split select out to its own file.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92687 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Transforms/InstCombine/InstCombineSelect.cpp b/lib/Transforms/InstCombine/InstCombineSelect.cpp
new file mode 100644
index 0000000..6c36ebc
--- /dev/null
+++ b/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -0,0 +1,708 @@
+//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for load, store and alloca.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+//#include "llvm/IntrinsicInst.h"
+//#include "llvm/Target/TargetData.h"
+//#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+//#include "llvm/Transforms/Utils/Local.h"
+//#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
+/// returning the kind and providing the out parameter results if we
+/// successfully match.
+static SelectPatternFlavor
+MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
+  SelectInst *SI = dyn_cast<SelectInst>(V);
+  if (SI == 0) return SPF_UNKNOWN;
+  
+  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
+  if (ICI == 0) return SPF_UNKNOWN;
+  
+  LHS = ICI->getOperand(0);
+  RHS = ICI->getOperand(1);
+  
+  // (icmp X, Y) ? X : Y 
+  if (SI->getTrueValue() == ICI->getOperand(0) &&
+      SI->getFalseValue() == ICI->getOperand(1)) {
+    switch (ICI->getPredicate()) {
+    default: return SPF_UNKNOWN; // Equality.
+    case ICmpInst::ICMP_UGT:
+    case ICmpInst::ICMP_UGE: return SPF_UMAX;
+    case ICmpInst::ICMP_SGT:
+    case ICmpInst::ICMP_SGE: return SPF_SMAX;
+    case ICmpInst::ICMP_ULT:
+    case ICmpInst::ICMP_ULE: return SPF_UMIN;
+    case ICmpInst::ICMP_SLT:
+    case ICmpInst::ICMP_SLE: return SPF_SMIN;
+    }
+  }
+  
+  // (icmp X, Y) ? Y : X 
+  if (SI->getTrueValue() == ICI->getOperand(1) &&
+      SI->getFalseValue() == ICI->getOperand(0)) {
+    switch (ICI->getPredicate()) {
+      default: return SPF_UNKNOWN; // Equality.
+      case ICmpInst::ICMP_UGT:
+      case ICmpInst::ICMP_UGE: return SPF_UMIN;
+      case ICmpInst::ICMP_SGT:
+      case ICmpInst::ICMP_SGE: return SPF_SMIN;
+      case ICmpInst::ICMP_ULT:
+      case ICmpInst::ICMP_ULE: return SPF_UMAX;
+      case ICmpInst::ICMP_SLT:
+      case ICmpInst::ICMP_SLE: return SPF_SMAX;
+    }
+  }
+  
+  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
+  
+  return SPF_UNKNOWN;
+}
+
+
+/// GetSelectFoldableOperands - We want to turn code that looks like this:
+///   %C = or %A, %B
+///   %D = select %cond, %C, %A
+/// into:
+///   %C = select %cond, %B, 0
+///   %D = or %A, %C
+///
+/// Assuming that the specified instruction is an operand to the select, return
+/// a bitmask indicating which operands of this instruction are foldable if they
+/// equal the other incoming value of the select.
+///
+static unsigned GetSelectFoldableOperands(Instruction *I) {
+  switch (I->getOpcode()) {
+  case Instruction::Add:
+  case Instruction::Mul:
+  case Instruction::And:
+  case Instruction::Or:
+  case Instruction::Xor:
+    return 3;              // Can fold through either operand.
+  case Instruction::Sub:   // Can only fold on the amount subtracted.
+  case Instruction::Shl:   // Can only fold on the shift amount.
+  case Instruction::LShr:
+  case Instruction::AShr:
+    return 1;
+  default:
+    return 0;              // Cannot fold
+  }
+}
+
+/// GetSelectFoldableConstant - For the same transformation as the previous
+/// function, return the identity constant that goes into the select.
+static Constant *GetSelectFoldableConstant(Instruction *I) {
+  switch (I->getOpcode()) {
+  default: llvm_unreachable("This cannot happen!");
+  case Instruction::Add:
+  case Instruction::Sub:
+  case Instruction::Or:
+  case Instruction::Xor:
+  case Instruction::Shl:
+  case Instruction::LShr:
+  case Instruction::AShr:
+    return Constant::getNullValue(I->getType());
+  case Instruction::And:
+    return Constant::getAllOnesValue(I->getType());
+  case Instruction::Mul:
+    return ConstantInt::get(I->getType(), 1);
+  }
+}
+
+/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
+/// have the same opcode and only one use each.  Try to simplify this.
+Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
+                                          Instruction *FI) {
+  if (TI->getNumOperands() == 1) {
+    // If this is a non-volatile load or a cast from the same type,
+    // merge.
+    if (TI->isCast()) {
+      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
+        return 0;
+    } else {
+      return 0;  // unknown unary op.
+    }
+
+    // Fold this by inserting a select from the input values.
+    SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
+                                          FI->getOperand(0), SI.getName()+".v");
+    InsertNewInstBefore(NewSI, SI);
+    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 
+                            TI->getType());
+  }
+
+  // Only handle binary operators here.
+  if (!isa<BinaryOperator>(TI))
+    return 0;
+
+  // Figure out if the operations have any operands in common.
+  Value *MatchOp, *OtherOpT, *OtherOpF;
+  bool MatchIsOpZero;
+  if (TI->getOperand(0) == FI->getOperand(0)) {
+    MatchOp  = TI->getOperand(0);
+    OtherOpT = TI->getOperand(1);
+    OtherOpF = FI->getOperand(1);
+    MatchIsOpZero = true;
+  } else if (TI->getOperand(1) == FI->getOperand(1)) {
+    MatchOp  = TI->getOperand(1);
+    OtherOpT = TI->getOperand(0);
+    OtherOpF = FI->getOperand(0);
+    MatchIsOpZero = false;
+  } else if (!TI->isCommutative()) {
+    return 0;
+  } else if (TI->getOperand(0) == FI->getOperand(1)) {
+    MatchOp  = TI->getOperand(0);
+    OtherOpT = TI->getOperand(1);
+    OtherOpF = FI->getOperand(0);
+    MatchIsOpZero = true;
+  } else if (TI->getOperand(1) == FI->getOperand(0)) {
+    MatchOp  = TI->getOperand(1);
+    OtherOpT = TI->getOperand(0);
+    OtherOpF = FI->getOperand(1);
+    MatchIsOpZero = true;
+  } else {
+    return 0;
+  }
+
+  // If we reach here, they do have operations in common.
+  SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
+                                         OtherOpF, SI.getName()+".v");
+  InsertNewInstBefore(NewSI, SI);
+
+  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
+    if (MatchIsOpZero)
+      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
+    else
+      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
+  }
+  llvm_unreachable("Shouldn't get here");
+  return 0;
+}
+
+static bool isSelect01(Constant *C1, Constant *C2) {
+  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
+  if (!C1I)
+    return false;
+  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
+  if (!C2I)
+    return false;
+  return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne());
+}
+
+/// FoldSelectIntoOp - Try fold the select into one of the operands to
+/// facilitate further optimization.
+Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
+                                            Value *FalseVal) {
+  // See the comment above GetSelectFoldableOperands for a description of the
+  // transformation we are doing here.
+  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
+    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
+        !isa<Constant>(FalseVal)) {
+      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
+        unsigned OpToFold = 0;
+        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
+          OpToFold = 1;
+        } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
+          OpToFold = 2;
+        }
+
+        if (OpToFold) {
+          Constant *C = GetSelectFoldableConstant(TVI);
+          Value *OOp = TVI->getOperand(2-OpToFold);
+          // Avoid creating select between 2 constants unless it's selecting
+          // between 0 and 1.
+          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
+            Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
+            InsertNewInstBefore(NewSel, SI);
+            NewSel->takeName(TVI);
+            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
+              return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
+            llvm_unreachable("Unknown instruction!!");
+          }
+        }
+      }
+    }
+  }
+
+  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
+    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
+        !isa<Constant>(TrueVal)) {
+      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
+        unsigned OpToFold = 0;
+        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
+          OpToFold = 1;
+        } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
+          OpToFold = 2;
+        }
+
+        if (OpToFold) {
+          Constant *C = GetSelectFoldableConstant(FVI);
+          Value *OOp = FVI->getOperand(2-OpToFold);
+          // Avoid creating select between 2 constants unless it's selecting
+          // between 0 and 1.
+          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
+            Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
+            InsertNewInstBefore(NewSel, SI);
+            NewSel->takeName(FVI);
+            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
+              return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
+            llvm_unreachable("Unknown instruction!!");
+          }
+        }
+      }
+    }
+  }
+
+  return 0;
+}
+
+/// visitSelectInstWithICmp - Visit a SelectInst that has an
+/// ICmpInst as its first operand.
+///
+Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
+                                                   ICmpInst *ICI) {
+  bool Changed = false;
+  ICmpInst::Predicate Pred = ICI->getPredicate();
+  Value *CmpLHS = ICI->getOperand(0);
+  Value *CmpRHS = ICI->getOperand(1);
+  Value *TrueVal = SI.getTrueValue();
+  Value *FalseVal = SI.getFalseValue();
+
+  // Check cases where the comparison is with a constant that
+  // can be adjusted to fit the min/max idiom. We may edit ICI in
+  // place here, so make sure the select is the only user.
+  if (ICI->hasOneUse())
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
+      switch (Pred) {
+      default: break;
+      case ICmpInst::ICMP_ULT:
+      case ICmpInst::ICMP_SLT: {
+        // X < MIN ? T : F  -->  F
+        if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
+          return ReplaceInstUsesWith(SI, FalseVal);
+        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
+        Constant *AdjustedRHS =
+          ConstantInt::get(CI->getContext(), CI->getValue()-1);
+        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
+            (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
+          Pred = ICmpInst::getSwappedPredicate(Pred);
+          CmpRHS = AdjustedRHS;
+          std::swap(FalseVal, TrueVal);
+          ICI->setPredicate(Pred);
+          ICI->setOperand(1, CmpRHS);
+          SI.setOperand(1, TrueVal);
+          SI.setOperand(2, FalseVal);
+          Changed = true;
+        }
+        break;
+      }
+      case ICmpInst::ICMP_UGT:
+      case ICmpInst::ICMP_SGT: {
+        // X > MAX ? T : F  -->  F
+        if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
+          return ReplaceInstUsesWith(SI, FalseVal);
+        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
+        Constant *AdjustedRHS =
+          ConstantInt::get(CI->getContext(), CI->getValue()+1);
+        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
+            (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
+          Pred = ICmpInst::getSwappedPredicate(Pred);
+          CmpRHS = AdjustedRHS;
+          std::swap(FalseVal, TrueVal);
+          ICI->setPredicate(Pred);
+          ICI->setOperand(1, CmpRHS);
+          SI.setOperand(1, TrueVal);
+          SI.setOperand(2, FalseVal);
+          Changed = true;
+        }
+        break;
+      }
+      }
+
+      // (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed
+      // (x >s -1) ? -1 : 0 -> ashr x, 31  -> all ones if not signed
+      CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
+      if (match(TrueVal, m_ConstantInt<-1>()) &&
+          match(FalseVal, m_ConstantInt<0>()))
+        Pred = ICI->getPredicate();
+      else if (match(TrueVal, m_ConstantInt<0>()) &&
+               match(FalseVal, m_ConstantInt<-1>()))
+        Pred = CmpInst::getInversePredicate(ICI->getPredicate());
+      
+      if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
+        // If we are just checking for a icmp eq of a single bit and zext'ing it
+        // to an integer, then shift the bit to the appropriate place and then
+        // cast to integer to avoid the comparison.
+        const APInt &Op1CV = CI->getValue();
+    
+        // sext (x <s  0) to i32 --> x>>s31      true if signbit set.
+        // sext (x >s -1) to i32 --> (x>>s31)^-1  true if signbit clear.
+        if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
+            (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
+          Value *In = ICI->getOperand(0);
+          Value *Sh = ConstantInt::get(In->getType(),
+                                       In->getType()->getScalarSizeInBits()-1);
+          In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
+                                                        In->getName()+".lobit"),
+                                   *ICI);
+          if (In->getType() != SI.getType())
+            In = CastInst::CreateIntegerCast(In, SI.getType(),
+                                             true/*SExt*/, "tmp", ICI);
+    
+          if (Pred == ICmpInst::ICMP_SGT)
+            In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
+                                       In->getName()+".not"), *ICI);
+    
+          return ReplaceInstUsesWith(SI, In);
+        }
+      }
+    }
+
+  if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
+    // Transform (X == Y) ? X : Y  -> Y
+    if (Pred == ICmpInst::ICMP_EQ)
+      return ReplaceInstUsesWith(SI, FalseVal);
+    // Transform (X != Y) ? X : Y  -> X
+    if (Pred == ICmpInst::ICMP_NE)
+      return ReplaceInstUsesWith(SI, TrueVal);
+    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
+
+  } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
+    // Transform (X == Y) ? Y : X  -> X
+    if (Pred == ICmpInst::ICMP_EQ)
+      return ReplaceInstUsesWith(SI, FalseVal);
+    // Transform (X != Y) ? Y : X  -> Y
+    if (Pred == ICmpInst::ICMP_NE)
+      return ReplaceInstUsesWith(SI, TrueVal);
+    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
+  }
+  return Changed ? &SI : 0;
+}
+
+
+/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
+/// PHI node (but the two may be in different blocks).  See if the true/false
+/// values (V) are live in all of the predecessor blocks of the PHI.  For
+/// example, cases like this cannot be mapped:
+///
+///   X = phi [ C1, BB1], [C2, BB2]
+///   Y = add
+///   Z = select X, Y, 0
+///
+/// because Y is not live in BB1/BB2.
+///
+static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
+                                                   const SelectInst &SI) {
+  // If the value is a non-instruction value like a constant or argument, it
+  // can always be mapped.
+  const Instruction *I = dyn_cast<Instruction>(V);
+  if (I == 0) return true;
+  
+  // If V is a PHI node defined in the same block as the condition PHI, we can
+  // map the arguments.
+  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
+  
+  if (const PHINode *VP = dyn_cast<PHINode>(I))
+    if (VP->getParent() == CondPHI->getParent())
+      return true;
+  
+  // Otherwise, if the PHI and select are defined in the same block and if V is
+  // defined in a different block, then we can transform it.
+  if (SI.getParent() == CondPHI->getParent() &&
+      I->getParent() != CondPHI->getParent())
+    return true;
+  
+  // Otherwise we have a 'hard' case and we can't tell without doing more
+  // detailed dominator based analysis, punt.
+  return false;
+}
+
+/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
+///   SPF2(SPF1(A, B), C) 
+Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
+                                        SelectPatternFlavor SPF1,
+                                        Value *A, Value *B,
+                                        Instruction &Outer,
+                                        SelectPatternFlavor SPF2, Value *C) {
+  if (C == A || C == B) {
+    // MAX(MAX(A, B), B) -> MAX(A, B)
+    // MIN(MIN(a, b), a) -> MIN(a, b)
+    if (SPF1 == SPF2)
+      return ReplaceInstUsesWith(Outer, Inner);
+    
+    // MAX(MIN(a, b), a) -> a
+    // MIN(MAX(a, b), a) -> a
+    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
+        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
+        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
+        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
+      return ReplaceInstUsesWith(Outer, C);
+  }
+  
+  // TODO: MIN(MIN(A, 23), 97)
+  return 0;
+}
+
+
+
+
+Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
+  Value *CondVal = SI.getCondition();
+  Value *TrueVal = SI.getTrueValue();
+  Value *FalseVal = SI.getFalseValue();
+
+  // select true, X, Y  -> X
+  // select false, X, Y -> Y
+  if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
+    return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
+
+  // select C, X, X -> X
+  if (TrueVal == FalseVal)
+    return ReplaceInstUsesWith(SI, TrueVal);
+
+  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
+    return ReplaceInstUsesWith(SI, FalseVal);
+  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
+    return ReplaceInstUsesWith(SI, TrueVal);
+  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
+    if (isa<Constant>(TrueVal))
+      return ReplaceInstUsesWith(SI, TrueVal);
+    else
+      return ReplaceInstUsesWith(SI, FalseVal);
+  }
+
+  if (SI.getType() == Type::getInt1Ty(SI.getContext())) {
+    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
+      if (C->getZExtValue()) {
+        // Change: A = select B, true, C --> A = or B, C
+        return BinaryOperator::CreateOr(CondVal, FalseVal);
+      } else {
+        // Change: A = select B, false, C --> A = and !B, C
+        Value *NotCond =
+          InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
+                                             "not."+CondVal->getName()), SI);
+        return BinaryOperator::CreateAnd(NotCond, FalseVal);
+      }
+    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
+      if (C->getZExtValue() == false) {
+        // Change: A = select B, C, false --> A = and B, C
+        return BinaryOperator::CreateAnd(CondVal, TrueVal);
+      } else {
+        // Change: A = select B, C, true --> A = or !B, C
+        Value *NotCond =
+          InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
+                                             "not."+CondVal->getName()), SI);
+        return BinaryOperator::CreateOr(NotCond, TrueVal);
+      }
+    }
+    
+    // select a, b, a  -> a&b
+    // select a, a, b  -> a|b
+    if (CondVal == TrueVal)
+      return BinaryOperator::CreateOr(CondVal, FalseVal);
+    else if (CondVal == FalseVal)
+      return BinaryOperator::CreateAnd(CondVal, TrueVal);
+  }
+
+  // Selecting between two integer constants?
+  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
+    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
+      // select C, 1, 0 -> zext C to int
+      if (FalseValC->isZero() && TrueValC->getValue() == 1) {
+        return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
+      } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
+        // select C, 0, 1 -> zext !C to int
+        Value *NotCond =
+          InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
+                                               "not."+CondVal->getName()), SI);
+        return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
+      }
+
+      if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
+        // If one of the constants is zero (we know they can't both be) and we
+        // have an icmp instruction with zero, and we have an 'and' with the
+        // non-constant value, eliminate this whole mess.  This corresponds to
+        // cases like this: ((X & 27) ? 27 : 0)
+        if (TrueValC->isZero() || FalseValC->isZero())
+          if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
+              cast<Constant>(IC->getOperand(1))->isNullValue())
+            if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
+              if (ICA->getOpcode() == Instruction::And &&
+                  isa<ConstantInt>(ICA->getOperand(1)) &&
+                  (ICA->getOperand(1) == TrueValC ||
+                   ICA->getOperand(1) == FalseValC) &&
+               cast<ConstantInt>(ICA->getOperand(1))->getValue().isPowerOf2()) {
+                // Okay, now we know that everything is set up, we just don't
+                // know whether we have a icmp_ne or icmp_eq and whether the 
+                // true or false val is the zero.
+                bool ShouldNotVal = !TrueValC->isZero();
+                ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
+                Value *V = ICA;
+                if (ShouldNotVal)
+                  V = InsertNewInstBefore(BinaryOperator::Create(
+                                  Instruction::Xor, V, ICA->getOperand(1)), SI);
+                return ReplaceInstUsesWith(SI, V);
+              }
+      }
+    }
+
+  // See if we are selecting two values based on a comparison of the two values.
+  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
+    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
+      // Transform (X == Y) ? X : Y  -> Y
+      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
+        // This is not safe in general for floating point:  
+        // consider X== -0, Y== +0.
+        // It becomes safe if either operand is a nonzero constant.
+        ConstantFP *CFPt, *CFPf;
+        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
+              !CFPt->getValueAPF().isZero()) ||
+            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
+             !CFPf->getValueAPF().isZero()))
+        return ReplaceInstUsesWith(SI, FalseVal);
+      }
+      // Transform (X != Y) ? X : Y  -> X
+      if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
+        return ReplaceInstUsesWith(SI, TrueVal);
+      // NOTE: if we wanted to, this is where to detect MIN/MAX
+
+    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
+      // Transform (X == Y) ? Y : X  -> X
+      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
+        // This is not safe in general for floating point:  
+        // consider X== -0, Y== +0.
+        // It becomes safe if either operand is a nonzero constant.
+        ConstantFP *CFPt, *CFPf;
+        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
+              !CFPt->getValueAPF().isZero()) ||
+            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
+             !CFPf->getValueAPF().isZero()))
+          return ReplaceInstUsesWith(SI, FalseVal);
+      }
+      // Transform (X != Y) ? Y : X  -> Y
+      if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
+        return ReplaceInstUsesWith(SI, TrueVal);
+      // NOTE: if we wanted to, this is where to detect MIN/MAX
+    }
+    // NOTE: if we wanted to, this is where to detect ABS
+  }
+
+  // See if we are selecting two values based on a comparison of the two values.
+  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
+    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
+      return Result;
+
+  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
+    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
+      if (TI->hasOneUse() && FI->hasOneUse()) {
+        Instruction *AddOp = 0, *SubOp = 0;
+
+        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
+        if (TI->getOpcode() == FI->getOpcode())
+          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
+            return IV;
+
+        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
+        // even legal for FP.
+        if ((TI->getOpcode() == Instruction::Sub &&
+             FI->getOpcode() == Instruction::Add) ||
+            (TI->getOpcode() == Instruction::FSub &&
+             FI->getOpcode() == Instruction::FAdd)) {
+          AddOp = FI; SubOp = TI;
+        } else if ((FI->getOpcode() == Instruction::Sub &&
+                    TI->getOpcode() == Instruction::Add) ||
+                   (FI->getOpcode() == Instruction::FSub &&
+                    TI->getOpcode() == Instruction::FAdd)) {
+          AddOp = TI; SubOp = FI;
+        }
+
+        if (AddOp) {
+          Value *OtherAddOp = 0;
+          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
+            OtherAddOp = AddOp->getOperand(1);
+          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
+            OtherAddOp = AddOp->getOperand(0);
+          }
+
+          if (OtherAddOp) {
+            // So at this point we know we have (Y -> OtherAddOp):
+            //        select C, (add X, Y), (sub X, Z)
+            Value *NegVal;  // Compute -Z
+            if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
+              NegVal = ConstantExpr::getNeg(C);
+            } else {
+              NegVal = InsertNewInstBefore(
+                    BinaryOperator::CreateNeg(SubOp->getOperand(1),
+                                              "tmp"), SI);
+            }
+
+            Value *NewTrueOp = OtherAddOp;
+            Value *NewFalseOp = NegVal;
+            if (AddOp != TI)
+              std::swap(NewTrueOp, NewFalseOp);
+            Instruction *NewSel =
+              SelectInst::Create(CondVal, NewTrueOp,
+                                 NewFalseOp, SI.getName() + ".p");
+
+            NewSel = InsertNewInstBefore(NewSel, SI);
+            return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
+          }
+        }
+      }
+
+  // See if we can fold the select into one of our operands.
+  if (SI.getType()->isInteger()) {
+    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
+      return FoldI;
+    
+    // MAX(MAX(a, b), a) -> MAX(a, b)
+    // MIN(MIN(a, b), a) -> MIN(a, b)
+    // MAX(MIN(a, b), a) -> a
+    // MIN(MAX(a, b), a) -> a
+    Value *LHS, *RHS, *LHS2, *RHS2;
+    if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
+      if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
+        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 
+                                          SI, SPF, RHS))
+          return R;
+      if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
+        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
+                                          SI, SPF, LHS))
+          return R;
+    }
+
+    // TODO.
+    // ABS(-X) -> ABS(X)
+    // ABS(ABS(X)) -> ABS(X)
+  }
+
+  // See if we can fold the select into a phi node if the condition is a select.
+  if (isa<PHINode>(SI.getCondition())) 
+    // The true/false values have to be live in the PHI predecessor's blocks.
+    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
+        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
+      if (Instruction *NV = FoldOpIntoPhi(SI))
+        return NV;
+
+  if (BinaryOperator::isNot(CondVal)) {
+    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
+    SI.setOperand(1, FalseVal);
+    SI.setOperand(2, TrueVal);
+    return &SI;
+  }
+
+  return 0;
+}