Add a new Operator class, for handling Instructions and ConstantExprs
in a convenient manner, factoring out some common code from
InstructionCombining and ValueTracking. Move the contents of
BinaryOperators.h into Operator.h and use Operator to generalize them
to support ConstantExprs as well as Instructions.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76232 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index ddf1752..4cca313 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -18,24 +18,13 @@
 #include "llvm/GlobalVariable.h"
 #include "llvm/IntrinsicInst.h"
 #include "llvm/LLVMContext.h"
+#include "llvm/Operator.h"
 #include "llvm/Target/TargetData.h"
 #include "llvm/Support/GetElementPtrTypeIterator.h"
 #include "llvm/Support/MathExtras.h"
 #include <cstring>
 using namespace llvm;
 
-/// getOpcode - If this is an Instruction or a ConstantExpr, return the
-/// opcode value. Otherwise return UserOp1.
-static unsigned getOpcode(const Value *V) {
-  if (const Instruction *I = dyn_cast<Instruction>(V))
-    return I->getOpcode();
-  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
-    return CE->getOpcode();
-  // Use UserOp1 to mean there's no opcode.
-  return Instruction::UserOp1;
-}
-
-
 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
 /// known to be either zero or one and return them in the KnownZero/KnownOne
 /// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
@@ -108,11 +97,11 @@
   if (Depth == MaxDepth || Mask == 0)
     return;  // Limit search depth.
 
-  User *I = dyn_cast<User>(V);
+  Operator *I = dyn_cast<Operator>(V);
   if (!I) return;
 
   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
-  switch (getOpcode(I)) {
+  switch (I->getOpcode()) {
   default: break;
   case Instruction::And: {
     // If either the LHS or the RHS are Zero, the result is zero.
@@ -383,7 +372,7 @@
     // Determine which operand has more trailing zeros, and use that
     // many bits from the other operand.
     if (LHSKnownZeroOut > RHSKnownZeroOut) {
-      if (getOpcode(I) == Instruction::Add) {
+      if (I->getOpcode() == Instruction::Add) {
         APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
         KnownZero |= KnownZero2 & Mask;
         KnownOne  |= KnownOne2 & Mask;
@@ -523,10 +512,10 @@
       for (unsigned i = 0; i != 2; ++i) {
         Value *L = P->getIncomingValue(i);
         Value *R = P->getIncomingValue(!i);
-        User *LU = dyn_cast<User>(L);
+        Operator *LU = dyn_cast<Operator>(L);
         if (!LU)
           continue;
-        unsigned Opcode = getOpcode(LU);
+        unsigned Opcode = LU->getOpcode();
         // Check for operations that have the property that if
         // both their operands have low zero bits, the result
         // will have low zero bits.
@@ -643,8 +632,8 @@
   if (Depth == 6)
     return 1;  // Limit search depth.
   
-  User *U = dyn_cast<User>(V);
-  switch (getOpcode(V)) {
+  Operator *U = dyn_cast<Operator>(V);
+  switch (Operator::getOpcode(V)) {
   default: break;
   case Instruction::SExt:
     Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
@@ -790,7 +779,7 @@
   if (Depth == 6)
     return 1;  // Limit search depth.
 
-  const Instruction *I = dyn_cast<Instruction>(V);
+  const Operator *I = dyn_cast<Operator>(V);
   if (I == 0) return false;
   
   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.