This patch adds memory support functions which will later be used to implement section-specific protection handling in MCJIT.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164249 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/unittests/Support/MemoryTest.cpp b/unittests/Support/MemoryTest.cpp
new file mode 100644
index 0000000..21cb27e
--- /dev/null
+++ b/unittests/Support/MemoryTest.cpp
@@ -0,0 +1,356 @@
+//===- llvm/unittest/Support/AllocatorTest.cpp - BumpPtrAllocator tests ---===//

+//

+//                     The LLVM Compiler Infrastructure

+//

+// This file is distributed under the University of Illinois Open Source

+// License. See LICENSE.TXT for details.

+//

+//===----------------------------------------------------------------------===//

+

+#include "llvm/Support/Memory.h"

+#include "llvm/Support/Process.h"

+

+#include "gtest/gtest.h"

+#include <cstdlib>

+

+using namespace llvm;

+using namespace sys;

+

+namespace {

+

+class MappedMemoryTest : public ::testing::TestWithParam<unsigned> {

+public:

+  MappedMemoryTest() {

+    Flags = GetParam();

+    PageSize = sys::Process::GetPageSize();

+  }

+

+protected:

+  // Adds RW flags to permit testing of the resulting memory

+  unsigned getTestableEquivalent(unsigned RequestedFlags) {

+    switch (RequestedFlags) {

+    case Memory::MF_READ:

+    case Memory::MF_WRITE:

+    case Memory::MF_READ|Memory::MF_WRITE:

+      return Memory::MF_READ|Memory::MF_WRITE;

+    case Memory::MF_READ|Memory::MF_EXEC:

+    case Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC:

+    case Memory::MF_EXEC:

+      return Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC;

+    }

+    // Default in case values are added to the enum, as required by some compilers

+    return Memory::MF_READ|Memory::MF_WRITE;

+  }

+

+  // Returns true if the memory blocks overlap

+  bool doesOverlap(MemoryBlock M1, MemoryBlock M2) {

+    if (M1.base() == M2.base())

+      return true;

+

+    if (M1.base() > M2.base())

+      return (unsigned char *)M2.base() + M2.size() > M1.base();

+

+    return (unsigned char *)M1.base() + M1.size() > M2.base();

+  }

+

+  unsigned Flags;

+  size_t   PageSize;

+};

+

+TEST_P(MappedMemoryTest, AllocAndRelease) {

+  error_code EC;

+  MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+

+  EXPECT_NE((void*)0, M1.base());

+  EXPECT_LE(sizeof(int), M1.size());

+

+  EXPECT_FALSE(Memory::releaseMappedMemory(M1));

+}

+

+TEST_P(MappedMemoryTest, MultipleAllocAndRelease) {

+  error_code EC;

+  MemoryBlock M1 = Memory::allocateMappedMemory(16, 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M2 = Memory::allocateMappedMemory(64, 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M3 = Memory::allocateMappedMemory(32, 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+

+  EXPECT_NE((void*)0, M1.base());

+  EXPECT_LE(16U, M1.size());

+  EXPECT_NE((void*)0, M2.base());

+  EXPECT_LE(64U, M2.size());

+  EXPECT_NE((void*)0, M3.base());

+  EXPECT_LE(32U, M3.size());

+

+  EXPECT_FALSE(doesOverlap(M1, M2));

+  EXPECT_FALSE(doesOverlap(M2, M3));

+  EXPECT_FALSE(doesOverlap(M1, M3));

+

+  EXPECT_FALSE(Memory::releaseMappedMemory(M1));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M3));

+  MemoryBlock M4 = Memory::allocateMappedMemory(16, 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  EXPECT_NE((void*)0, M4.base());

+  EXPECT_LE(16U, M4.size());

+  EXPECT_FALSE(Memory::releaseMappedMemory(M4));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M2));

+}

+

+TEST_P(MappedMemoryTest, BasicWrite) {

+  // This test applies only to writeable combinations

+  if (Flags && !(Flags & Memory::MF_WRITE))

+    return;

+

+  error_code EC;

+  MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+

+  EXPECT_NE((void*)0, M1.base());

+  EXPECT_LE(sizeof(int), M1.size());

+

+  int *a = (int*)M1.base();

+  *a = 1;

+  EXPECT_EQ(1, *a);

+

+  EXPECT_FALSE(Memory::releaseMappedMemory(M1));

+}

+

+TEST_P(MappedMemoryTest, MultipleWrite) {

+  // This test applies only to writeable combinations

+  if (Flags && !(Flags & Memory::MF_WRITE))

+    return;

+  error_code EC;

+  MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M2 = Memory::allocateMappedMemory(8 * sizeof(int), 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M3 = Memory::allocateMappedMemory(4 * sizeof(int), 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+

+  EXPECT_FALSE(doesOverlap(M1, M2));

+  EXPECT_FALSE(doesOverlap(M2, M3));

+  EXPECT_FALSE(doesOverlap(M1, M3));

+

+  EXPECT_NE((void*)0, M1.base());

+  EXPECT_LE(1U * sizeof(int), M1.size());

+  EXPECT_NE((void*)0, M2.base());

+  EXPECT_LE(8U * sizeof(int), M2.size());

+  EXPECT_NE((void*)0, M3.base());

+  EXPECT_LE(4U * sizeof(int), M3.size());

+

+  int *x = (int*)M1.base();

+  *x = 1;

+

+  int *y = (int*)M2.base();

+  for (int i = 0; i < 8; i++) {

+    y[i] = i;

+  }

+

+  int *z = (int*)M3.base();

+  *z = 42;

+

+  EXPECT_EQ(1, *x);

+  EXPECT_EQ(7, y[7]);

+  EXPECT_EQ(42, *z);

+

+  EXPECT_FALSE(Memory::releaseMappedMemory(M1));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M3));

+

+  MemoryBlock M4 = Memory::allocateMappedMemory(64 * sizeof(int), 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  EXPECT_NE((void*)0, M4.base());

+  EXPECT_LE(64U * sizeof(int), M4.size());

+  x = (int*)M4.base();

+  *x = 4;

+  EXPECT_EQ(4, *x);

+  EXPECT_FALSE(Memory::releaseMappedMemory(M4));

+

+  // Verify that M2 remains unaffected by other activity

+  for (int i = 0; i < 8; i++) {

+    EXPECT_EQ(i, y[i]);

+  }

+  EXPECT_FALSE(Memory::releaseMappedMemory(M2));

+}

+

+TEST_P(MappedMemoryTest, EnabledWrite) {

+  error_code EC;

+  MemoryBlock M1 = Memory::allocateMappedMemory(2 * sizeof(int), 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M2 = Memory::allocateMappedMemory(8 * sizeof(int), 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M3 = Memory::allocateMappedMemory(4 * sizeof(int), 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+

+  EXPECT_NE((void*)0, M1.base());

+  EXPECT_LE(2U * sizeof(int), M1.size());

+  EXPECT_NE((void*)0, M2.base());

+  EXPECT_LE(8U * sizeof(int), M2.size());

+  EXPECT_NE((void*)0, M3.base());

+  EXPECT_LE(4U * sizeof(int), M3.size());

+

+  EXPECT_FALSE(Memory::protectMappedMemory(M1, getTestableEquivalent(Flags)));

+  EXPECT_FALSE(Memory::protectMappedMemory(M2, getTestableEquivalent(Flags)));

+  EXPECT_FALSE(Memory::protectMappedMemory(M3, getTestableEquivalent(Flags)));

+

+  EXPECT_FALSE(doesOverlap(M1, M2));

+  EXPECT_FALSE(doesOverlap(M2, M3));

+  EXPECT_FALSE(doesOverlap(M1, M3));

+

+  int *x = (int*)M1.base();

+  *x = 1;

+  int *y = (int*)M2.base();

+  for (unsigned int i = 0; i < 8; i++) {

+    y[i] = i;

+  }

+  int *z = (int*)M3.base();

+  *z = 42;

+

+  EXPECT_EQ(1, *x);

+  EXPECT_EQ(7, y[7]);

+  EXPECT_EQ(42, *z);

+

+  EXPECT_FALSE(Memory::releaseMappedMemory(M1));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M3));

+  EXPECT_EQ(6, y[6]);

+

+  MemoryBlock M4 = Memory::allocateMappedMemory(16, 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  EXPECT_NE((void*)0, M4.base());

+  EXPECT_LE(16U, M4.size());

+  EXPECT_EQ(error_code::success(), Memory::protectMappedMemory(M4, getTestableEquivalent(Flags)));

+  x = (int*)M4.base();

+  *x = 4;

+  EXPECT_EQ(4, *x);

+  EXPECT_FALSE(Memory::releaseMappedMemory(M4));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M2));

+}

+

+TEST_P(MappedMemoryTest, SuccessiveNear) {

+  error_code EC;

+  MemoryBlock M1 = Memory::allocateMappedMemory(16, 0, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M2 = Memory::allocateMappedMemory(64, &M1, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M3 = Memory::allocateMappedMemory(32, &M2, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+

+  EXPECT_NE((void*)0, M1.base());

+  EXPECT_LE(16U, M1.size());

+  EXPECT_NE((void*)0, M2.base());

+  EXPECT_LE(64U, M2.size());

+  EXPECT_NE((void*)0, M3.base());

+  EXPECT_LE(32U, M3.size());

+

+  EXPECT_FALSE(doesOverlap(M1, M2));

+  EXPECT_FALSE(doesOverlap(M2, M3));

+  EXPECT_FALSE(doesOverlap(M1, M3));

+

+  EXPECT_FALSE(Memory::releaseMappedMemory(M1));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M3));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M2));

+}

+

+TEST_P(MappedMemoryTest, DuplicateNear) {

+  error_code EC;

+  MemoryBlock Near((void*)(3*PageSize), 16);

+  MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+

+  EXPECT_NE((void*)0, M1.base());

+  EXPECT_LE(16U, M1.size());

+  EXPECT_NE((void*)0, M2.base());

+  EXPECT_LE(64U, M2.size());

+  EXPECT_NE((void*)0, M3.base());

+  EXPECT_LE(32U, M3.size());

+

+  EXPECT_FALSE(Memory::releaseMappedMemory(M1));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M3));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M2));

+}

+

+TEST_P(MappedMemoryTest, ZeroNear) {

+  error_code EC;

+  MemoryBlock Near(0, 0);

+  MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+

+  EXPECT_NE((void*)0, M1.base());

+  EXPECT_LE(16U, M1.size());

+  EXPECT_NE((void*)0, M2.base());

+  EXPECT_LE(64U, M2.size());

+  EXPECT_NE((void*)0, M3.base());

+  EXPECT_LE(32U, M3.size());

+

+  EXPECT_FALSE(doesOverlap(M1, M2));

+  EXPECT_FALSE(doesOverlap(M2, M3));

+  EXPECT_FALSE(doesOverlap(M1, M3));

+

+  EXPECT_FALSE(Memory::releaseMappedMemory(M1));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M3));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M2));

+}

+

+TEST_P(MappedMemoryTest, ZeroSizeNear) {

+  error_code EC;

+  MemoryBlock Near((void*)(4*PageSize), 0);

+  MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+  MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+

+  EXPECT_NE((void*)0, M1.base());

+  EXPECT_LE(16U, M1.size());

+  EXPECT_NE((void*)0, M2.base());

+  EXPECT_LE(64U, M2.size());

+  EXPECT_NE((void*)0, M3.base());

+  EXPECT_LE(32U, M3.size());

+

+  EXPECT_FALSE(doesOverlap(M1, M2));

+  EXPECT_FALSE(doesOverlap(M2, M3));

+  EXPECT_FALSE(doesOverlap(M1, M3));

+

+  EXPECT_FALSE(Memory::releaseMappedMemory(M1));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M3));

+  EXPECT_FALSE(Memory::releaseMappedMemory(M2));

+}

+

+TEST_P(MappedMemoryTest, UnalignedNear) {

+  error_code EC;

+  MemoryBlock Near((void*)(2*PageSize+5), 0);

+  MemoryBlock M1 = Memory::allocateMappedMemory(15, &Near, Flags, EC);

+  EXPECT_EQ(error_code::success(), EC);

+

+  EXPECT_NE((void*)0, M1.base());

+  EXPECT_LE(sizeof(int), M1.size());

+

+  EXPECT_FALSE(Memory::releaseMappedMemory(M1));

+}

+

+// Note that Memory::MF_WRITE is not supported exclusively across

+// operating systems and architectures and can imply MF_READ|MF_WRITE

+unsigned MemoryFlags[] = {

+                           Memory::MF_READ,

+                           Memory::MF_WRITE,

+                           Memory::MF_READ|Memory::MF_WRITE,

+                           Memory::MF_EXEC,

+                           Memory::MF_READ|Memory::MF_EXEC,

+                           Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC

+                         };

+

+INSTANTIATE_TEST_CASE_P(AllocationTests,

+                        MappedMemoryTest,

+                        ::testing::ValuesIn(MemoryFlags));

+

+}  // anonymous namespace