Renaming ISD::BIT_CONVERT to ISD::BITCAST to better reflect the LLVM IR concept.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119990 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp
index ee66433..2cdb2a3 100644
--- a/lib/Target/X86/X86FastISel.cpp
+++ b/lib/Target/X86/X86FastISel.cpp
@@ -36,7 +36,7 @@
using namespace llvm;
namespace {
-
+
class X86FastISel : public FastISel {
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
/// make the right decision when generating code for different targets.
@@ -46,7 +46,7 @@
///
unsigned StackPtr;
- /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
+ /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
/// floating point ops.
/// When SSE is available, use it for f32 operations.
/// When SSE2 is available, use it for f64 operations.
@@ -69,12 +69,12 @@
/// possible.
virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
const LoadInst *LI);
-
+
#include "X86GenFastISel.inc"
private:
bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
-
+
bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
bool X86FastEmitStore(EVT VT, const Value *Val,
@@ -84,12 +84,12 @@
bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
unsigned &ResultReg);
-
+
bool X86SelectAddress(const Value *V, X86AddressMode &AM);
bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
bool X86SelectLoad(const Instruction *I);
-
+
bool X86SelectStore(const Instruction *I);
bool X86SelectRet(const Instruction *I);
@@ -105,7 +105,7 @@
bool X86SelectSelect(const Instruction *I);
bool X86SelectTrunc(const Instruction *I);
-
+
bool X86SelectFPExt(const Instruction *I);
bool X86SelectFPTrunc(const Instruction *I);
@@ -134,7 +134,7 @@
bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
};
-
+
} // end anonymous namespace.
bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
@@ -250,7 +250,7 @@
Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
break;
}
-
+
addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
DL, TII.get(Opc)), AM).addReg(Val);
return true;
@@ -261,7 +261,7 @@
// Handle 'null' like i32/i64 0.
if (isa<ConstantPointerNull>(Val))
Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
-
+
// If this is a store of a simple constant, fold the constant into the store.
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
unsigned Opc = 0;
@@ -278,7 +278,7 @@
Opc = X86::MOV64mi32;
break;
}
-
+
if (Opc) {
addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
DL, TII.get(Opc)), AM)
@@ -287,11 +287,11 @@
return true;
}
}
-
+
unsigned ValReg = getRegForValue(Val);
if (ValReg == 0)
- return false;
-
+ return false;
+
return X86FastEmitStore(VT, ValReg, AM);
}
@@ -303,7 +303,7 @@
unsigned &ResultReg) {
unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
Src, /*TODO: Kill=*/false);
-
+
if (RR != 0) {
ResultReg = RR;
return true;
@@ -438,7 +438,7 @@
AM.Disp = (uint32_t)Disp;
if (X86SelectAddress(U->getOperand(0), AM))
return true;
-
+
// If we couldn't merge the sub value into this addr mode, revert back to
// our address and just match the value instead of completely failing.
AM = SavedAM;
@@ -467,7 +467,7 @@
// Okay, we've committed to selecting this global. Set up the basic address.
AM.GV = GV;
-
+
// Allow the subtarget to classify the global.
unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
@@ -476,7 +476,7 @@
// FIXME: How do we know Base.Reg is free??
AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
}
-
+
// Unless the ABI requires an extra load, return a direct reference to
// the global.
if (!isGlobalStubReference(GVFlags)) {
@@ -489,7 +489,7 @@
AM.GVOpFlags = GVFlags;
return true;
}
-
+
// Ok, we need to do a load from a stub. If we've already loaded from this
// stub, reuse the loaded pointer, otherwise emit the load now.
DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
@@ -511,14 +511,14 @@
if (TLI.getPointerTy() == MVT::i64) {
Opc = X86::MOV64rm;
RC = X86::GR64RegisterClass;
-
+
if (Subtarget->isPICStyleRIPRel())
StubAM.Base.Reg = X86::RIP;
} else {
Opc = X86::MOV32rm;
RC = X86::GR32RegisterClass;
}
-
+
LoadReg = createResultReg(RC);
MachineInstrBuilder LoadMI =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
@@ -530,7 +530,7 @@
// Prevent loading GV stub multiple times in same MBB.
LocalValueMap[V] = LoadReg;
}
-
+
// Now construct the final address. Note that the Disp, Scale,
// and Index values may already be set here.
AM.Base.Reg = LoadReg;
@@ -604,7 +604,7 @@
// Okay, we've committed to selecting this global. Set up the basic address.
AM.GV = GV;
-
+
// No ABI requires an extra load for anything other than DLLImport, which
// we rejected above. Return a direct reference to the global.
if (Subtarget->isPICStyleRIPRel()) {
@@ -617,7 +617,7 @@
} else if (Subtarget->isPICStyleGOT()) {
AM.GVOpFlags = X86II::MO_GOTOFF;
}
-
+
return true;
}
@@ -702,7 +702,7 @@
return false;
CCValAssign &VA = ValLocs[0];
-
+
// Don't bother handling odd stuff for now.
if (VA.getLocInfo() != CCValAssign::Full)
return false;
@@ -792,11 +792,11 @@
EVT VT) {
unsigned Op0Reg = getRegForValue(Op0);
if (Op0Reg == 0) return false;
-
+
// Handle 'null' like i32/i64 0.
if (isa<ConstantPointerNull>(Op1))
Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
-
+
// We have two options: compare with register or immediate. If the RHS of
// the compare is an immediate that we can fold into this compare, use
// CMPri, otherwise use CMPrr.
@@ -808,16 +808,16 @@
return true;
}
}
-
+
unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
if (CompareOpc == 0) return false;
-
+
unsigned Op1Reg = getRegForValue(Op1);
if (Op1Reg == 0) return false;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
.addReg(Op0Reg)
.addReg(Op1Reg);
-
+
return true;
}
@@ -835,13 +835,13 @@
case CmpInst::FCMP_OEQ: {
if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
return false;
-
+
unsigned EReg = createResultReg(&X86::GR8RegClass);
unsigned NPReg = createResultReg(&X86::GR8RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(X86::SETNPr), NPReg);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
UpdateValueMap(I, ResultReg);
return true;
@@ -874,7 +874,7 @@
case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break;
case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break;
case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
-
+
case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break;
case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break;
@@ -896,7 +896,7 @@
// Emit a compare of Op0/Op1.
if (!X86FastEmitCompare(Op0, Op1, VT))
return false;
-
+
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
UpdateValueMap(I, ResultReg);
return true;
@@ -961,7 +961,7 @@
case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE_4; break;
case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break;
case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
-
+
case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE_4; break;
case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4; break;
@@ -975,7 +975,7 @@
default:
return false;
}
-
+
const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
if (SwapArgs)
std::swap(Op0, Op1);
@@ -983,7 +983,7 @@
// Emit a compare of the LHS and RHS, setting the flags.
if (!X86FastEmitCompare(Op0, Op1, VT))
return false;
-
+
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
.addMBB(TrueMBB);
@@ -1119,16 +1119,16 @@
unsigned Op0Reg = getRegForValue(I->getOperand(0));
if (Op0Reg == 0) return false;
-
+
// Fold immediate in shl(x,3).
if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
unsigned ResultReg = createResultReg(RC);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm),
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm),
ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
UpdateValueMap(I, ResultReg);
return true;
}
-
+
unsigned Op1Reg = getRegForValue(I->getOperand(1));
if (Op1Reg == 0) return false;
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
@@ -1152,10 +1152,10 @@
MVT VT;
if (!isTypeLegal(I->getType(), VT))
return false;
-
+
// We only use cmov here, if we don't have a cmov instruction bail.
if (!Subtarget->hasCMov()) return false;
-
+
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
if (VT == MVT::i16) {
@@ -1168,7 +1168,7 @@
Opc = X86::CMOVE64rr;
RC = &X86::GR64RegClass;
} else {
- return false;
+ return false;
}
unsigned Op0Reg = getRegForValue(I->getOperand(0));
@@ -1233,7 +1233,7 @@
return false;
EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
EVT DstVT = TLI.getValueType(I->getType());
-
+
// This code only handles truncation to byte right now.
if (DstVT != MVT::i8 && DstVT != MVT::i1)
// All other cases should be handled by the tblgen generated code.
@@ -1304,21 +1304,21 @@
// Grab the frame index.
X86AddressMode AM;
if (!X86SelectAddress(Slot, AM)) return false;
-
+
if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
-
+
return true;
}
case Intrinsic::objectsize: {
ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
const Type *Ty = I.getCalledFunction()->getReturnType();
-
+
assert(CI && "Non-constant type in Intrinsic::objectsize?");
-
+
MVT VT;
if (!isTypeLegal(Ty, VT))
return false;
-
+
unsigned OpC = 0;
if (VT == MVT::i32)
OpC = X86::MOV32ri;
@@ -1326,7 +1326,7 @@
OpC = X86::MOV64ri;
else
return false;
-
+
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg).
addImm(CI->isZero() ? -1ULL : 0);
@@ -1398,7 +1398,7 @@
ResultReg = DestReg1+1;
else
ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
-
+
unsigned Opc = X86::SETBr;
if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
Opc = X86::SETOr;
@@ -1516,10 +1516,10 @@
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext());
-
+
// Allocate shadow area for Win64
- if (Subtarget->isTargetWin64()) {
- CCInfo.AllocateStack(32, 8);
+ if (Subtarget->isTargetWin64()) {
+ CCInfo.AllocateStack(32, 8);
}
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
@@ -1539,7 +1539,7 @@
CCValAssign &VA = ArgLocs[i];
unsigned Arg = Args[VA.getValNo()];
EVT ArgVT = ArgVTs[VA.getValNo()];
-
+
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
@@ -1572,21 +1572,21 @@
if (!Emitted)
Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
-
+
assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
ArgVT = VA.getLocVT();
break;
}
case CCValAssign::BCvt: {
unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
- ISD::BIT_CONVERT, Arg, /*TODO: Kill=*/false);
+ ISD::BITCAST, Arg, /*TODO: Kill=*/false);
assert(BC != 0 && "Failed to emit a bitcast!");
Arg = BC;
ArgVT = VA.getLocVT();
break;
}
}
-
+
if (VA.isRegLoc()) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
VA.getLocReg()).addReg(Arg);
@@ -1597,7 +1597,7 @@
AM.Base.Reg = StackPtr;
AM.Disp = LocMemOffset;
const Value *ArgVal = ArgVals[VA.getValNo()];
-
+
// If this is a really simple value, emit this with the Value* version of
// X86FastEmitStore. If it isn't simple, we don't want to do this, as it
// can cause us to reevaluate the argument.
@@ -1609,13 +1609,13 @@
}
// ELF / PIC requires GOT in the EBX register before function calls via PLT
- // GOT pointer.
+ // GOT pointer.
if (Subtarget->isPICStyleGOT()) {
unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
X86::EBX).addReg(Base);
}
-
+
// Issue the call.
MachineInstrBuilder MIB;
if (CalleeOp) {
@@ -1629,7 +1629,7 @@
CallOpc = X86::CALL32r;
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
.addReg(CalleeOp);
-
+
} else {
// Direct call.
assert(GV && "Not a direct call");
@@ -1640,10 +1640,10 @@
CallOpc = X86::CALL64pcrel32;
else
CallOpc = X86::CALLpcrel32;
-
+
// See if we need any target-specific flags on the GV operand.
unsigned char OpFlags = 0;
-
+
// On ELF targets, in both X86-64 and X86-32 mode, direct calls to
// external symbols most go through the PLT in PIC mode. If the symbol
// has hidden or protected visibility, or if it is static or local, then
@@ -1660,8 +1660,8 @@
// automatically synthesizes these stubs.
OpFlags = X86II::MO_DARWIN_STUB;
}
-
-
+
+
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
.addGlobalAddress(GV, 0, OpFlags);
}
@@ -1690,7 +1690,7 @@
assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
EVT CopyVT = RVLocs[0].getValVT();
TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
-
+
// If this is a call to a function that returns an fp value on the x87 fp
// stack, but where we prefer to use the value in xmm registers, copy it
// out as F80 and use a truncate to move it from fp stack reg to xmm reg.
@@ -1728,7 +1728,7 @@
if (AndToI1) {
// Mask out all but lowest bit for some call which produces an i1.
unsigned AndResult = createResultReg(X86::GR8RegisterClass);
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
ResultReg = AndResult;
}
@@ -1798,7 +1798,7 @@
MVT VT;
if (!isTypeLegal(C->getType(), VT))
return false;
-
+
// Get opcode and regclass of the output for the given load instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = NULL;
@@ -1843,7 +1843,7 @@
// No f80 support yet.
return false;
}
-
+
// Materialize addresses with LEA instructions.
if (isa<GlobalValue>(C)) {
X86AddressMode AM;
@@ -1859,14 +1859,14 @@
}
return 0;
}
-
+
// MachineConstantPool wants an explicit alignment.
unsigned Align = TD.getPrefTypeAlignment(C->getType());
if (Align == 0) {
// Alignment of vector types. FIXME!
Align = TD.getTypeAllocSize(C->getType());
}
-
+
// x86-32 PIC requires a PIC base register for constant pools.
unsigned PICBase = 0;
unsigned char OpFlag = 0;
@@ -1922,19 +1922,19 @@
X86AddressMode AM;
if (!X86SelectAddress(LI->getOperand(0), AM))
return false;
-
+
X86InstrInfo &XII = (X86InstrInfo&)TII;
-
+
unsigned Size = TD.getTypeAllocSize(LI->getType());
unsigned Alignment = LI->getAlignment();
SmallVector<MachineOperand, 8> AddrOps;
AM.getFullAddress(AddrOps);
-
+
MachineInstr *Result =
XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
if (Result == 0) return false;
-
+
MI->getParent()->insert(MI, Result);
MI->eraseFromParent();
return true;
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
index 2ecc6fd..6793b70 100644
--- a/lib/Target/X86/X86ISelLowering.cpp
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -226,12 +226,12 @@
// TODO: when we have SSE, these could be more efficient, by using movd/movq.
if (!X86ScalarSSEf64) {
- setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
- setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
+ setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
+ setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
if (Subtarget->is64Bit()) {
- setOperationAction(ISD::BIT_CONVERT , MVT::f64 , Expand);
+ setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
// Without SSE, i64->f64 goes through memory.
- setOperationAction(ISD::BIT_CONVERT , MVT::i64 , Expand);
+ setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
}
}
@@ -654,10 +654,10 @@
setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
- setOperationAction(ISD::BIT_CONVERT, MVT::v8i8, Expand);
- setOperationAction(ISD::BIT_CONVERT, MVT::v4i16, Expand);
- setOperationAction(ISD::BIT_CONVERT, MVT::v2i32, Expand);
- setOperationAction(ISD::BIT_CONVERT, MVT::v1i64, Expand);
+ setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
+ setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
+ setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
+ setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
if (!UseSoftFloat && Subtarget->hasSSE1()) {
addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
@@ -1293,13 +1293,13 @@
if (Subtarget->is64Bit()) {
if (ValVT == MVT::x86mmx) {
if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
- ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
+ ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
ValToCopy);
// If we don't have SSE2 available, convert to v4f32 so the generated
// register is legal.
if (!Subtarget->hasSSE2())
- ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
+ ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
}
}
}
@@ -1406,7 +1406,7 @@
MVT::i64, InFlag).getValue(1);
Val = Chain.getValue(0);
}
- Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
+ Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val);
} else {
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
CopyVT, InFlag).getValue(1);
@@ -1589,7 +1589,7 @@
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::BCvt)
- ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
+ ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
if (VA.isExtInLoc()) {
// Handle MMX values passed in XMM regs.
@@ -1922,14 +1922,14 @@
case CCValAssign::AExt:
if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
// Special case: passing MMX values in XMM registers.
- Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
+ Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
} else
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::BCvt:
- Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
+ Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
break;
case CCValAssign::Indirect: {
// Store the argument.
@@ -3501,7 +3501,7 @@
SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
}
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
}
/// getOnesVector - Returns a vector of specified type with all bits set.
@@ -3514,7 +3514,7 @@
SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
SDValue Vec;
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
}
@@ -3599,9 +3599,9 @@
// Perform the splat.
int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
- V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
+ V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
+ return DAG.getNode(ISD::BITCAST, dl, VT, V1);
}
/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
@@ -3725,7 +3725,7 @@
}
// Actual nodes that may contain scalar elements
- if (Opcode == ISD::BIT_CONVERT) {
+ if (Opcode == ISD::BITCAST) {
V = V.getOperand(0);
EVT SrcVT = V.getValueType();
unsigned NumElems = VT.getVectorNumElements();
@@ -3914,7 +3914,7 @@
}
}
- return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
}
/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
@@ -3955,8 +3955,8 @@
const TargetLowering &TLI, DebugLoc dl) {
EVT ShVT = MVT::v2i64;
unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
- SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
+ return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getNode(Opc, dl, ShVT, SrcOp,
DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
}
@@ -4023,8 +4023,8 @@
LD->getPointerInfo().getWithOffset(StartOffset),
false, false, 0);
// Canonicalize it to a v4i32 shuffle.
- V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
+ return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getVectorShuffle(MVT::v4i32, dl, V1,
DAG.getUNDEF(MVT::v4i32),&Mask[0]));
}
@@ -4092,7 +4092,7 @@
SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
Ops, 2, MVT::i32,
LDBase->getMemOperand());
- return DAG.getNode(ISD::BIT_CONVERT, DL, VT, ResNode);
+ return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
}
return SDValue();
}
@@ -4184,7 +4184,7 @@
DAG.getUNDEF(Item.getValueType()),
&Mask[0]);
}
- return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
}
}
@@ -4208,7 +4208,7 @@
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true,
Subtarget->hasSSE2(), DAG);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Item);
}
}
@@ -4401,21 +4401,21 @@
assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
int Mask[2];
- SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
+ SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
InVec = Op.getOperand(1);
if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
unsigned NumElts = ResVT.getVectorNumElements();
- VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
+ VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
} else {
- InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
+ InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
Mask[0] = 0; Mask[1] = 2;
VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
}
- return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
+ return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
}
// v8i16 shuffles - Prefer shuffles in the following order:
@@ -4497,9 +4497,9 @@
MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
- NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
+ NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
// Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
// source words for the shuffle, to aid later transformations.
@@ -4568,12 +4568,12 @@
pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
}
- V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
+ V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
DAG.getNode(ISD::BUILD_VECTOR, dl,
MVT::v16i8, &pshufbMask[0], 16));
if (!TwoInputs)
- return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
// Calculate the shuffle mask for the second input, shuffle it, and
// OR it with the first shuffled input.
@@ -4588,12 +4588,12 @@
pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
}
- V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
+ V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
DAG.getNode(ISD::BUILD_VECTOR, dl,
MVT::v16i8, &pshufbMask[0], 16));
V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
- return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
}
// If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
@@ -4760,8 +4760,8 @@
// No SSSE3 - Calculate in place words and then fix all out of place words
// With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
// the 16 different words that comprise the two doublequadword input vectors.
- V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
- V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
+ V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
+ V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
SDValue NewV = V2Only ? V2 : V1;
for (int i = 0; i != 8; ++i) {
int Elt0 = MaskVals[i*2];
@@ -4823,7 +4823,7 @@
NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
DAG.getIntPtrConstant(i));
}
- return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
}
/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
@@ -4867,8 +4867,8 @@
MaskVec.push_back(StartIdx / Scale);
}
- V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
- V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
+ V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
+ V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
}
@@ -4887,11 +4887,11 @@
MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
- SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
+ SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
// PR2108
OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
OpVT,
@@ -4901,9 +4901,9 @@
}
}
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
- DAG.getNode(ISD::BIT_CONVERT, dl,
+ DAG.getNode(ISD::BITCAST, dl,
OpVT, SrcOp)));
}
@@ -5057,7 +5057,7 @@
}
static bool MayFoldVectorLoad(SDValue V) {
- if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
+ if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
V = V.getOperand(0);
if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
V = V.getOperand(0);
@@ -5074,7 +5074,7 @@
// one use. Remove this version after this bug get fixed.
// rdar://8434668, PR8156
static bool RelaxedMayFoldVectorLoad(SDValue V) {
- if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
+ if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
V = V.getOperand(0);
if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
V = V.getOperand(0);
@@ -5112,7 +5112,7 @@
// If the bit convert changed the number of elements, it is unsafe
// to examine the mask.
bool HasShuffleIntoBitcast = false;
- if (V.getOpcode() == ISD::BIT_CONVERT) {
+ if (V.getOpcode() == ISD::BITCAST) {
EVT SrcVT = V.getOperand(0).getValueType();
if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
return false;
@@ -5127,7 +5127,7 @@
V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
// Skip one more bit_convert if necessary
- if (V.getOpcode() == ISD::BIT_CONVERT)
+ if (V.getOpcode() == ISD::BITCAST)
V = V.getOperand(0);
if (ISD::isNormalLoad(V.getNode())) {
@@ -5164,8 +5164,8 @@
EVT VT = Op.getValueType();
// Canonizalize to v2f64.
- V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, V1);
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
+ return DAG.getNode(ISD::BITCAST, dl, VT,
getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
V1, DAG));
}
@@ -5319,7 +5319,7 @@
if (VT == MVT::v8i16 || VT == MVT::v16i8) {
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
if (NewOp.getNode())
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT, NewOp);
+ return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
} else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
// FIXME: Figure out a cleaner way to do this.
// Try to make use of movq to zero out the top part.
@@ -5629,7 +5629,7 @@
if (Idx == 0)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
- DAG.getNode(ISD::BIT_CONVERT, dl,
+ DAG.getNode(ISD::BITCAST, dl,
MVT::v4i32,
Op.getOperand(0)),
Op.getOperand(1)));
@@ -5650,14 +5650,14 @@
if ((User->getOpcode() != ISD::STORE ||
(isa<ConstantSDNode>(Op.getOperand(1)) &&
cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
- (User->getOpcode() != ISD::BIT_CONVERT ||
+ (User->getOpcode() != ISD::BITCAST ||
User->getValueType(0) != MVT::i32))
return SDValue();
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
Op.getOperand(0)),
Op.getOperand(1));
- return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
} else if (VT == MVT::i32) {
// ExtractPS works with constant index.
if (isa<ConstantSDNode>(Op.getOperand(1)))
@@ -5688,7 +5688,7 @@
if (Idx == 0)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
- DAG.getNode(ISD::BIT_CONVERT, dl,
+ DAG.getNode(ISD::BITCAST, dl,
MVT::v4i32, Vec),
Op.getOperand(1)));
// Transform it so it match pextrw which produces a 32-bit result.
@@ -5819,7 +5819,7 @@
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
"Expected an SSE type!");
- return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
}
@@ -6390,7 +6390,7 @@
MachinePointerInfo::getConstantPool(),
false, false, 16);
SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
- SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
+ SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
MachinePointerInfo::getConstantPool(),
false, false, 16);
@@ -6420,19 +6420,19 @@
DAG.getIntPtrConstant(0)));
Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
DAG.getIntPtrConstant(0));
// Or the load with the bias.
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
MVT::v2f64, Load)),
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
MVT::v2f64, Bias)));
Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
DAG.getIntPtrConstant(0));
// Subtract the bias.
@@ -6690,11 +6690,11 @@
MachinePointerInfo::getConstantPool(),
false, false, 16);
if (VT.isVector()) {
- return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getNode(ISD::XOR, dl, MVT::v2i64,
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
Op.getOperand(0)),
- DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
+ DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
} else {
return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
}
@@ -6746,7 +6746,7 @@
SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
DAG.getConstant(32, MVT::i32));
- SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
+ SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
DAG.getIntPtrConstant(0));
}
@@ -7895,7 +7895,7 @@
}
EVT VT = Op.getValueType();
- ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
+ ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
DAG.getConstant(NewIntNo, MVT::i32),
Op.getOperand(1), ShAmt);
@@ -8329,7 +8329,7 @@
false, false, 16);
Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
- Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
+ Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
return DAG.getNode(ISD::MUL, dl, VT, Op, R);
}
@@ -8550,16 +8550,16 @@
return DAG.getMergeValues(Ops, 2, dl);
}
-SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
+SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
SelectionDAG &DAG) const {
EVT SrcVT = Op.getOperand(0).getValueType();
EVT DstVT = Op.getValueType();
assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
Subtarget->hasMMX() && !DisableMMX) &&
- "Unexpected custom BIT_CONVERT");
+ "Unexpected custom BITCAST");
assert((DstVT == MVT::i64 ||
(DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
- "Unexpected custom BIT_CONVERT");
+ "Unexpected custom BITCAST");
// i64 <=> MMX conversions are Legal.
if (SrcVT==MVT::i64 && DstVT.isVector())
return Op;
@@ -8642,7 +8642,7 @@
case ISD::SMULO:
case ISD::UMULO: return LowerXALUO(Op, DAG);
case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
- case ISD::BIT_CONVERT: return LowerBIT_CONVERT(Op, DAG);
+ case ISD::BITCAST: return LowerBITCAST(Op, DAG);
}
}
@@ -11177,13 +11177,13 @@
static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
SDValue Op = N->getOperand(0);
- if (Op.getOpcode() == ISD::BIT_CONVERT)
+ if (Op.getOpcode() == ISD::BITCAST)
Op = Op.getOperand(0);
EVT VT = N->getValueType(0), OpVT = Op.getValueType();
if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
VT.getVectorElementType().getSizeInBits() ==
OpVT.getVectorElementType().getSizeInBits()) {
- return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
+ return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
}
return SDValue();
}
diff --git a/lib/Target/X86/X86ISelLowering.h b/lib/Target/X86/X86ISelLowering.h
index ccc792b..fb8d09a 100644
--- a/lib/Target/X86/X86ISelLowering.h
+++ b/lib/Target/X86/X86ISelLowering.h
@@ -740,7 +740,7 @@
SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
SelectionDAG &DAG) const;
- SDValue LowerBIT_CONVERT(SDValue op, SelectionDAG &DAG) const;
+ SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;