A Partitioned Boolean Quadratic Programming (PBQP) based register allocator.

Contributed by Lang Hames.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56959 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/RegAllocPBQP.cpp b/lib/CodeGen/RegAllocPBQP.cpp
new file mode 100644
index 0000000..ee82f63
--- /dev/null
+++ b/lib/CodeGen/RegAllocPBQP.cpp
@@ -0,0 +1,529 @@
+//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// 
+// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
+// register allocator for LLVM. This allocator works by constructing a PBQP
+// problem representing the register allocation problem under consideration,
+// solving this using a PBQP solver, and mapping the solution back to a
+// register assignment. If any variables are selected for spilling then spill
+// code is inserted and the process repeated. 
+//
+// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
+// for register allocation. For more information on PBQP for register
+// allocation see the following papers: 
+//
+//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
+//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
+//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
+//
+//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
+//   architectures. In Proceedings of the Joint Conference on Languages,
+//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
+//   NY, USA, 139-148.
+// 
+// Author: Lang Hames
+// Email: lhames@gmail.com
+//
+//===----------------------------------------------------------------------===//
+
+// TODO:
+// 
+// * Use of std::set in constructPBQPProblem destroys allocation order preference.
+// Switch to an order preserving container.
+// 
+// * Coalescing support.
+
+#define DEBUG_TYPE "regalloc"
+
+#include "PBQP.h"
+#include "VirtRegMap.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Support/Debug.h"
+#include <memory>
+#include <map>
+#include <set>
+#include <vector>
+#include <limits>
+
+using namespace llvm;
+
+static RegisterRegAlloc
+registerPBQPRepAlloc("pbqp", "  PBQP register allocator",
+                     createPBQPRegisterAllocator);
+
+
+namespace {
+
+  //!
+  //! PBQP based allocators solve the register allocation problem by mapping
+  //! register allocation problems to Partitioned Boolean Quadratic
+  //! Programming problems.
+  class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
+  public:
+
+    static char ID;
+    
+    //! Construct a PBQP register allocator.
+    PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
+
+    //! Return the pass name.
+    virtual const char* getPassName() const throw() {
+      return "PBQP Register Allocator";
+    }
+
+    //! PBQP analysis usage.
+    virtual void getAnalysisUsage(AnalysisUsage &au) const {
+      au.addRequired<LiveIntervals>();
+      au.addRequired<MachineLoopInfo>();
+      MachineFunctionPass::getAnalysisUsage(au);
+    }
+
+    //! Perform register allocation
+    virtual bool runOnMachineFunction(MachineFunction &MF);
+
+  private:
+    typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
+    typedef std::vector<const LiveInterval*> Node2LIMap;
+    typedef std::vector<unsigned> AllowedSet;
+    typedef std::vector<AllowedSet> AllowedSetMap;
+    typedef std::set<unsigned> IgnoreSet;
+
+    MachineFunction *mf;
+    const TargetMachine *tm;
+    const TargetRegisterInfo *tri;
+    const TargetInstrInfo *tii;
+    const MachineLoopInfo *loopInfo;
+    MachineRegisterInfo *mri;
+
+    LiveIntervals *li;
+    VirtRegMap *vrm;
+
+    LI2NodeMap li2Node;
+    Node2LIMap node2LI;
+    AllowedSetMap allowedSets;
+    IgnoreSet ignoreSet;
+
+    //! Builds a PBQP cost vector.
+    template <typename Container>
+    PBQPVector* buildCostVector(const Container &allowed,
+                                PBQPNum spillCost) const;
+
+    //! \brief Builds a PBQP interfernce matrix.
+    //!
+    //! @return Either a pointer to a non-zero PBQP matrix representing the
+    //!         allocation option costs, or a null pointer for a zero matrix.
+    //!
+    //! Expects allowed sets for two interfering LiveIntervals. These allowed
+    //! sets should contain only allocable registers from the LiveInterval's
+    //! register class, with any interfering pre-colored registers removed.
+    template <typename Container>
+    PBQPMatrix* buildInterferenceMatrix(const Container &allowed1,
+                                        const Container &allowed2) const;
+
+    //!
+    //! Expects allowed sets for two potentially coalescable LiveIntervals,
+    //! and an estimated benefit due to coalescing. The allowed sets should
+    //! contain only allocable registers from the LiveInterval's register
+    //! classes, with any interfering pre-colored registers removed.
+    template <typename Container>
+    PBQPMatrix* buildCoalescingMatrix(const Container &allowed1,
+                                      const Container &allowed2,
+                                      PBQPNum cBenefit) const;
+
+    //! \brief Helper functior for constructInitialPBQPProblem().
+    //!
+    //! This function iterates over the Function we are about to allocate for
+    //! and computes spill costs.
+    void calcSpillCosts();
+
+    //! \brief Scans the MachineFunction being allocated to find coalescing
+    //  opportunities.
+    void findCoalescingOpportunities();
+
+    //! \brief Constructs a PBQP problem representation of the register
+    //! allocation problem for this function.
+    //!
+    //! @return a PBQP solver object for the register allocation problem.
+    pbqp* constructPBQPProblem();
+
+    //! \brief Given a solved PBQP problem maps this solution back to a register
+    //! assignment.
+    bool mapPBQPToRegAlloc(pbqp *problem); 
+
+  };
+
+  char PBQPRegAlloc::ID = 0;
+}
+
+
+template <typename Container>
+PBQPVector* PBQPRegAlloc::buildCostVector(const Container &allowed,
+                                          PBQPNum spillCost) const {
+
+  // Allocate vector. Additional element (0th) used for spill option
+  PBQPVector *v = new PBQPVector(allowed.size() + 1);
+
+  (*v)[0] = spillCost;
+
+  return v;
+}
+
+template <typename Container>
+PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
+      const Container &allowed1, const Container &allowed2) const {
+
+  typedef typename Container::const_iterator ContainerIterator;
+
+  // Construct a PBQP matrix representing the cost of allocation options. The
+  // rows and columns correspond to the allocation options for the two live
+  // intervals.  Elements will be infinite where corresponding registers alias,
+  // since we cannot allocate aliasing registers to interfering live intervals.
+  // All other elements (non-aliasing combinations) will have zero cost. Note
+  // that the spill option (element 0,0) has zero cost, since we can allocate
+  // both intervals to memory safely (the cost for each individual allocation
+  // to memory is accounted for by the cost vectors for each live interval).
+  PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
+ 
+  // Assume this is a zero matrix until proven otherwise.  Zero matrices occur
+  // between interfering live ranges with non-overlapping register sets (e.g.
+  // non-overlapping reg classes, or disjoint sets of allowed regs within the
+  // same class). The term "overlapping" is used advisedly: sets which do not
+  // intersect, but contain registers which alias, will have non-zero matrices.
+  // We optimize zero matrices away to improve solver speed.
+  bool isZeroMatrix = true;
+
+
+  // Row index. Starts at 1, since the 0th row is for the spill option, which
+  // is always zero.
+  unsigned ri = 1; 
+
+  // Iterate over allowed sets, insert infinities where required. 
+  for (ContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
+       a1Itr != a1End; ++a1Itr) {
+
+    // Column index, starts at 1 as for row index.
+    unsigned ci = 1;
+    unsigned reg1 = *a1Itr;
+
+    for (ContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
+         a2Itr != a2End; ++a2Itr) {
+
+      unsigned reg2 = *a2Itr;
+
+      // If the row/column regs are identical or alias insert an infinity.
+      if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
+        (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
+        isZeroMatrix = false;
+      }
+
+      ++ci;
+    }
+
+    ++ri;
+  }
+
+  // If this turns out to be a zero matrix...
+  if (isZeroMatrix) {
+    // free it and return null.
+    delete m;
+    return 0;
+  }
+
+  // ...otherwise return the cost matrix.
+  return m;
+}
+
+void PBQPRegAlloc::calcSpillCosts() {
+
+  // Calculate the spill cost for each live interval by iterating over the
+  // function counting loads and stores, with loop depth taken into account.
+  for (MachineFunction::const_iterator bbItr = mf->begin(), bbEnd = mf->end();
+       bbItr != bbEnd; ++bbItr) {
+
+    const MachineBasicBlock *mbb = &*bbItr;
+    float loopDepth = loopInfo->getLoopDepth(mbb);
+
+    for (MachineBasicBlock::const_iterator
+         iItr = mbb->begin(), iEnd = mbb->end(); iItr != iEnd; ++iItr) {
+
+      const MachineInstr *instr = &*iItr;
+
+      for (unsigned opNo = 0; opNo < instr->getNumOperands(); ++opNo) {
+
+        const MachineOperand &mo = instr->getOperand(opNo);
+
+        // We're not interested in non-registers...
+        if (!mo.isRegister())
+          continue;
+ 
+        unsigned moReg = mo.getReg();
+
+        // ...Or invalid registers...
+        if (moReg == 0)
+          continue;
+
+        // ...Or physical registers...
+        if (TargetRegisterInfo::isPhysicalRegister(moReg)) 
+          continue;
+
+        assert ((mo.isUse() || mo.isDef()) &&
+                "Not a use, not a def, what is it?");
+
+	//... Just the virtual registers. We treat loads and stores as equal.
+	li->getInterval(moReg).weight += powf(10.0f, loopDepth);
+      }
+
+    }
+
+  }
+
+}
+
+pbqp* PBQPRegAlloc::constructPBQPProblem() {
+
+  typedef std::vector<const LiveInterval*> LIVector;
+  typedef std::set<unsigned> RegSet;
+
+  // These will store the physical & virtual intervals, respectively.
+  LIVector physIntervals, virtIntervals;
+
+  // Start by clearing the old node <-> live interval mappings & allowed sets
+  li2Node.clear();
+  node2LI.clear();
+  allowedSets.clear();
+
+  // Iterate over intervals classifying them as physical or virtual, and
+  // constructing live interval <-> node number mappings.
+  for (LiveIntervals::iterator itr = li->begin(), end = li->end();
+       itr != end; ++itr) {
+
+    if (itr->second->getNumValNums() != 0) {
+      DOUT << "Live range has " << itr->second->getNumValNums() << ": " << itr->second << "\n";
+    }
+
+    if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
+      physIntervals.push_back(itr->second);
+      mri->setPhysRegUsed(itr->second->reg);
+    }
+    else {
+
+      // If we've allocated this virtual register interval a stack slot on a
+      // previous round then it's not an allocation candidate
+      if (ignoreSet.find(itr->first) != ignoreSet.end())
+        continue;
+
+      li2Node[itr->second] = node2LI.size();
+      node2LI.push_back(itr->second);
+      virtIntervals.push_back(itr->second);
+    }
+  }
+
+  // Early out if there's no regs to allocate for.
+  if (virtIntervals.empty())
+    return 0;
+
+  // Construct a PBQP solver for this problem
+  pbqp *solver = alloc_pbqp(virtIntervals.size());
+
+  // Resize allowedSets container appropriately.
+  allowedSets.resize(virtIntervals.size());
+
+  // Iterate over virtual register intervals to compute allowed sets...
+  for (unsigned node = 0; node < node2LI.size(); ++node) {
+
+    // Grab pointers to the interval and its register class.
+    const LiveInterval *li = node2LI[node];
+    const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
+    
+    // Start by assuming all allocable registers in the class are allowed...
+    RegSet liAllowed(liRC->allocation_order_begin(*mf),
+                     liRC->allocation_order_end(*mf));
+
+    // If this range is non-empty then eliminate the physical registers which
+    // overlap with this range, along with all their aliases.
+    if (!li->empty()) {
+      for (LIVector::iterator pItr = physIntervals.begin(),
+           pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
+
+        if (li->overlaps(**pItr)) {
+
+          unsigned pReg = (*pItr)->reg;
+
+          // Remove the overlapping reg...
+          liAllowed.erase(pReg);
+
+          const unsigned *aliasItr = tri->getAliasSet(pReg);
+
+          if (aliasItr != 0) {
+            // ...and its aliases.
+            for (; *aliasItr != 0; ++aliasItr) {
+              liAllowed.erase(*aliasItr);
+            }
+
+          }
+        
+        }
+
+      }
+
+    }
+
+    // Copy the allowed set into a member vector for use when constructing cost
+    // vectors & matrices, and mapping PBQP solutions back to assignments.
+    allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
+
+    // Set the spill cost to the interval weight, or epsilon if the
+    // interval weight is zero
+    PBQPNum spillCost = (li->weight != 0.0) ? 
+        li->weight : std::numeric_limits<PBQPNum>::min();
+
+    // Build a cost vector for this interval.
+    add_pbqp_nodecosts(solver, node,
+                       buildCostVector(allowedSets[node], spillCost));
+
+  }
+
+  // Now add the cost matrices...
+  for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
+      
+    const LiveInterval *li = node2LI[node1];
+
+    if (li->empty())
+      continue;
+ 
+    // Test for live range overlaps and insert interference matrices.
+    for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
+      const LiveInterval *li2 = node2LI[node2];
+
+      if (li2->empty())
+        continue;
+
+      if (li->overlaps(*li2)) {
+        PBQPMatrix *m =
+          buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
+
+        if (m != 0) {
+          add_pbqp_edgecosts(solver, node1, node2, m);
+          delete m;
+        }
+      }
+    }
+  }
+
+  // We're done, PBQP problem constructed - return it.
+  return solver; 
+}
+
+bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
+  
+  // Set to true if we have any spills
+  bool anotherRoundNeeded = false;
+
+  // Clear the existing allocation.
+  vrm->clearAllVirt();
+  
+  // Iterate over the nodes mapping the PBQP solution to a register assignment.
+  for (unsigned node = 0; node < node2LI.size(); ++node) {
+    unsigned symReg = node2LI[node]->reg,
+             allocSelection = get_pbqp_solution(problem, node);
+
+    // If the PBQP solution is non-zero it's a physical register...
+    if (allocSelection != 0) {
+      // Get the physical reg, subtracting 1 to account for the spill option.
+      unsigned physReg = allowedSets[node][allocSelection - 1];
+
+      // Add to the virt reg map and update the used phys regs.
+      vrm->assignVirt2Phys(symReg, physReg);
+      mri->setPhysRegUsed(physReg);
+    }
+    // ...Otherwise it's a spill.
+    else {
+
+      // Make sure we ignore this virtual reg on the next round
+      // of allocation
+      ignoreSet.insert(node2LI[node]->reg);
+
+      float SSWeight;
+
+      // Insert spill ranges for this live range
+      SmallVector<LiveInterval*, 8> spillIs;
+      std::vector<LiveInterval*> newSpills =
+        li->addIntervalsForSpills(*node2LI[node], spillIs, loopInfo, *vrm,
+                                  SSWeight);
+
+      // We need another round if spill intervals were added.
+      anotherRoundNeeded |= !newSpills.empty();
+    }
+  }
+
+  return !anotherRoundNeeded;
+}
+
+bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
+  
+  mf = &MF;
+  tm = &mf->getTarget();
+  tri = tm->getRegisterInfo();
+  mri = &mf->getRegInfo();
+
+  li = &getAnalysis<LiveIntervals>();
+  loopInfo = &getAnalysis<MachineLoopInfo>();
+
+  std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf));
+  vrm = vrmAutoPtr.get();
+
+  // Allocator main loop:
+  // 
+  // * Map current regalloc problem to a PBQP problem
+  // * Solve the PBQP problem
+  // * Map the solution back to a register allocation
+  // * Spill if necessary
+  // 
+  // This process is continued till no more spills are generated.
+
+  bool regallocComplete = false;
+  
+  // Calculate spill costs for intervals
+  calcSpillCosts();
+
+  while (!regallocComplete) {
+    pbqp *problem = constructPBQPProblem();
+   
+    // Fast out if there's no problem to solve.
+    if (problem == 0)
+      return true;
+ 
+    solve_pbqp(problem);
+   
+    regallocComplete = mapPBQPToRegAlloc(problem);
+
+    free_pbqp(problem); 
+  }
+
+  ignoreSet.clear();
+
+  std::auto_ptr<Spiller> spiller(createSpiller());
+
+  spiller->runOnMachineFunction(*mf, *vrm);
+    
+  return true; 
+}
+
+FunctionPass* llvm::createPBQPRegisterAllocator() {
+  return new PBQPRegAlloc();
+}
+
+
+#undef DEBUG_TYPE