+    int tsize = (int) ccontext.getTarget().findOptimalStorageSize(
+						    instrType->getValueType());
+    if (tsize == 0)
+      {
+	numInstr = 0;
+	break;
+      }
+    //else go on to create the instructions needed...
+    
+    // Create a temporary Value to hold the constant type-size
+    ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
+    ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
+    if (cpool.find(valueForTSize) == 0)
+      cpool.insert(valueForTSize);
+    
+    // Instruction 1: sub %sp, tsize -> %sp
+    // tsize is always constant, but it may have to be put into a
+    // register if it doesn't fit in the immediate field.
+    // 
+    mvec[0] = new MachineInstr(SUB);
+    mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize);
+    mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    
+    // Instruction 2: add %sp, 0 -> result
+    numInstr++;
+    mvec[1] = new MachineInstr(ADD);
+    mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+    mvec[1]->SetMachineOperand(2, MachineOperand::MO_Register, instr);
+    break;
+    }
+  
+  case 58:	// reg:   Alloca(reg): Implement as 3 instructions:
+    		//	mul num, typeSz -> tmp
+    		//	sub %sp, tmp    -> %sp
+    {		//	add %sp, 0      -> result
+    Instruction* instr = subtreeRoot->getInstruction();
+    const PointerType* instrType = (const PointerType*) instr->getType();
+    assert(instrType->isPointerType() &&
+	   instrType->getValueType()->isArrayType());
+    const Type* eltType =
+      ((ArrayType*) instrType->getValueType())->getElementType();
+    int tsize = (int) ccontext.getTarget().findOptimalStorageSize(eltType);
+    
+    if (tsize == 0)
+      {
+	numInstr = 0;
+	break;
+      }
+    //else go on to create the instructions needed...
+
+    // Create a temporary Value to hold the constant type-size
+    ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
+    ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
+    if (cpool.find(valueForTSize) == 0)
+      cpool.insert(valueForTSize);
+    
+    // Create a temporary value to hold `tmp'
+    Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
+					  subtreeRoot->leftChild()->getValue(),
+					  NULL /*could insert tsize here*/);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
+
+    // Instruction 1: mul numElements, typeSize -> tmp
+    mvec[0] = new MachineInstr(MULX);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+				subtreeRoot->leftChild()->getValue());
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize);
+    mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, tmpInstr);
+
+    // Instruction 2: sub %sp, tmp -> %sp
+    numInstr++;
+    mvec[1] = new MachineInstr(SUB);
+    mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[1]->SetMachineOperand(1, MachineOperand::MO_Register, tmpInstr);
+    mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    
+    // Instruction 3: add %sp, 0 -> result
+    numInstr++;
+    mvec[2] = new MachineInstr(ADD);
+    mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+    mvec[2]->SetMachineOperand(2, MachineOperand::MO_Register, instr);
+    break;
+    }
+    
+  case 61:	// reg:   Call
+		// Generate a call-indirect (i.e., JMPL) for now to expose
+		// the potential need for registers.  If an absolute address
+		// is available, replace this with a CALL instruction.
+		// Mark both the indirection register and the return-address
+    {		// register as hidden virtual registers.
+      
+    Instruction* targetReg = new TmpInstruction(Instruction::UserOp1,
+	((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL);
+    Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
+						subtreeRoot->getValue(), NULL);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(targetReg);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
+    
+    mvec[0] = new MachineInstr(JMPL);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, targetReg);
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+			          (int64_t) 0);
+    mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, returnReg);
+    
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    break;
+    }
+    
+  case 62:	// reg:   Shl(reg, reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() || opType == Type::BoolTy); 
+    mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 63:	// reg:   Shr(reg, reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() || opType == Type::BoolTy); 
+    mvec[0] = new MachineInstr((opType->isSigned()
+				? ((opType == Type::LongTy)? SRAX : SRA)
+				: ((opType == Type::LongTy)? SRLX : SRL)));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 71:	// reg:     VReg
+  case 72:	// reg:     Constant
+    numInstr = 0;
+    break;
+
+  case 111:	// stmt:  reg
+  case 112:	// stmt:  boolconst
+  case 113:	// stmt:  bool
+  case 121:
+  case 122:
+  case 123:
+  case 124:
+  case 125:
+  case 126:
+  case 127:
+  case 128:
+  case 129:
+  case 130:
+  case 131:
+  case 132:
+  case 153:
+    // 
+    // These are all chain rules, which have a single nonterminal on the RHS.
+    // Get the rule that matches the RHS non-terminal and use that instead.
+    // 
+    assert(ThisIsAChainRule(ruleForNode));
+    assert(nts[0] && ! nts[1]
+	   && "A chain rule should have only one RHS non-terminal!");
+    nextRule = burm_rule(subtreeRoot->getBasicNode()->state, nts[0]);
+    nts = burm_nts[nextRule];
+    numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,ccontext,mvec);
+    break;
+    
+  default:
+    numInstr = 0;
+    break;
+  }
+  
+  numInstr =
+    FixConstantOperands(subtreeRoot, mvec, numInstr, ccontext.getTarget());
+  
+  return numInstr;
+}
+
+
+//---------------------------------------------------------------------------
+// Private helper routines for SPARC instruction selection.
+//---------------------------------------------------------------------------
+
+
+static MachineOpCode 
+ChooseBprInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode;
+  
+  Instruction* setCCInstr =
+    ((InstructionNode*) instrNode->leftChild())->getInstruction();
+  
+  switch(setCCInstr->getOpcode())
+    {
+    case Instruction::SetEQ: opCode = BRZ;   break;
+    case Instruction::SetNE: opCode = BRNZ;  break;
+    case Instruction::SetLE: opCode = BRLEZ; break;
+    case Instruction::SetGE: opCode = BRGEZ; break;
+    case Instruction::SetLT: opCode = BRLZ;  break;
+    case Instruction::SetGT: opCode = BRGZ;  break;
+    default:
+      assert(0 && "Unrecognized VM instruction!");
+      opCode = INVALID_OPCODE;
+      break; 
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseBccInstruction(const InstructionNode* instrNode,
+		     bool& isFPBranch)
+{
+  InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
+  BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
+  const Type* setCCType = setCCInstr->getOperand(0)->getType();
+  
+  isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); 
+  
+  if (isFPBranch) 
+    return ChooseBfpccInstruction(instrNode, setCCInstr);
+  else
+    return ChooseBpccInstruction(instrNode, setCCInstr);
+}
+
+
+static MachineOpCode 
+ChooseBpccInstruction(const InstructionNode* instrNode,
+		      const BinaryOperator* setCCInstr)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
+  
+  if (isSigned)
+    {
+      switch(setCCInstr->getOpcode())
+	{
+	case Instruction::SetEQ: opCode = BE;  break;
+	case Instruction::SetNE: opCode = BNE; break;
+	case Instruction::SetLE: opCode = BLE; break;
+	case Instruction::SetGE: opCode = BGE; break;
+	case Instruction::SetLT: opCode = BL;  break;
+	case Instruction::SetGT: opCode = BG;  break;
+	default:
+	  assert(0 && "Unrecognized VM instruction!");
+	  break; 
+	}
+    }
+  else
+    {
+      switch(setCCInstr->getOpcode())
+	{
+	case Instruction::SetEQ: opCode = BE;   break;
+	case Instruction::SetNE: opCode = BNE;  break;
+	case Instruction::SetLE: opCode = BLEU; break;
+	case Instruction::SetGE: opCode = BCC;  break;
+	case Instruction::SetLT: opCode = BCS;  break;
+	case Instruction::SetGT: opCode = BGU;  break;
+	default:
+	  assert(0 && "Unrecognized VM instruction!");
+	  break; 
+	}
+    }
+  
+  return opCode;
+}
+
+static MachineOpCode 
+ChooseBfpccInstruction(const InstructionNode* instrNode,
+		       const BinaryOperator* setCCInstr)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch(setCCInstr->getOpcode())
+    {
+    case Instruction::SetEQ: opCode = FBE;  break;
+    case Instruction::SetNE: opCode = FBNE; break;
+    case Instruction::SetLE: opCode = FBLE; break;
+    case Instruction::SetGE: opCode = FBGE; break;
+    case Instruction::SetLT: opCode = FBL;  break;
+    case Instruction::SetGT: opCode = FBG;  break;
+    default:
+      assert(0 && "Unrecognized VM instruction!");
+      break; 
+    }
+  
+  return opCode;
+}
+
+static MachineOpCode 
+ChooseConvertToFloatInstr(const InstructionNode* instrNode,
+			  const Type* opType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch(instrNode->getOpLabel())
+    {
+    case ToFloatTy: 
+      if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+	opCode = FITOS;
+      else if (opType == Type::LongTy)
+	opCode = FXTOS;
+      else if (opType == Type::DoubleTy)
+	opCode = FDTOS;
+      else
+	  assert(0 && "Cannot convert this type to FLOAT on SPARC");
+      break;
+      
+    case ToDoubleTy: 
+      if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+	opCode = FITOD;
+      else if (opType == Type::LongTy)
+	opCode = FXTOD;
+      else if (opType == Type::FloatTy)
+	opCode = FSTOD;
+      else
+	assert(0 && "Cannot convert this type to DOUBLE on SPARC");
+      break;
+      
+    default:
+      break;
+    }
+  
+  return opCode;
+}
+
+static MachineOpCode 
+ChooseConvertToIntInstr(const InstructionNode* instrNode,
+			const Type* opType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;;
+  
+  int instrType = (int) instrNode->getOpLabel();
+  
+  if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
+    {
+      switch (opType->getPrimitiveID())
+	{
+        case Type::FloatTyID:   opCode = FSTOI; break;
+        case Type::DoubleTyID:  opCode = FDTOI; break;
+	default:
+	  assert(0 && "Non-numeric non-bool type cannot be converted to Int");
+	  break;
+	}
+    }
+  else if (instrType == ToLongTy)
+    {
+      switch (opType->getPrimitiveID())
+	{
+        case Type::FloatTyID:   opCode = FSTOX; break;
+        case Type::DoubleTyID:  opCode = FDTOX; break;
+	default:
+	  assert(0 && "Non-numeric non-bool type cannot be converted to Long");
+	  break;
+	}
+    }
+  else
+      assert(0 && "Should not get here, Mo!");
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseAddInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral() ||
+      resultType->isPointerType() ||
+      resultType->isMethodType() ||
+      resultType->isLabelType())
+    {
+      opCode = ADD;
+    }
+  else
+    {
+      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+      switch(operand->getType()->getPrimitiveID())
+	{
+	case Type::FloatTyID:  opCode = FADDS; break;
+	case Type::DoubleTyID: opCode = FADDD; break;
+	default: assert(0 && "Invalid type for ADD instruction"); break; 
+	}
+    }
+  
+  return opCode;
+}
+
+static MachineOpCode 
+ChooseSubInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral() ||
+      resultType->isPointerType())
+    {
+      opCode = SUB;
+    }
+  else
+    {
+      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+      switch(operand->getType()->getPrimitiveID())
+	{
+	case Type::FloatTyID:  opCode = FSUBS; break;
+	case Type::DoubleTyID: opCode = FSUBD; break;
+	default: assert(0 && "Invalid type for SUB instruction"); break; 
+	}
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseFcmpInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+  switch(operand->getType()->getPrimitiveID())
+    {
+    case Type::FloatTyID:  opCode = FCMPS; break;
+    case Type::DoubleTyID: opCode = FCMPD; break;
+    default: assert(0 && "Invalid type for ADD instruction"); break; 
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseMulInstruction(const InstructionNode* instrNode,
+		     bool checkCasts)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  if (checkCasts)
+    {
+      // Assume that leftArg and rightArg are both cast instructions.
+      //
+      InstrTreeNode* leftArg = instrNode->leftChild();
+      InstrTreeNode* rightArg = instrNode->rightChild();
+      InstrTreeNode* leftArgArg = leftArg->leftChild();
+      InstrTreeNode* rightArgArg = rightArg->leftChild();
+      assert(leftArg->getValue()->getType() ==rightArg->getValue()->getType());
+      
+      // If both arguments are floats cast to double, use FsMULd
+      if (leftArg->getValue()->getType() == Type::DoubleTy &&
+	  leftArgArg->getValue()->getType() == Type::FloatTy &&
+	  rightArgArg->getValue()->getType() == Type::FloatTy)
+	{
+	  return opCode = FSMULD;
+	}
+      // else fall through and use the regular multiply instructions
+    }
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral())
+    {
+      opCode = MULX;
+    }
+  else
+    {
+      switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
+	{
+	case Type::FloatTyID:  opCode = FMULS; break;
+	case Type::DoubleTyID: opCode = FMULD; break;
+	default: assert(0 && "Invalid type for MUL instruction"); break; 
+	}
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseDivInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral())
+    {
+      opCode = resultType->isSigned()? SDIVX : UDIVX;
+    }
+  else
+    {
+      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+      switch(operand->getType()->getPrimitiveID())
+	{
+	case Type::FloatTyID:  opCode = FDIVS; break;
+	case Type::DoubleTyID: opCode = FDIVD; break;
+	default: assert(0 && "Invalid type for DIV instruction"); break; 
+	}
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseLoadInstruction(const Type* resultType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch (resultType->getPrimitiveID())
+    {
+    case Type::BoolTyID:	opCode = LDUB; break;
+    case Type::UByteTyID:	opCode = LDUB; break;
+    case Type::SByteTyID:	opCode = LDSB; break;
+    case Type::UShortTyID:	opCode = LDUH; break;
+    case Type::ShortTyID:	opCode = LDSH; break;
+    case Type::UIntTyID:	opCode = LDUW; break;
+    case Type::IntTyID:		opCode = LDSW; break;
+    case Type::ULongTyID:
+    case Type::LongTyID:	opCode = LDX;  break;
+    case Type::FloatTyID:	opCode = LD;   break;
+    case Type::DoubleTyID:	opCode = LDD;  break;
+    default: assert(0 && "Invalid type for Load instruction"); break; 
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseStoreInstruction(const Type* valueType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch (valueType->getPrimitiveID())
+    {
+    case Type::BoolTyID:
+    case Type::UByteTyID:
+    case Type::SByteTyID:	opCode = STB; break;
+    case Type::UShortTyID:
+    case Type::ShortTyID:	opCode = STH; break;
+    case Type::UIntTyID:
+    case Type::IntTyID:		opCode = STW; break;
+    case Type::ULongTyID:
+    case Type::LongTyID:	opCode = STX;  break;
+    case Type::FloatTyID:	opCode = ST;   break;
+    case Type::DoubleTyID:	opCode = STD;  break;
+    default: assert(0 && "Invalid type for Store instruction"); break; 
+    }
+  
+  return opCode;
+}
+
+
+//------------------------------------------------------------------------ 
+// Function SetOperandsForMemInstr
+//
+// Choose addressing mode for the given load or store instruction.
+// Use [reg+reg] if it is an indexed reference, and the index offset is
+//		 not a constant or if it cannot fit in the offset field.
+// Use [reg+offset] in all other cases.
+// 
+// This assumes that all array refs are "lowered" to one of these forms:
+//	%x = load (subarray*) ptr, constant	; single constant offset
+//	%x = load (subarray*) ptr, offsetVal	; single non-constant offset
+// Generally, this should happen via strength reduction + LICM.
+// Also, strength reduction should take care of using the same register for
+// the loop index variable and an array index, when that is profitable.
+//------------------------------------------------------------------------ 
+
+static void
+SetOperandsForMemInstr(MachineInstr* minstr,
+		       const InstructionNode* vmInstrNode,
+		       const TargetMachine& targetMachine)
+{
+  MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+  
+  // Variables to hold the index vector, ptr value, and offset value.
+  // The major work here is to extract these for all 3 instruction types
+  // and then call the common function SetMemOperands_Internal().
+  // 
+  const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
+  vector<ConstPoolVal*>* newIdxVec = NULL;
+  Value* ptrVal;
+  Value* arrayOffsetVal = NULL;
+  
+  // Test if a GetElemPtr instruction is being folded into this mem instrn.
+  // If so, it will be in the left child for Load and GetElemPtr,
+  // and in the right child for Store instructions.
+  // 
+  InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
+			     ? vmInstrNode->rightChild()
+			     : vmInstrNode->leftChild()); 
+  
+  if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
+      ptrChild->getOpLabel() == GetElemPtrIdx)
+    {
+      // There is a GetElemPtr instruction and there may be a chain of
+      // more than one.  Use the pointer value of the last one in the chain.
+      // Fold the index vectors from the entire chain and from the mem
+      // instruction into one single index vector.
+      // Finally, we never fold for an array instruction so make that NULL.
+      
+      newIdxVec = new vector<ConstPoolVal*>;
+      ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
+      
+      newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
+      idxVec = newIdxVec;
+      
+      assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
+	     && "GetElemPtr cannot be folded into array refs in selection");
+    }
+  else
+    {
+      // There is no GetElemPtr instruction.
+      // Use the pointer value and the index vector from the Mem instruction.
+      // If it is an array reference, get the array offset value.
+      // 
+      ptrVal = memInst->getPtrOperand();
+
+      const Type* opType =
+	((const PointerType*) ptrVal->getType())->getValueType();
+      if (opType->isArrayType())
+	{
+	  assert((memInst->getNumOperands()
+		  == (unsigned) 1 + memInst->getFirstOffsetIdx())
+		 && "Array refs must be lowered before Instruction Selection");
+	  
+	  arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
+	}
+    }
+  
+  SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
+			  *idxVec, targetMachine);
+  
+  if (newIdxVec != NULL)
+    delete newIdxVec;
+}
+
+
+static void
+SetMemOperands_Internal(MachineInstr* minstr,
+			const InstructionNode* vmInstrNode,
+			Value* ptrVal,
+			Value* arrayOffsetVal,
+			const vector<ConstPoolVal*>& idxVec,
+			const TargetMachine& targetMachine)
+{
+  MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+  
+  // Initialize so we default to storing the offset in a register.
+  int64_t smallConstOffset;
+  Value* valueForRegOffset = NULL;
+  MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_Register;
+
+  // Check if there is an index vector and if so, if it translates to
+  // a small enough constant to fit in the immediate-offset field.
+  // 
+  if (idxVec.size() > 0)
+    {
+      bool isConstantOffset = false;
+      unsigned offset;
+      
+      const PointerType* ptrType = (PointerType*) ptrVal->getType();
+      
+      if (ptrType->getValueType()->isStructType())
+	{
+	  // the offset is always constant for structs
+	  isConstantOffset = true;
+	  
+	  // Compute the offset value using the index vector
+	  offset = MemAccessInst::getIndexedOfsetForTarget(ptrType,
+						       idxVec, targetMachine);
+	}
+      else
+	{
+	  // It must be an array ref.  Check if the offset is a constant,
+	  // and that the indexing has been lowered to a single offset.
+	  // 
+	  assert(ptrType->getValueType()->isArrayType());
+	  assert(arrayOffsetVal != NULL
+		 && "Expect to be given Value* for array offsets");
+	  
+	  if (arrayOffsetVal->getValueType() == Value::ConstantVal)
+	    {
+	      isConstantOffset = true;	// always constant for structs
+	      assert(arrayOffsetVal->getType()->isIntegral());
+	      offset = (arrayOffsetVal->getType()->isSigned())
+			? ((ConstPoolSInt*) arrayOffsetVal)->getValue()
+			: (int64_t) ((ConstPoolUInt*) arrayOffsetVal)->getValue();
+	    }
+	  else
+	    {
+	      valueForRegOffset = arrayOffsetVal;
+	    }
+	}
+      
+      if (isConstantOffset)
+	{
+	  // create a virtual register for the constant
+	  valueForRegOffset = new ConstPoolSInt(Type::IntTy, offset);
+	}
+    }
+  else
+    {
+      offsetOpType = MachineOperand::MO_SignExtendedImmed;
+      smallConstOffset = 0;
+    }
+  
+  // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
+  // It is the left child in the instruction tree in all cases.
+  Value* leftVal = vmInstrNode->leftChild()->getValue();
+  minstr->SetMachineOperand(0, MachineOperand::MO_Register, leftVal);
+  
+  // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
+  // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
+  //
+  unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
+  if (offsetOpType == MachineOperand::MO_Register)
+    {
+      assert(valueForRegOffset != NULL);
+      minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); 
+    }
+  else
+    minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
+  
+  if (memInst->getOpcode() == Instruction::Store)
+    minstr->SetMachineOperand(1, MachineOperand::MO_Register, ptrVal);
+  else
+    minstr->SetMachineOperand(2, MachineOperand::MO_Register,
+			         vmInstrNode->getValue());
+}
+
+
+// Create one or two load instructions to load constants from the
+// constant pool.  The first instructions is stored in instrA;
+// the second (if any) in instrB.
+//
+static unsigned
+FixConstantOperands(const InstructionNode* vmInstrNode,
+		    MachineInstr** mvec,
+		    unsigned numInstr,
+		    TargetMachine& targetMachine)
+{
+  static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
+
+  unsigned numNew = 0;
+  Instruction* vmInstr = vmInstrNode->getInstruction();
+  
+  for (unsigned i=0; i < numInstr; i++)
+    {
+      MachineInstr* minstr = mvec[i];
+      const MachineInstrInfo& instrInfo =
+	targetMachine.machineInstrInfo[minstr->getOpCode()];
+      
+      for (unsigned op=0; op < instrInfo.numOperands; op++)
+	{
+	  const MachineOperand& mop = minstr->getOperand(op);
+	  Value* opValue = mop.value;
+	  
+	  // skip the result position and any other positions already
+	  // marked as not a virtual register
+	  if (instrInfo.resultPos == (int) op || 
+	      opValue == NULL ||
+	      ! (mop.machineOperandType == MachineOperand::MO_Register &&
+	         mop.vregType == MachineOperand::MO_VirtualReg))
+	    {
+	      break;
+	    }
+	  
+	  if (opValue->getValueType() == Value::ConstantVal)
+	    {
+	      MachineOperand::VirtualRegisterType vregType;
+	      unsigned int machineRegNum;
+	      int64_t immedValue;
+	      MachineOperand::MachineOperandType opType =
+		ChooseRegOrImmed(opValue, minstr->getOpCode(), targetMachine,
+				 /*canUseImmed*/ (op == 1),
+				 vregType, machineRegNum, immedValue);
+	      
+	      if (opType == MachineOperand::MO_Register)
+		{
+		  if (vregType == MachineOperand::MO_MachineReg)
+		    minstr->SetMachineOperand(op, machineRegNum);
+		  else
+		    { // value is constant and must be loaded into a register
+		      loadConstVec[numNew++] =
+			MakeOneLoadConstInstr(vmInstr, opValue);
+		    }
+		}
+	      else
+		minstr->SetMachineOperand(op, opType, immedValue);
+	    }
+
+#if 0
+	      // Either put the constant in the immediate field or
+	      // create an instruction to "put" it in a register.
+	      // Check first if it is 0 and then just use %g0.
+	      //
+
+	      bool isValidConstant;
+	      int64_t intValue = GetConstantValueAsSignedInt(opValue,
+							     isValidConstant);
+	      if (intValue == 0 && targetMachine.zeroRegNum >= 0)
+		{// put it in register %g0
+		  minstr->SetMachineOperand(op, targetMachine.zeroRegNum);
+		}
+	      else if (op == 1 &&
+		       instrInfo.constantFitsInImmedField(intValue))
+		{// put it in the immediate field
+		  MachineOperand::MachineOperandType opType =
+		    (opValue->getType()->isSigned()
+		     ? MachineOperand::MO_SignExtendedImmed
+		     : MachineOperand::MO_UnextendedImmed);
+		  
+		  minstr->SetMachineOperand(op, opType, intValue);
+		}
+	      else
+		{// create an instruction to "put" the value in a register.
+		  loadConstVec[numNew++] =
+		    MakeOneLoadConstInstr(vmInstr, opValue);
+		}
+#endif
+	}
+    }
+  
+  if (numNew > 0)
+    {
+      // Insert the new instructions *before* the old ones by moving
+      // the old ones over `numNew' positions (last-to-first, of course!).
+      // 
+      for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
+	mvec[i+numNew] = mvec[i];
+      
+      for (unsigned i=0; i < numNew; i++)
+	mvec[i] = loadConstVec[i];
+    }
+  
+  return (numInstr + numNew);
+}
+
+
+// Create one or two load instructions to load constants from the
+// constant pool.  The first instructions is stored in instrA;
+// the second (if any) in instrB.
+//
+static unsigned
+InsertLoadConstInstructions(unsigned loadConstFlags,
+			    const InstructionNode* vmInstrNode,
+			    MachineInstr** mvec,
+			    unsigned numInstr)
+{
+  MachineInstr *instrA = NULL, *instrB = NULL;
+    
+  unsigned numNew = 0;
+  
+  if (loadConstFlags & 0x01)
+    {
+      instrA = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
+				     vmInstrNode->leftChild()->getValue());
+      numNew++;
+    }
+  
+  if (loadConstFlags & 0x02)
+    {
+      instrB = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
+				     vmInstrNode->rightChild()->getValue());
+      numNew++;
+    }
+  
+  // Now insert the new instructions *before* the old ones by
+  // moving the old ones over `numNew' positions (last-to-first, of course!).
+  // 
+  for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
+    mvec[i+numNew] = mvec[i];
+  
+  unsigned whichNew = 0;
+  if (instrA != NULL)
+    mvec[whichNew++] = instrA; 
+  if (instrB != NULL)
+    mvec[whichNew++] = instrB; 
+  assert(whichNew == numNew);
+
+  return numInstr + numNew;
+}
+
+
+static MachineInstr*
+MakeOneLoadConstInstr(Instruction* vmInstr,
+		      Value* val)
+{
+  assert(val->getValueType() == Value::ConstantVal);
+  
+  MachineInstr* minstr;
+  
+  // Use a "set" instruction for known constants that can go in an integer reg.
+  // Use a "load" instruction for all other constants, in particular,
+  // floating point constants.
+  // 
+  const Type* valType = val->getType();
+  if (valType->isIntegral() ||
+      valType->isPointerType() ||
+      valType == Type::BoolTy)
+    {
+      bool isValidConstant;
+      if (val->getType()->isSigned())
+	{
+	  minstr = new MachineInstr(SETSW);
+	  minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed,
+			    GetSignedIntConstantValue(val, isValidConstant));
+	}
+      else
+	{
+	  minstr = new MachineInstr(SETUW);
+	  minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed,
+			    GetUnsignedIntConstantValue(val, isValidConstant));
+	}
+      minstr->SetMachineOperand(1, MachineOperand::MO_Register, val);
+      assert(isValidConstant && "Unrecognized constant");
+    }
+  else
+    {
+      assert(valType == Type::FloatTy || 
+	     valType == Type::DoubleTy);
+      
+      int64_t zeroOffset = 0; // to avoid overloading ambiguity with (Value*) 0
+      
+      // Make a Load instruction, and make `val' both the ptr value *and*
+      // the result value, and set the offset field to 0.  Final code
+      // generation will have to generate the base+offset for the constant.
+      // 
+      minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
+      minstr->SetMachineOperand(0, MachineOperand::MO_Register, val);
+      minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+				   zeroOffset);
+      minstr->SetMachineOperand(2, MachineOperand::MO_Register, val);
+      
+    }
+  
+  Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, val, NULL);
+  vmInstr->getMachineInstrVec().addTempValue(tmpInstr);
+  
+  return minstr;
+}
+
+
+// This function is currently unused and incomplete but will be 
+// used if we have a linear layout of basic blocks in LLVM code.
+// It decides which branch should fall-through, and whether an
+// extra unconditional branch is needed (when neither falls through).
+// 
+void
+ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
+{
+  BranchInst* brInstr = (BranchInst*) vmInstr;
+  
+  brPattern.flipCondition = false;
+  brPattern.targetBB	  = brInstr->getSuccessor(0);
+  brPattern.extraBranch   = NULL;
+  
+  assert(brInstr->getNumSuccessors() > 1 &&
+	 "Unnecessary analysis for unconditional branch");
+  
+  assert(0 && "Fold branches in peephole optimization");
+}
+