Add a basic-block autovectorization pass.

This is the initial checkin of the basic-block autovectorization pass along with some supporting vectorization infrastructure.
Special thanks to everyone who helped review this code over the last several months (especially Tobias Grosser).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149468 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Transforms/CMakeLists.txt b/lib/Transforms/CMakeLists.txt
index 10e0cc6..de1353e 100644
--- a/lib/Transforms/CMakeLists.txt
+++ b/lib/Transforms/CMakeLists.txt
@@ -3,4 +3,5 @@
 add_subdirectory(InstCombine)
 add_subdirectory(Scalar)
 add_subdirectory(IPO)
+add_subdirectory(Vectorize)
 add_subdirectory(Hello)
diff --git a/lib/Transforms/IPO/LLVMBuild.txt b/lib/Transforms/IPO/LLVMBuild.txt
index b358fab..b18c915 100644
--- a/lib/Transforms/IPO/LLVMBuild.txt
+++ b/lib/Transforms/IPO/LLVMBuild.txt
@@ -20,4 +20,4 @@
 name = IPO
 parent = Transforms
 library_name = ipo
-required_libraries = Analysis Core IPA InstCombine Scalar Support Target TransformUtils
+required_libraries = Analysis Core IPA InstCombine Scalar Vectorize Support Target TransformUtils
diff --git a/lib/Transforms/IPO/PassManagerBuilder.cpp b/lib/Transforms/IPO/PassManagerBuilder.cpp
index afd25dc..8408437 100644
--- a/lib/Transforms/IPO/PassManagerBuilder.cpp
+++ b/lib/Transforms/IPO/PassManagerBuilder.cpp
@@ -21,14 +21,20 @@
 #include "llvm/DefaultPasses.h"
 #include "llvm/PassManager.h"
 #include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Support/CommandLine.h"
 #include "llvm/Target/TargetLibraryInfo.h"
 #include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Vectorize.h"
 #include "llvm/Transforms/IPO.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/Support/ManagedStatic.h"
 
 using namespace llvm;
 
+static cl::opt<bool>
+RunVectorization("vectorize", cl::desc("Run vectorization passes"));
+
 PassManagerBuilder::PassManagerBuilder() {
     OptLevel = 2;
     SizeLevel = 0;
@@ -37,6 +43,7 @@
     DisableSimplifyLibCalls = false;
     DisableUnitAtATime = false;
     DisableUnrollLoops = false;
+    Vectorize = RunVectorization;
 }
 
 PassManagerBuilder::~PassManagerBuilder() {
@@ -172,6 +179,13 @@
 
   addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
 
+  if (Vectorize) {
+    MPM.add(createBBVectorizePass());
+    MPM.add(createInstructionCombiningPass());
+    if (OptLevel > 1)
+      MPM.add(createGVNPass());                 // Remove redundancies
+  }
+
   MPM.add(createAggressiveDCEPass());         // Delete dead instructions
   MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
   MPM.add(createInstructionCombiningPass());  // Clean up after everything.
diff --git a/lib/Transforms/LLVMBuild.txt b/lib/Transforms/LLVMBuild.txt
index b2ef49a..f7bca06 100644
--- a/lib/Transforms/LLVMBuild.txt
+++ b/lib/Transforms/LLVMBuild.txt
@@ -16,7 +16,7 @@
 ;===------------------------------------------------------------------------===;
 
 [common]
-subdirectories = IPO InstCombine Instrumentation Scalar Utils
+subdirectories = IPO InstCombine Instrumentation Scalar Utils Vectorize
 
 [component_0]
 type = Group
diff --git a/lib/Transforms/Makefile b/lib/Transforms/Makefile
index e527be2..8b1df92 100644
--- a/lib/Transforms/Makefile
+++ b/lib/Transforms/Makefile
@@ -8,7 +8,7 @@
 ##===----------------------------------------------------------------------===##
 
 LEVEL = ../..
-PARALLEL_DIRS = Utils Instrumentation Scalar InstCombine IPO Hello
+PARALLEL_DIRS = Utils Instrumentation Scalar InstCombine IPO Vectorize Hello
 
 include $(LEVEL)/Makefile.config
 
diff --git a/lib/Transforms/Vectorize/BBVectorize.cpp b/lib/Transforms/Vectorize/BBVectorize.cpp
new file mode 100644
index 0000000..9c2c8dd
--- /dev/null
+++ b/lib/Transforms/Vectorize/BBVectorize.cpp
@@ -0,0 +1,1796 @@
+//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a basic-block vectorization pass. The algorithm was
+// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
+// et al. It works by looking for chains of pairable operations and then
+// pairing them.
+//
+//===----------------------------------------------------------------------===//
+
+#define BBV_NAME "bb-vectorize"
+#define DEBUG_TYPE BBV_NAME
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Pass.h"
+#include "llvm/Type.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Vectorize.h"
+#include <algorithm>
+#include <map>
+using namespace llvm;
+
+static cl::opt<unsigned>
+ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
+  cl::desc("The required chain depth for vectorization"));
+
+static cl::opt<unsigned>
+SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
+  cl::desc("The maximum search distance for instruction pairs"));
+
+static cl::opt<bool>
+SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
+  cl::desc("Replicating one element to a pair breaks the chain"));
+
+static cl::opt<unsigned>
+VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
+  cl::desc("The size of the native vector registers"));
+
+static cl::opt<unsigned>
+MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
+  cl::desc("The maximum number of pairing iterations"));
+
+static cl::opt<unsigned>
+MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
+  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
+                       " a full cycle check"));
+
+static cl::opt<bool>
+NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
+  cl::desc("Don't try to vectorize integer values"));
+
+static cl::opt<bool>
+NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
+  cl::desc("Don't try to vectorize floating-point values"));
+
+static cl::opt<bool>
+NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
+  cl::desc("Don't try to vectorize casting (conversion) operations"));
+
+static cl::opt<bool>
+NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
+  cl::desc("Don't try to vectorize floating-point math intrinsics"));
+
+static cl::opt<bool>
+NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
+  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
+
+static cl::opt<bool>
+NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
+  cl::desc("Don't try to vectorize loads and stores"));
+
+static cl::opt<bool>
+AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
+  cl::desc("Only generate aligned loads and stores"));
+
+static cl::opt<bool>
+FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
+  cl::desc("Use a fast instruction dependency analysis"));
+
+#ifndef NDEBUG
+static cl::opt<bool>
+DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
+  cl::init(false), cl::Hidden,
+  cl::desc("When debugging is enabled, output information on the"
+           " instruction-examination process"));
+static cl::opt<bool>
+DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
+  cl::init(false), cl::Hidden,
+  cl::desc("When debugging is enabled, output information on the"
+           " candidate-selection process"));
+static cl::opt<bool>
+DebugPairSelection("bb-vectorize-debug-pair-selection",
+  cl::init(false), cl::Hidden,
+  cl::desc("When debugging is enabled, output information on the"
+           " pair-selection process"));
+static cl::opt<bool>
+DebugCycleCheck("bb-vectorize-debug-cycle-check",
+  cl::init(false), cl::Hidden,
+  cl::desc("When debugging is enabled, output information on the"
+           " cycle-checking process"));
+#endif
+
+STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
+
+namespace {
+  struct BBVectorize : public BasicBlockPass {
+    static char ID; // Pass identification, replacement for typeid
+    BBVectorize() : BasicBlockPass(ID) {
+      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
+    }
+
+    typedef std::pair<Value *, Value *> ValuePair;
+    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
+    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
+    typedef std::pair<std::multimap<Value *, Value *>::iterator,
+              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
+    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
+              std::multimap<ValuePair, ValuePair>::iterator>
+                VPPIteratorPair;
+
+    AliasAnalysis *AA;
+    ScalarEvolution *SE;
+    TargetData *TD;
+
+    // FIXME: const correct?
+
+    bool vectorizePairs(BasicBlock &BB);
+
+    void getCandidatePairs(BasicBlock &BB,
+                       std::multimap<Value *, Value *> &CandidatePairs,
+                       std::vector<Value *> &PairableInsts);
+
+    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
+                       std::vector<Value *> &PairableInsts,
+                       std::multimap<ValuePair, ValuePair> &ConnectedPairs);
+
+    void buildDepMap(BasicBlock &BB,
+                       std::multimap<Value *, Value *> &CandidatePairs,
+                       std::vector<Value *> &PairableInsts,
+                       DenseSet<ValuePair> &PairableInstUsers);
+
+    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
+                        std::vector<Value *> &PairableInsts,
+                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+                        DenseSet<ValuePair> &PairableInstUsers,
+                        DenseMap<Value *, Value *>& ChosenPairs);
+
+    void fuseChosenPairs(BasicBlock &BB,
+                     std::vector<Value *> &PairableInsts,
+                     DenseMap<Value *, Value *>& ChosenPairs);
+
+    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
+
+    bool areInstsCompatible(Instruction *I, Instruction *J,
+                       bool IsSimpleLoadStore);
+
+    bool trackUsesOfI(DenseSet<Value *> &Users,
+                      AliasSetTracker &WriteSet, Instruction *I,
+                      Instruction *J, bool UpdateUsers = true,
+                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
+  
+    void computePairsConnectedTo(
+                      std::multimap<Value *, Value *> &CandidatePairs,
+                      std::vector<Value *> &PairableInsts,
+                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+                      ValuePair P);
+
+    bool pairsConflict(ValuePair P, ValuePair Q,
+                 DenseSet<ValuePair> &PairableInstUsers,
+                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
+
+    bool pairWillFormCycle(ValuePair P,
+                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
+                       DenseSet<ValuePair> &CurrentPairs);
+
+    void pruneTreeFor(
+                      std::multimap<Value *, Value *> &CandidatePairs,
+                      std::vector<Value *> &PairableInsts,
+                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+                      DenseSet<ValuePair> &PairableInstUsers,
+                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
+                      DenseMap<Value *, Value *> &ChosenPairs,
+                      DenseMap<ValuePair, size_t> &Tree,
+                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
+                      bool UseCycleCheck);
+
+    void buildInitialTreeFor(
+                      std::multimap<Value *, Value *> &CandidatePairs,
+                      std::vector<Value *> &PairableInsts,
+                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+                      DenseSet<ValuePair> &PairableInstUsers,
+                      DenseMap<Value *, Value *> &ChosenPairs,
+                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
+
+    void findBestTreeFor(
+                      std::multimap<Value *, Value *> &CandidatePairs,
+                      std::vector<Value *> &PairableInsts,
+                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+                      DenseSet<ValuePair> &PairableInstUsers,
+                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
+                      DenseMap<Value *, Value *> &ChosenPairs,
+                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
+                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
+                      bool UseCycleCheck);
+
+    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
+                     Instruction *J, unsigned o, bool &FlipMemInputs);
+
+    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
+                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
+                     unsigned IdxOffset, std::vector<Constant*> &Mask);
+
+    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
+                     Instruction *J);
+
+    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
+                     Instruction *J, unsigned o, bool FlipMemInputs);
+
+    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
+                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
+                     bool &FlipMemInputs);
+
+    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
+                     Instruction *J, Instruction *K,
+                     Instruction *&InsertionPt, Instruction *&K1,
+                     Instruction *&K2, bool &FlipMemInputs);
+
+    void collectPairLoadMoveSet(BasicBlock &BB,
+                     DenseMap<Value *, Value *> &ChosenPairs,
+                     std::multimap<Value *, Value *> &LoadMoveSet,
+                     Instruction *I);
+
+    void collectLoadMoveSet(BasicBlock &BB,
+                     std::vector<Value *> &PairableInsts,
+                     DenseMap<Value *, Value *> &ChosenPairs,
+                     std::multimap<Value *, Value *> &LoadMoveSet);
+
+    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
+                     std::multimap<Value *, Value *> &LoadMoveSet,
+                     Instruction *I, Instruction *J);
+
+    void moveUsesOfIAfterJ(BasicBlock &BB,
+                     std::multimap<Value *, Value *> &LoadMoveSet,
+                     Instruction *&InsertionPt,
+                     Instruction *I, Instruction *J);
+
+    virtual bool runOnBasicBlock(BasicBlock &BB) {
+      AA = &getAnalysis<AliasAnalysis>();
+      SE = &getAnalysis<ScalarEvolution>();
+      TD = getAnalysisIfAvailable<TargetData>();
+
+      bool changed = false;
+      // Iterate a sufficient number of times to merge types of size 1 bit,
+      // then 2 bits, then 4, etc. up to half of the target vector width of the
+      // target vector register.
+      for (unsigned v = 2, n = 1; v <= VectorBits && (!MaxIter || n <= MaxIter);
+           v *= 2, ++n) {
+        DEBUG(dbgs() << "BBV: fusing loop #" << n << 
+              " for " << BB.getName() << " in " <<
+              BB.getParent()->getName() << "...\n");
+        if (vectorizePairs(BB))
+          changed = true;
+        else
+          break;
+      }
+
+      DEBUG(dbgs() << "BBV: done!\n");
+      return changed;
+    }
+
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      BasicBlockPass::getAnalysisUsage(AU);
+      AU.addRequired<AliasAnalysis>();
+      AU.addRequired<ScalarEvolution>();
+      AU.addPreserved<AliasAnalysis>();
+      AU.addPreserved<ScalarEvolution>();
+    }
+
+    // This returns the vector type that holds a pair of the provided type.
+    // If the provided type is already a vector, then its length is doubled.
+    static inline VectorType *getVecTypeForPair(Type *ElemTy) {
+      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
+        unsigned numElem = VTy->getNumElements();
+        return VectorType::get(ElemTy->getScalarType(), numElem*2);
+      } else {
+        return VectorType::get(ElemTy, 2);
+      }
+    }
+
+    // Returns the weight associated with the provided value. A chain of
+    // candidate pairs has a length given by the sum of the weights of its
+    // members (one weight per pair; the weight of each member of the pair
+    // is assumed to be the same). This length is then compared to the
+    // chain-length threshold to determine if a given chain is significant
+    // enough to be vectorized. The length is also used in comparing
+    // candidate chains where longer chains are considered to be better.
+    // Note: when this function returns 0, the resulting instructions are
+    // not actually fused.
+    static inline size_t getDepthFactor(Value *V) {
+      // InsertElement and ExtractElement have a depth factor of zero. This is
+      // for two reasons: First, they cannot be usefully fused. Second, because
+      // the pass generates a lot of these, they can confuse the simple metric
+      // used to compare the trees in the next iteration. Thus, giving them a
+      // weight of zero allows the pass to essentially ignore them in
+      // subsequent iterations when looking for vectorization opportunities
+      // while still tracking dependency chains that flow through those
+      // instructions.
+      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
+        return 0;
+
+      return 1;
+    }
+
+    // This determines the relative offset of two loads or stores, returning
+    // true if the offset could be determined to be some constant value.
+    // For example, if OffsetInElmts == 1, then J accesses the memory directly
+    // after I; if OffsetInElmts == -1 then I accesses the memory
+    // directly after J. This function assumes that both instructions
+    // have the same type.
+    bool getPairPtrInfo(Instruction *I, Instruction *J,
+        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
+        int64_t &OffsetInElmts) {
+      OffsetInElmts = 0;
+      if (isa<LoadInst>(I)) {
+        IPtr = cast<LoadInst>(I)->getPointerOperand();
+        JPtr = cast<LoadInst>(J)->getPointerOperand();
+        IAlignment = cast<LoadInst>(I)->getAlignment();
+        JAlignment = cast<LoadInst>(J)->getAlignment();
+      } else {
+        IPtr = cast<StoreInst>(I)->getPointerOperand();
+        JPtr = cast<StoreInst>(J)->getPointerOperand();
+        IAlignment = cast<StoreInst>(I)->getAlignment();
+        JAlignment = cast<StoreInst>(J)->getAlignment();
+      }
+
+      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
+      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
+
+      // If this is a trivial offset, then we'll get something like
+      // 1*sizeof(type). With target data, which we need anyway, this will get
+      // constant folded into a number.
+      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
+      if (const SCEVConstant *ConstOffSCEV =
+            dyn_cast<SCEVConstant>(OffsetSCEV)) {
+        ConstantInt *IntOff = ConstOffSCEV->getValue();
+        int64_t Offset = IntOff->getSExtValue();
+
+        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
+        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
+
+        assert(VTy == cast<PointerType>(JPtr->getType())->getElementType());
+
+        OffsetInElmts = Offset/VTyTSS;
+        return (abs64(Offset) % VTyTSS) == 0;
+      }
+
+      return false;
+    }
+
+    // Returns true if the provided CallInst represents an intrinsic that can
+    // be vectorized.
+    bool isVectorizableIntrinsic(CallInst* I) {
+      Function *F = I->getCalledFunction();
+      if (!F) return false;
+
+      unsigned IID = F->getIntrinsicID();
+      if (!IID) return false;
+
+      switch(IID) {
+      default:
+        return false;
+      case Intrinsic::sqrt:
+      case Intrinsic::powi:
+      case Intrinsic::sin:
+      case Intrinsic::cos:
+      case Intrinsic::log:
+      case Intrinsic::log2:
+      case Intrinsic::log10:
+      case Intrinsic::exp:
+      case Intrinsic::exp2:
+      case Intrinsic::pow:
+        return !NoMath;
+      case Intrinsic::fma:
+        return !NoFMA;
+      }
+    }
+
+    // Returns true if J is the second element in some pair referenced by
+    // some multimap pair iterator pair.
+    template <typename V>
+    bool isSecondInIteratorPair(V J, std::pair<
+           typename std::multimap<V, V>::iterator,
+           typename std::multimap<V, V>::iterator> PairRange) {
+      for (typename std::multimap<V, V>::iterator K = PairRange.first;
+           K != PairRange.second; ++K)
+        if (K->second == J) return true;
+
+      return false;
+    }
+  };
+
+  // This function implements one vectorization iteration on the provided
+  // basic block. It returns true if the block is changed.
+  bool BBVectorize::vectorizePairs(BasicBlock &BB) {
+    std::vector<Value *> PairableInsts;
+    std::multimap<Value *, Value *> CandidatePairs;
+    getCandidatePairs(BB, CandidatePairs, PairableInsts);
+    if (PairableInsts.size() == 0) return false;
+
+    // Now we have a map of all of the pairable instructions and we need to
+    // select the best possible pairing. A good pairing is one such that the
+    // users of the pair are also paired. This defines a (directed) forest
+    // over the pairs such that two pairs are connected iff the second pair
+    // uses the first.
+
+    // Note that it only matters that both members of the second pair use some
+    // element of the first pair (to allow for splatting).
+
+    std::multimap<ValuePair, ValuePair> ConnectedPairs;
+    computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
+    if (ConnectedPairs.size() == 0) return false;
+
+    // Build the pairable-instruction dependency map
+    DenseSet<ValuePair> PairableInstUsers;
+    buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
+
+    // There is now a graph of the connected pairs. For each variable, pick the
+    // pairing with the largest tree meeting the depth requirement on at least
+    // one branch. Then select all pairings that are part of that tree and
+    // remove them from the list of available pairings and pairable variables.
+
+    DenseMap<Value *, Value *> ChosenPairs;
+    choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
+      PairableInstUsers, ChosenPairs);
+
+    if (ChosenPairs.size() == 0) return false;
+    NumFusedOps += ChosenPairs.size();
+
+    // A set of pairs has now been selected. It is now necessary to replace the
+    // paired instructions with vector instructions. For this procedure each
+    // operand much be replaced with a vector operand. This vector is formed
+    // by using build_vector on the old operands. The replaced values are then
+    // replaced with a vector_extract on the result.  Subsequent optimization
+    // passes should coalesce the build/extract combinations.
+
+    fuseChosenPairs(BB, PairableInsts, ChosenPairs);
+
+    return true;
+  }
+
+  // This function returns true if the provided instruction is capable of being
+  // fused into a vector instruction. This determination is based only on the
+  // type and other attributes of the instruction.
+  bool BBVectorize::isInstVectorizable(Instruction *I,
+                                         bool &IsSimpleLoadStore) {
+    IsSimpleLoadStore = false;
+
+    if (CallInst *C = dyn_cast<CallInst>(I)) {
+      if (!isVectorizableIntrinsic(C))
+        return false;
+    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
+      // Vectorize simple loads if possbile:
+      IsSimpleLoadStore = L->isSimple();
+      if (!IsSimpleLoadStore || NoMemOps)
+        return false;
+    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
+      // Vectorize simple stores if possbile:
+      IsSimpleLoadStore = S->isSimple();
+      if (!IsSimpleLoadStore || NoMemOps)
+        return false;
+    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
+      // We can vectorize casts, but not casts of pointer types, etc.
+      if (NoCasts)
+        return false;
+
+      Type *SrcTy = C->getSrcTy();
+      if (!SrcTy->isSingleValueType() || SrcTy->isPointerTy())
+        return false;
+
+      Type *DestTy = C->getDestTy();
+      if (!DestTy->isSingleValueType() || DestTy->isPointerTy())
+        return false;
+    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
+        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
+      return false;
+    }
+
+    // We can't vectorize memory operations without target data
+    if (TD == 0 && IsSimpleLoadStore)
+      return false;
+
+    Type *T1, *T2;
+    if (isa<StoreInst>(I)) {
+      // For stores, it is the value type, not the pointer type that matters
+      // because the value is what will come from a vector register.
+
+      Value *IVal = cast<StoreInst>(I)->getValueOperand();
+      T1 = IVal->getType();
+    } else {
+      T1 = I->getType();
+    }
+
+    if (I->isCast())
+      T2 = cast<CastInst>(I)->getSrcTy();
+    else
+      T2 = T1;
+
+    // Not every type can be vectorized...
+    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
+        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
+      return false;
+
+    if (NoInts && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
+      return false;
+
+    if (NoFloats && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
+      return false;
+
+    if (T1->getPrimitiveSizeInBits() > VectorBits/2 ||
+        T2->getPrimitiveSizeInBits() > VectorBits/2)
+      return false;
+
+    return true;
+  }
+
+  // This function returns true if the two provided instructions are compatible
+  // (meaning that they can be fused into a vector instruction). This assumes
+  // that I has already been determined to be vectorizable and that J is not
+  // in the use tree of I.
+  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
+                       bool IsSimpleLoadStore) {
+    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
+                     " <-> " << *J << "\n");
+
+    // Loads and stores can be merged if they have different alignments,
+    // but are otherwise the same.
+    LoadInst *LI, *LJ;
+    StoreInst *SI, *SJ;
+    if ((LI = dyn_cast<LoadInst>(I)) && (LJ = dyn_cast<LoadInst>(J))) {
+      if (I->getType() != J->getType())
+        return false;
+
+      if (LI->getPointerOperand()->getType() !=
+            LJ->getPointerOperand()->getType() ||
+          LI->isVolatile() != LJ->isVolatile() ||
+          LI->getOrdering() != LJ->getOrdering() ||
+          LI->getSynchScope() != LJ->getSynchScope())
+        return false; 
+    } else if ((SI = dyn_cast<StoreInst>(I)) && (SJ = dyn_cast<StoreInst>(J))) {
+      if (SI->getValueOperand()->getType() !=
+            SJ->getValueOperand()->getType() ||
+          SI->getPointerOperand()->getType() !=
+            SJ->getPointerOperand()->getType() ||
+          SI->isVolatile() != SJ->isVolatile() ||
+          SI->getOrdering() != SJ->getOrdering() ||
+          SI->getSynchScope() != SJ->getSynchScope())
+        return false;
+    } else if (!J->isSameOperationAs(I)) {
+      return false;
+    }
+    // FIXME: handle addsub-type operations!
+
+    if (IsSimpleLoadStore) {
+      Value *IPtr, *JPtr;
+      unsigned IAlignment, JAlignment;
+      int64_t OffsetInElmts = 0;
+      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
+            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
+        if (AlignedOnly) {
+          Type *aType = isa<StoreInst>(I) ?
+            cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
+          // An aligned load or store is possible only if the instruction
+          // with the lower offset has an alignment suitable for the
+          // vector type.
+  
+          unsigned BottomAlignment = IAlignment;
+          if (OffsetInElmts < 0) BottomAlignment = JAlignment;
+  
+          Type *VType = getVecTypeForPair(aType);
+          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
+          if (BottomAlignment < VecAlignment)
+            return false;
+        }
+      } else {
+        return false;
+      }
+    } else if (isa<ShuffleVectorInst>(I)) {
+      // Only merge two shuffles if they're both constant
+      return isa<Constant>(I->getOperand(2)) &&
+             isa<Constant>(J->getOperand(2));
+      // FIXME: We may want to vectorize non-constant shuffles also.
+    }
+
+    return true;
+  }
+
+  // Figure out whether or not J uses I and update the users and write-set
+  // structures associated with I. Specifically, Users represents the set of
+  // instructions that depend on I. WriteSet represents the set
+  // of memory locations that are dependent on I. If UpdateUsers is true,
+  // and J uses I, then Users is updated to contain J and WriteSet is updated
+  // to contain any memory locations to which J writes. The function returns
+  // true if J uses I. By default, alias analysis is used to determine
+  // whether J reads from memory that overlaps with a location in WriteSet.
+  // If LoadMoveSet is not null, then it is a previously-computed multimap
+  // where the key is the memory-based user instruction and the value is
+  // the instruction to be compared with I. So, if LoadMoveSet is provided,
+  // then the alias analysis is not used. This is necessary because this
+  // function is called during the process of moving instructions during
+  // vectorization and the results of the alias analysis are not stable during
+  // that process.
+  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
+                       AliasSetTracker &WriteSet, Instruction *I,
+                       Instruction *J, bool UpdateUsers,
+                       std::multimap<Value *, Value *> *LoadMoveSet) {
+    bool UsesI = false;
+
+    // This instruction may already be marked as a user due, for example, to
+    // being a member of a selected pair.
+    if (Users.count(J))
+      UsesI = true;
+
+    if (!UsesI)
+      for (User::op_iterator JU = J->op_begin(), e = J->op_end();
+           JU != e; ++JU) {
+        Value *V = *JU;
+        if (I == V || Users.count(V)) {
+          UsesI = true;
+          break;
+        }
+      }
+    if (!UsesI && J->mayReadFromMemory()) {
+      if (LoadMoveSet) {
+        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
+        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
+      } else {
+        for (AliasSetTracker::iterator W = WriteSet.begin(),
+             WE = WriteSet.end(); W != WE; ++W) {
+          for (AliasSet::iterator A = W->begin(), AE = W->end();
+               A != AE; ++A) {
+            AliasAnalysis::Location ptrLoc(A->getValue(), A->getSize(),
+                                           A->getTBAAInfo());
+            if (AA->getModRefInfo(J, ptrLoc) != AliasAnalysis::NoModRef) {
+              UsesI = true;
+              break;
+            }
+          }
+          if (UsesI) break;
+        }
+      }
+    }
+
+    if (UsesI && UpdateUsers) {
+      if (J->mayWriteToMemory()) WriteSet.add(J);
+      Users.insert(J);
+    }
+
+    return UsesI;
+  }
+
+  // This function iterates over all instruction pairs in the provided
+  // basic block and collects all candidate pairs for vectorization.
+  void BBVectorize::getCandidatePairs(BasicBlock &BB,
+                       std::multimap<Value *, Value *> &CandidatePairs,
+                       std::vector<Value *> &PairableInsts) {
+    BasicBlock::iterator E = BB.end();
+    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
+      bool IsSimpleLoadStore;
+      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
+
+      // Look for an instruction with which to pair instruction *I...
+      DenseSet<Value *> Users;
+      AliasSetTracker WriteSet(*AA);
+      BasicBlock::iterator J = I; ++J;
+      for (unsigned ss = 0; J != E && ss <= SearchLimit; ++J, ++ss) {
+        // Determine if J uses I, if so, exit the loop.
+        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !FastDep);
+        if (FastDep) {
+          // Note: For this heuristic to be effective, independent operations
+          // must tend to be intermixed. This is likely to be true from some
+          // kinds of grouped loop unrolling (but not the generic LLVM pass),
+          // but otherwise may require some kind of reordering pass.
+
+          // When using fast dependency analysis,
+          // stop searching after first use:
+          if (UsesI) break;
+        } else {
+          if (UsesI) continue;
+        }
+
+        // J does not use I, and comes before the first use of I, so it can be
+        // merged with I if the instructions are compatible.
+        if (!areInstsCompatible(I, J, IsSimpleLoadStore)) continue;
+
+        // J is a candidate for merging with I.
+        if (!PairableInsts.size() ||
+             PairableInsts[PairableInsts.size()-1] != I) {
+          PairableInsts.push_back(I);
+        }
+        CandidatePairs.insert(ValuePair(I, J));
+        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
+                     << *I << " <-> " << *J << "\n");
+      }
+    }
+
+    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
+           << " instructions with candidate pairs\n");
+  }
+
+  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
+  // it looks for pairs such that both members have an input which is an
+  // output of PI or PJ.
+  void BBVectorize::computePairsConnectedTo(
+                      std::multimap<Value *, Value *> &CandidatePairs,
+                      std::vector<Value *> &PairableInsts,
+                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+                      ValuePair P) {
+    // For each possible pairing for this variable, look at the uses of
+    // the first value...
+    for (Value::use_iterator I = P.first->use_begin(),
+         E = P.first->use_end(); I != E; ++I) {
+      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
+
+      // For each use of the first variable, look for uses of the second
+      // variable...
+      for (Value::use_iterator J = P.second->use_begin(),
+           E2 = P.second->use_end(); J != E2; ++J) {
+        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
+
+        // Look for <I, J>:
+        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
+          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
+
+        // Look for <J, I>:
+        if (isSecondInIteratorPair<Value*>(*I, JPairRange))
+          ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
+      }
+
+      if (SplatBreaksChain) continue;
+      // Look for cases where just the first value in the pair is used by
+      // both members of another pair (splatting).
+      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
+        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
+          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
+      }
+    }
+
+    if (SplatBreaksChain) return;
+    // Look for cases where just the second value in the pair is used by
+    // both members of another pair (splatting).
+    for (Value::use_iterator I = P.second->use_begin(),
+         E = P.second->use_end(); I != E; ++I) {
+      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
+
+      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
+        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
+          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
+      }
+    }
+  }
+
+  // This function figures out which pairs are connected.  Two pairs are
+  // connected if some output of the first pair forms an input to both members
+  // of the second pair.
+  void BBVectorize::computeConnectedPairs(
+                      std::multimap<Value *, Value *> &CandidatePairs,
+                      std::vector<Value *> &PairableInsts,
+                      std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
+
+    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
+         PE = PairableInsts.end(); PI != PE; ++PI) {
+      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
+
+      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
+           P != choiceRange.second; ++P)
+        computePairsConnectedTo(CandidatePairs, PairableInsts,
+                                ConnectedPairs, *P);
+    }
+
+    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
+                 << " pair connections.\n");
+  }
+
+  // This function builds a set of use tuples such that <A, B> is in the set
+  // if B is in the use tree of A. If B is in the use tree of A, then B
+  // depends on the output of A.
+  void BBVectorize::buildDepMap(
+                      BasicBlock &BB,
+                      std::multimap<Value *, Value *> &CandidatePairs,
+                      std::vector<Value *> &PairableInsts,
+                      DenseSet<ValuePair> &PairableInstUsers) {
+    DenseSet<Value *> IsInPair;
+    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
+         E = CandidatePairs.end(); C != E; ++C) {
+      IsInPair.insert(C->first);
+      IsInPair.insert(C->second);
+    }
+
+    // Iterate through the basic block, recording all Users of each
+    // pairable instruction.
+
+    BasicBlock::iterator E = BB.end();
+    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
+      if (IsInPair.find(I) == IsInPair.end()) continue;
+
+      DenseSet<Value *> Users;
+      AliasSetTracker WriteSet(*AA);
+      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
+        (void) trackUsesOfI(Users, WriteSet, I, J);
+
+      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
+           U != E; ++U)
+        PairableInstUsers.insert(ValuePair(I, *U));
+    }
+  }
+
+  // Returns true if an input to pair P is an output of pair Q and also an
+  // input of pair Q is an output of pair P. If this is the case, then these
+  // two pairs cannot be simultaneously fused.
+  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
+                     DenseSet<ValuePair> &PairableInstUsers,
+                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
+    // Two pairs are in conflict if they are mutual Users of eachother.
+    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
+                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
+                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
+                  PairableInstUsers.count(ValuePair(P.second, Q.second));
+    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
+                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
+                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
+                  PairableInstUsers.count(ValuePair(Q.second, P.second));
+    if (PairableInstUserMap) {
+      // FIXME: The expensive part of the cycle check is not so much the cycle
+      // check itself but this edge insertion procedure. This needs some
+      // profiling and probably a different data structure (same is true of
+      // most uses of std::multimap).
+      if (PUsesQ) {
+        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
+        if (!isSecondInIteratorPair(P, QPairRange))
+          PairableInstUserMap->insert(VPPair(Q, P));
+      }
+      if (QUsesP) {
+        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
+        if (!isSecondInIteratorPair(Q, PPairRange))
+          PairableInstUserMap->insert(VPPair(P, Q));
+      }
+    }
+
+    return (QUsesP && PUsesQ);
+  }
+
+  // This function walks the use graph of current pairs to see if, starting
+  // from P, the walk returns to P.
+  bool BBVectorize::pairWillFormCycle(ValuePair P,
+                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
+                       DenseSet<ValuePair> &CurrentPairs) {
+    DEBUG(if (DebugCycleCheck)
+            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
+                   << *P.second << "\n");
+    // A lookup table of visisted pairs is kept because the PairableInstUserMap
+    // contains non-direct associations.
+    DenseSet<ValuePair> Visited;
+    std::vector<ValuePair> Q;
+    // General depth-first post-order traversal:
+    Q.push_back(P);
+    while (!Q.empty()) {
+      ValuePair QTop = Q.back();
+
+      Visited.insert(QTop);
+      Q.pop_back();
+
+      DEBUG(if (DebugCycleCheck)
+              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
+                     << *QTop.second << "\n");
+      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
+      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
+           C != QPairRange.second; ++C) {
+        if (C->second == P) {
+          DEBUG(dbgs()
+                 << "BBV: rejected to prevent non-trivial cycle formation: "
+                 << *C->first.first << " <-> " << *C->first.second << "\n");
+          return true;
+        }
+
+        if (CurrentPairs.count(C->second) > 0 &&
+            Visited.count(C->second) == 0)
+          Q.push_back(C->second);
+      }
+    }
+
+    return false;
+  }
+
+  // This function builds the initial tree of connected pairs with the
+  // pair J at the root.
+  void BBVectorize::buildInitialTreeFor(
+                      std::multimap<Value *, Value *> &CandidatePairs,
+                      std::vector<Value *> &PairableInsts,
+                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+                      DenseSet<ValuePair> &PairableInstUsers,
+                      DenseMap<Value *, Value *> &ChosenPairs,
+                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
+    // Each of these pairs is viewed as the root node of a Tree. The Tree
+    // is then walked (depth-first). As this happens, we keep track of
+    // the pairs that compose the Tree and the maximum depth of the Tree.
+    std::vector<ValuePairWithDepth> Q;
+    // General depth-first post-order traversal:
+    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
+    while (!Q.empty()) {
+      ValuePairWithDepth QTop = Q.back();
+
+      // Push each child onto the queue:
+      bool MoreChildren = false;
+      size_t MaxChildDepth = QTop.second;
+      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
+      for (std::map<ValuePair, ValuePair>::iterator k = qtRange.first;
+           k != qtRange.second; ++k) {
+        // Make sure that this child pair is still a candidate:
+        bool IsStillCand = false;
+        VPIteratorPair checkRange =
+          CandidatePairs.equal_range(k->second.first);
+        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
+             m != checkRange.second; ++m) {
+          if (m->second == k->second.second) {
+            IsStillCand = true;
+            break;
+          }
+        }
+
+        if (IsStillCand) {
+          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
+          if (C == Tree.end()) {
+            size_t d = getDepthFactor(k->second.first);
+            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
+            MoreChildren = true;
+          } else {
+            MaxChildDepth = std::max(MaxChildDepth, C->second);
+          }
+        }
+      }
+
+      if (!MoreChildren) {
+        // Record the current pair as part of the Tree:
+        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
+        Q.pop_back();
+      }
+    }
+  }
+
+  // Given some initial tree, prune it by removing conflicting pairs (pairs
+  // that cannot be simultaneously chosen for vectorization).
+  void BBVectorize::pruneTreeFor(
+                      std::multimap<Value *, Value *> &CandidatePairs,
+                      std::vector<Value *> &PairableInsts,
+                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+                      DenseSet<ValuePair> &PairableInstUsers,
+                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
+                      DenseMap<Value *, Value *> &ChosenPairs,
+                      DenseMap<ValuePair, size_t> &Tree,
+                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
+                      bool UseCycleCheck) {
+    std::vector<ValuePairWithDepth> Q;
+    // General depth-first post-order traversal:
+    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
+    while (!Q.empty()) {
+      ValuePairWithDepth QTop = Q.back();
+      PrunedTree.insert(QTop.first);
+      Q.pop_back();
+
+      // Visit each child, pruning as necessary...
+      DenseMap<ValuePair, size_t> BestChilden;
+      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
+      for (std::map<ValuePair, ValuePair>::iterator K = QTopRange.first;
+           K != QTopRange.second; ++K) {
+        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
+        if (C == Tree.end()) continue;
+
+        // This child is in the Tree, now we need to make sure it is the
+        // best of any conflicting children. There could be multiple
+        // conflicting children, so first, determine if we're keeping
+        // this child, then delete conflicting children as necessary.
+
+        // It is also necessary to guard against pairing-induced
+        // dependencies. Consider instructions a .. x .. y .. b
+        // such that (a,b) are to be fused and (x,y) are to be fused
+        // but a is an input to x and b is an output from y. This
+        // means that y cannot be moved after b but x must be moved
+        // after b for (a,b) to be fused. In other words, after
+        // fusing (a,b) we have y .. a/b .. x where y is an input
+        // to a/b and x is an output to a/b: x and y can no longer
+        // be legally fused. To prevent this condition, we must
+        // make sure that a child pair added to the Tree is not
+        // both an input and output of an already-selected pair.
+
+        // Pairing-induced dependencies can also form from more complicated
+        // cycles. The pair vs. pair conflicts are easy to check, and so
+        // that is done explicitly for "fast rejection", and because for
+        // child vs. child conflicts, we may prefer to keep the current
+        // pair in preference to the already-selected child.
+        DenseSet<ValuePair> CurrentPairs;
+
+        bool CanAdd = true;
+        for (DenseMap<ValuePair, size_t>::iterator C2
+              = BestChilden.begin(), E2 = BestChilden.end();
+             C2 != E2; ++C2) {
+          if (C2->first.first == C->first.first ||
+              C2->first.first == C->first.second ||
+              C2->first.second == C->first.first ||
+              C2->first.second == C->first.second ||
+              pairsConflict(C2->first, C->first, PairableInstUsers,
+                            UseCycleCheck ? &PairableInstUserMap : 0)) {
+            if (C2->second >= C->second) {
+              CanAdd = false;
+              break;
+            }
+
+            CurrentPairs.insert(C2->first);
+          }
+        }
+        if (!CanAdd) continue;
+
+        // Even worse, this child could conflict with another node already
+        // selected for the Tree. If that is the case, ignore this child.
+        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
+             E2 = PrunedTree.end(); T != E2; ++T) {
+          if (T->first == C->first.first ||
+              T->first == C->first.second ||
+              T->second == C->first.first ||
+              T->second == C->first.second ||
+              pairsConflict(*T, C->first, PairableInstUsers,
+                            UseCycleCheck ? &PairableInstUserMap : 0)) {
+            CanAdd = false;
+            break;
+          }
+
+          CurrentPairs.insert(*T);
+        }
+        if (!CanAdd) continue;
+
+        // And check the queue too...
+        for (std::vector<ValuePairWithDepth>::iterator C2 = Q.begin(),
+             E2 = Q.end(); C2 != E2; ++C2) {
+          if (C2->first.first == C->first.first ||
+              C2->first.first == C->first.second ||
+              C2->first.second == C->first.first ||
+              C2->first.second == C->first.second ||
+              pairsConflict(C2->first, C->first, PairableInstUsers,
+                            UseCycleCheck ? &PairableInstUserMap : 0)) {
+            CanAdd = false;
+            break;
+          }
+
+          CurrentPairs.insert(C2->first);
+        }
+        if (!CanAdd) continue;
+
+        // Last but not least, check for a conflict with any of the
+        // already-chosen pairs.
+        for (DenseMap<Value *, Value *>::iterator C2 =
+              ChosenPairs.begin(), E2 = ChosenPairs.end();
+             C2 != E2; ++C2) {
+          if (pairsConflict(*C2, C->first, PairableInstUsers,
+                            UseCycleCheck ? &PairableInstUserMap : 0)) {
+            CanAdd = false;
+            break;
+          }
+
+          CurrentPairs.insert(*C2);
+        }
+        if (!CanAdd) continue;
+
+	// To check for non-trivial cycles formed by the addition of the
+	// current pair we've formed a list of all relevant pairs, now use a
+	// graph walk to check for a cycle. We start from the current pair and
+	// walk the use tree to see if we again reach the current pair. If we
+	// do, then the current pair is rejected.
+
+        // FIXME: It may be more efficient to use a topological-ordering
+        // algorithm to improve the cycle check. This should be investigated.
+        if (UseCycleCheck &&
+            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
+          continue;
+
+        // This child can be added, but we may have chosen it in preference
+        // to an already-selected child. Check for this here, and if a
+        // conflict is found, then remove the previously-selected child
+        // before adding this one in its place.
+        for (DenseMap<ValuePair, size_t>::iterator C2
+              = BestChilden.begin(); C2 != BestChilden.end();) {
+          if (C2->first.first == C->first.first ||
+              C2->first.first == C->first.second ||
+              C2->first.second == C->first.first ||
+              C2->first.second == C->first.second ||
+              pairsConflict(C2->first, C->first, PairableInstUsers))
+            BestChilden.erase(C2++);
+          else
+            ++C2;
+        }
+
+        BestChilden.insert(ValuePairWithDepth(C->first, C->second));
+      }
+
+      for (DenseMap<ValuePair, size_t>::iterator C
+            = BestChilden.begin(), E2 = BestChilden.end();
+           C != E2; ++C) {
+        size_t DepthF = getDepthFactor(C->first.first);
+        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
+      }
+    }
+  }
+
+  // This function finds the best tree of mututally-compatible connected
+  // pairs, given the choice of root pairs as an iterator range.
+  void BBVectorize::findBestTreeFor(
+                      std::multimap<Value *, Value *> &CandidatePairs,
+                      std::vector<Value *> &PairableInsts,
+                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+                      DenseSet<ValuePair> &PairableInstUsers,
+                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
+                      DenseMap<Value *, Value *> &ChosenPairs,
+                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
+                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
+                      bool UseCycleCheck) {
+    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
+         J != ChoiceRange.second; ++J) {
+
+      // Before going any further, make sure that this pair does not
+      // conflict with any already-selected pairs (see comment below
+      // near the Tree pruning for more details).
+      DenseSet<ValuePair> ChosenPairSet;
+      bool DoesConflict = false;
+      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
+           E = ChosenPairs.end(); C != E; ++C) {
+        if (pairsConflict(*C, *J, PairableInstUsers,
+                          UseCycleCheck ? &PairableInstUserMap : 0)) {
+          DoesConflict = true;
+          break;
+        }
+
+        ChosenPairSet.insert(*C);
+      }
+      if (DoesConflict) continue;
+
+      if (UseCycleCheck &&
+          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
+        continue;
+
+      DenseMap<ValuePair, size_t> Tree;
+      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
+                          PairableInstUsers, ChosenPairs, Tree, *J);
+
+      // Because we'll keep the child with the largest depth, the largest
+      // depth is still the same in the unpruned Tree.
+      size_t MaxDepth = Tree.lookup(*J);
+
+      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
+                   << *J->first << " <-> " << *J->second << "} of depth " <<
+                   MaxDepth << " and size " << Tree.size() << "\n");
+
+      // At this point the Tree has been constructed, but, may contain
+      // contradictory children (meaning that different children of
+      // some tree node may be attempting to fuse the same instruction).
+      // So now we walk the tree again, in the case of a conflict,
+      // keep only the child with the largest depth. To break a tie,
+      // favor the first child.
+
+      DenseSet<ValuePair> PrunedTree;
+      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
+                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
+                   PrunedTree, *J, UseCycleCheck);
+
+      size_t EffSize = 0;
+      for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
+           E = PrunedTree.end(); S != E; ++S)
+        EffSize += getDepthFactor(S->first);
+
+      DEBUG(if (DebugPairSelection)
+             dbgs() << "BBV: found pruned Tree for pair {"
+             << *J->first << " <-> " << *J->second << "} of depth " <<
+             MaxDepth << " and size " << PrunedTree.size() <<
+            " (effective size: " << EffSize << ")\n");
+      if (MaxDepth >= ReqChainDepth && EffSize > BestEffSize) {
+        BestMaxDepth = MaxDepth;
+        BestEffSize = EffSize;
+        BestTree = PrunedTree;
+      }
+    }
+  }
+
+  // Given the list of candidate pairs, this function selects those
+  // that will be fused into vector instructions.
+  void BBVectorize::choosePairs(
+                      std::multimap<Value *, Value *> &CandidatePairs,
+                      std::vector<Value *> &PairableInsts,
+                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
+                      DenseSet<ValuePair> &PairableInstUsers,
+                      DenseMap<Value *, Value *>& ChosenPairs) {
+    bool UseCycleCheck = CandidatePairs.size() <= MaxCandPairsForCycleCheck;
+    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
+    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
+         E = PairableInsts.end(); I != E; ++I) {
+      // The number of possible pairings for this variable:
+      size_t NumChoices = CandidatePairs.count(*I);
+      if (!NumChoices) continue;
+
+      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
+
+      // The best pair to choose and its tree:
+      size_t BestMaxDepth = 0, BestEffSize = 0;
+      DenseSet<ValuePair> BestTree;
+      findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
+                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
+                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
+                      UseCycleCheck);
+
+      // A tree has been chosen (or not) at this point. If no tree was
+      // chosen, then this instruction, I, cannot be paired (and is no longer
+      // considered).
+
+      DEBUG(if (BestTree.size() > 0)
+              dbgs() << "BBV: selected pairs in the best tree for: "
+                     << *cast<Instruction>(*I) << "\n");
+
+      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
+           SE2 = BestTree.end(); S != SE2; ++S) {
+        // Insert the members of this tree into the list of chosen pairs.
+        ChosenPairs.insert(ValuePair(S->first, S->second));
+        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
+               *S->second << "\n");
+
+        // Remove all candidate pairs that have values in the chosen tree.
+        for (std::multimap<Value *, Value *>::iterator K =
+               CandidatePairs.begin(); K != CandidatePairs.end();) {
+          if (K->first == S->first || K->second == S->first ||
+              K->second == S->second || K->first == S->second) {
+            // Don't remove the actual pair chosen so that it can be used
+            // in subsequent tree selections.
+            if (!(K->first == S->first && K->second == S->second))
+              CandidatePairs.erase(K++);
+            else
+              ++K;
+          } else {
+            ++K;
+          }
+        }
+      }
+    }
+
+    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
+  }
+
+  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
+                     unsigned n = 0) {
+    if (!I->hasName())
+      return "";
+
+    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
+             (n > 0 ? "." + utostr(n) : "")).str();
+  }
+
+  // Returns the value that is to be used as the pointer input to the vector
+  // instruction that fuses I with J.
+  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
+                     Instruction *I, Instruction *J, unsigned o,
+                     bool &FlipMemInputs) {
+    Value *IPtr, *JPtr;
+    unsigned IAlignment, JAlignment;
+    int64_t OffsetInElmts;
+    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
+                          OffsetInElmts);
+
+    // The pointer value is taken to be the one with the lowest offset.
+    Value *VPtr;
+    if (OffsetInElmts > 0) {
+      VPtr = IPtr;
+    } else {
+      FlipMemInputs = true;
+      VPtr = JPtr;
+    }
+
+    Type *ArgType = cast<PointerType>(IPtr->getType())->getElementType();
+    Type *VArgType = getVecTypeForPair(ArgType);
+    Type *VArgPtrType = PointerType::get(VArgType,
+      cast<PointerType>(IPtr->getType())->getAddressSpace());
+    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
+                        /* insert before */ FlipMemInputs ? J : I);
+  }
+
+  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
+                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
+                     unsigned IdxOffset, std::vector<Constant*> &Mask) {
+    for (unsigned v = 0; v < NumElem/2; ++v) {
+      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
+      if (m < 0) {
+        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
+      } else {
+        unsigned mm = m + (int) IdxOffset;
+        if (m >= (int) NumInElem)
+          mm += (int) NumInElem;
+
+        Mask[v+MaskOffset] =
+          ConstantInt::get(Type::getInt32Ty(Context), mm);
+      }
+    }
+  }
+
+  // Returns the value that is to be used as the vector-shuffle mask to the
+  // vector instruction that fuses I with J.
+  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
+                     Instruction *I, Instruction *J) {
+    // This is the shuffle mask. We need to append the second
+    // mask to the first, and the numbers need to be adjusted.
+
+    Type *ArgType = I->getType();
+    Type *VArgType = getVecTypeForPair(ArgType);
+
+    // Get the total number of elements in the fused vector type.
+    // By definition, this must equal the number of elements in
+    // the final mask.
+    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
+    std::vector<Constant*> Mask(NumElem);
+
+    Type *OpType = I->getOperand(0)->getType();
+    unsigned NumInElem = cast<VectorType>(OpType)->getNumElements();
+
+    // For the mask from the first pair...
+    fillNewShuffleMask(Context, I, NumElem, 0, NumInElem, 0, Mask);
+
+    // For the mask from the second pair...
+    fillNewShuffleMask(Context, J, NumElem, NumElem/2, NumInElem, NumInElem,
+                       Mask);
+
+    return ConstantVector::get(Mask);
+  }
+
+  // Returns the value to be used as the specified operand of the vector
+  // instruction that fuses I with J.
+  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
+                     Instruction *J, unsigned o, bool FlipMemInputs) {
+    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
+    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
+
+      // Compute the fused vector type for this operand
+    Type *ArgType = I->getOperand(o)->getType();
+    VectorType *VArgType = getVecTypeForPair(ArgType);
+
+    Instruction *L = I, *H = J;
+    if (FlipMemInputs) {
+      L = J;
+      H = I;
+    }
+
+    if (ArgType->isVectorTy()) {
+      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
+      std::vector<Constant*> Mask(numElem);
+      for (unsigned v = 0; v < numElem; ++v)
+        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
+
+      Instruction *BV = new ShuffleVectorInst(L->getOperand(o),
+                                              H->getOperand(o),
+                                              ConstantVector::get(Mask),
+                                              getReplacementName(I, true, o));
+      BV->insertBefore(J);
+      return BV;
+    }
+
+    // If these two inputs are the output of another vector instruction,
+    // then we should use that output directly. It might be necessary to
+    // permute it first. [When pairings are fused recursively, you can
+    // end up with cases where a large vector is decomposed into scalars
+    // using extractelement instructions, then built into size-2
+    // vectors using insertelement and the into larger vectors using
+    // shuffles. InstCombine does not simplify all of these cases well,
+    // and so we make sure that shuffles are generated here when possible.
+    ExtractElementInst *LEE
+      = dyn_cast<ExtractElementInst>(L->getOperand(o));
+    ExtractElementInst *HEE
+      = dyn_cast<ExtractElementInst>(H->getOperand(o));
+
+    if (LEE && HEE &&
+        LEE->getOperand(0)->getType() == HEE->getOperand(0)->getType()) {
+      VectorType *EEType = cast<VectorType>(LEE->getOperand(0)->getType());
+      unsigned LowIndx = cast<ConstantInt>(LEE->getOperand(1))->getZExtValue();
+      unsigned HighIndx = cast<ConstantInt>(HEE->getOperand(1))->getZExtValue();
+      if (LEE->getOperand(0) == HEE->getOperand(0)) {
+        if (LowIndx == 0 && HighIndx == 1)
+          return LEE->getOperand(0);
+ 
+        std::vector<Constant*> Mask(2);
+        Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
+        Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
+
+        Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
+                                          UndefValue::get(EEType),
+                                          ConstantVector::get(Mask),
+                                          getReplacementName(I, true, o));
+        BV->insertBefore(J);
+        return BV;
+      }
+
+      std::vector<Constant*> Mask(2);
+      HighIndx += EEType->getNumElements();
+      Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
+      Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
+
+      Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
+                                          HEE->getOperand(0),
+                                          ConstantVector::get(Mask),
+                                          getReplacementName(I, true, o));
+      BV->insertBefore(J);
+      return BV;
+    }
+
+    Instruction *BV1 = InsertElementInst::Create(
+                                          UndefValue::get(VArgType),
+                                          L->getOperand(o), CV0,
+                                          getReplacementName(I, true, o, 1));
+    BV1->insertBefore(I);
+    Instruction *BV2 = InsertElementInst::Create(BV1, H->getOperand(o),
+                                          CV1,
+                                          getReplacementName(I, true, o, 2));
+    BV2->insertBefore(J);
+    return BV2;
+  }
+
+  // This function creates an array of values that will be used as the inputs
+  // to the vector instruction that fuses I with J.
+  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
+                     Instruction *I, Instruction *J,
+                     SmallVector<Value *, 3> &ReplacedOperands,
+                     bool &FlipMemInputs) {
+    FlipMemInputs = false;
+    unsigned NumOperands = I->getNumOperands();
+
+    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
+      // Iterate backward so that we look at the store pointer
+      // first and know whether or not we need to flip the inputs.
+
+      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
+        // This is the pointer for a load/store instruction.
+        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
+                                FlipMemInputs);
+        continue;
+      } else if (isa<CallInst>(I) && o == NumOperands-1) {
+        Function *F = cast<CallInst>(I)->getCalledFunction();
+        unsigned IID = F->getIntrinsicID();
+        BasicBlock &BB = *I->getParent();
+
+        Module *M = BB.getParent()->getParent();
+        Type *ArgType = I->getType();
+        Type *VArgType = getVecTypeForPair(ArgType);
+
+        // FIXME: is it safe to do this here?
+        ReplacedOperands[o] = Intrinsic::getDeclaration(M,
+          (Intrinsic::ID) IID, VArgType);
+        continue;
+      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
+        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
+        continue;
+      }
+
+      ReplacedOperands[o] =
+        getReplacementInput(Context, I, J, o, FlipMemInputs);
+    }
+  }
+
+  // This function creates two values that represent the outputs of the
+  // original I and J instructions. These are generally vector shuffles
+  // or extracts. In many cases, these will end up being unused and, thus,
+  // eliminated by later passes.
+  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
+                     Instruction *J, Instruction *K,
+                     Instruction *&InsertionPt,
+                     Instruction *&K1, Instruction *&K2,
+                     bool &FlipMemInputs) {
+    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
+    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
+
+    if (isa<StoreInst>(I)) {
+      AA->replaceWithNewValue(I, K);
+      AA->replaceWithNewValue(J, K);
+    } else {
+      Type *IType = I->getType();
+      Type *VType = getVecTypeForPair(IType);
+
+      if (IType->isVectorTy()) {
+          unsigned numElem = cast<VectorType>(IType)->getNumElements();
+          std::vector<Constant*> Mask1(numElem), Mask2(numElem);
+          for (unsigned v = 0; v < numElem; ++v) {
+            Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
+            Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElem+v);
+          }
+
+          K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
+                                       ConstantVector::get(
+                                         FlipMemInputs ? Mask2 : Mask1),
+                                       getReplacementName(K, false, 1));
+          K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
+                                       ConstantVector::get(
+                                         FlipMemInputs ? Mask1 : Mask2),
+                                       getReplacementName(K, false, 2));
+      } else {
+        K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
+                                          getReplacementName(K, false, 1));
+        K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
+                                          getReplacementName(K, false, 2));
+      }
+
+      K1->insertAfter(K);
+      K2->insertAfter(K1);
+      InsertionPt = K2;
+    }
+  }
+
+  // Move all uses of the function I (including pairing-induced uses) after J.
+  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
+                     std::multimap<Value *, Value *> &LoadMoveSet,
+                     Instruction *I, Instruction *J) {
+    // Skip to the first instruction past I.
+    BasicBlock::iterator L = BB.begin();
+    for (; cast<Instruction>(L) != I; ++L);
+    ++L;
+
+    DenseSet<Value *> Users;
+    AliasSetTracker WriteSet(*AA);
+    for (; cast<Instruction>(L) != J; ++L)
+      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
+
+    assert(cast<Instruction>(L) == J &&
+      "Tracking has not proceeded far enough to check for dependencies");
+    // If J is now in the use set of I, then trackUsesOfI will return true
+    // and we have a dependency cycle (and the fusing operation must abort).
+    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
+  }
+
+  // Move all uses of the function I (including pairing-induced uses) after J.
+  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
+                     std::multimap<Value *, Value *> &LoadMoveSet,
+                     Instruction *&InsertionPt,
+                     Instruction *I, Instruction *J) {
+    // Skip to the first instruction past I.
+    BasicBlock::iterator L = BB.begin();
+    for (; cast<Instruction>(L) != I; ++L);
+    ++L;
+
+    DenseSet<Value *> Users;
+    AliasSetTracker WriteSet(*AA);
+    for (; cast<Instruction>(L) != J;) {
+      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
+        // Move this instruction
+        Instruction *InstToMove = L; ++L;
+
+        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
+                        " to after " << *InsertionPt << "\n");
+        InstToMove->removeFromParent();
+        InstToMove->insertAfter(InsertionPt);
+        InsertionPt = InstToMove;
+      } else {
+        ++L;
+      }
+    }
+  }
+
+  // Collect all load instruction that are in the move set of a given first
+  // pair member.  These loads depend on the first instruction, I, and so need
+  // to be moved after J (the second instruction) when the pair is fused.
+  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
+                     DenseMap<Value *, Value *> &ChosenPairs,
+                     std::multimap<Value *, Value *> &LoadMoveSet,
+                     Instruction *I) {
+    // Skip to the first instruction past I.
+    BasicBlock::iterator L = BB.begin();
+    for (; cast<Instruction>(L) != I; ++L);
+    ++L;
+
+    DenseSet<Value *> Users;
+    AliasSetTracker WriteSet(*AA);
+
+    // Note: We cannot end the loop when we reach J because J could be moved
+    // farther down the use chain by another instruction pairing. Also, J
+    // could be before I if this is an inverted input.
+    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
+      if (trackUsesOfI(Users, WriteSet, I, L)) {
+        if (L->mayReadFromMemory())
+          LoadMoveSet.insert(ValuePair(L, I));
+      }
+    }
+  }
+
+  // In cases where both load/stores and the computation of their pointers
+  // are chosen for vectorization, we can end up in a situation where the
+  // aliasing analysis starts returning different query results as the
+  // process of fusing instruction pairs continues. Because the algorithm
+  // relies on finding the same use trees here as were found earlier, we'll
+  // need to precompute the necessary aliasing information here and then
+  // manually update it during the fusion process.
+  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
+                     std::vector<Value *> &PairableInsts,
+                     DenseMap<Value *, Value *> &ChosenPairs,
+                     std::multimap<Value *, Value *> &LoadMoveSet) {
+    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
+         PIE = PairableInsts.end(); PI != PIE; ++PI) {
+      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
+      if (P == ChosenPairs.end()) continue;
+
+      Instruction *I = cast<Instruction>(P->first);
+      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
+    }
+  }
+
+  // This function fuses the chosen instruction pairs into vector instructions,
+  // taking care preserve any needed scalar outputs and, then, it reorders the
+  // remaining instructions as needed (users of the first member of the pair
+  // need to be moved to after the location of the second member of the pair
+  // because the vector instruction is inserted in the location of the pair's
+  // second member).
+  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
+                     std::vector<Value *> &PairableInsts,
+                     DenseMap<Value *, Value *> &ChosenPairs) {
+    LLVMContext& Context = BB.getContext();
+
+    // During the vectorization process, the order of the pairs to be fused
+    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
+    // list. After a pair is fused, the flipped pair is removed from the list.
+    std::vector<ValuePair> FlippedPairs;
+    FlippedPairs.reserve(ChosenPairs.size());
+    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
+         E = ChosenPairs.end(); P != E; ++P)
+      FlippedPairs.push_back(ValuePair(P->second, P->first));
+    for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
+         E = FlippedPairs.end(); P != E; ++P)
+      ChosenPairs.insert(*P);
+
+    std::multimap<Value *, Value *> LoadMoveSet;
+    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
+
+    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
+
+    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
+      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
+      if (P == ChosenPairs.end()) {
+        ++PI;
+        continue;
+      }
+
+      if (getDepthFactor(P->first) == 0) {
+        // These instructions are not really fused, but are tracked as though
+        // they are. Any case in which it would be interesting to fuse them
+        // will be taken care of by InstCombine.
+        --NumFusedOps;
+        ++PI;
+        continue;
+      }
+
+      Instruction *I = cast<Instruction>(P->first),
+        *J = cast<Instruction>(P->second);
+
+      DEBUG(dbgs() << "BBV: fusing: " << *I <<
+             " <-> " << *J << "\n");
+
+      // Remove the pair and flipped pair from the list.
+      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
+      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
+      ChosenPairs.erase(FP);
+      ChosenPairs.erase(P);
+
+      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
+        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
+               " <-> " << *J <<
+               " aborted because of non-trivial dependency cycle\n");
+        --NumFusedOps;
+        ++PI;
+        continue;
+      }
+
+      bool FlipMemInputs;
+      unsigned NumOperands = I->getNumOperands();
+      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
+      getReplacementInputsForPair(Context, I, J, ReplacedOperands,
+        FlipMemInputs);
+
+      // Make a copy of the original operation, change its type to the vector
+      // type and replace its operands with the vector operands.
+      Instruction *K = I->clone();
+      if (I->hasName()) K->takeName(I);
+
+      if (!isa<StoreInst>(K))
+        K->mutateType(getVecTypeForPair(I->getType()));
+
+      for (unsigned o = 0; o < NumOperands; ++o)
+        K->setOperand(o, ReplacedOperands[o]);
+
+      // If we've flipped the memory inputs, make sure that we take the correct
+      // alignment.
+      if (FlipMemInputs) {
+        if (isa<StoreInst>(K))
+          cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
+        else
+          cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
+      }
+
+      K->insertAfter(J);
+
+      // Instruction insertion point:
+      Instruction *InsertionPt = K;
+      Instruction *K1 = 0, *K2 = 0;
+      replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
+        FlipMemInputs);
+
+      // The use tree of the first original instruction must be moved to after
+      // the location of the second instruction. The entire use tree of the
+      // first instruction is disjoint from the input tree of the second
+      // (by definition), and so commutes with it.
+
+      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
+
+      if (!isa<StoreInst>(I)) {
+        I->replaceAllUsesWith(K1);
+        J->replaceAllUsesWith(K2);
+        AA->replaceWithNewValue(I, K1);
+        AA->replaceWithNewValue(J, K2);
+      }
+
+      // Instructions that may read from memory may be in the load move set.
+      // Once an instruction is fused, we no longer need its move set, and so
+      // the values of the map never need to be updated. However, when a load
+      // is fused, we need to merge the entries from both instructions in the
+      // pair in case those instructions were in the move set of some other
+      // yet-to-be-fused pair. The loads in question are the keys of the map.
+      if (I->mayReadFromMemory()) {
+        std::vector<ValuePair> NewSetMembers;
+        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
+        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
+        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
+             N != IPairRange.second; ++N)
+          NewSetMembers.push_back(ValuePair(K, N->second));
+        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
+             N != JPairRange.second; ++N)
+          NewSetMembers.push_back(ValuePair(K, N->second));
+        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
+             AE = NewSetMembers.end(); A != AE; ++A)
+          LoadMoveSet.insert(*A);
+      }
+
+      // Before removing I, set the iterator to the next instruction.
+      PI = llvm::next(BasicBlock::iterator(I));
+      if (cast<Instruction>(PI) == J)
+        ++PI;
+
+      SE->forgetValue(I);
+      SE->forgetValue(J);
+      I->eraseFromParent();
+      J->eraseFromParent();
+    }
+
+    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
+  }
+}
+
+char BBVectorize::ID = 0;
+static const char bb_vectorize_name[] = "Basic-Block Vectorization";
+INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
+INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
+
+BasicBlockPass *llvm::createBBVectorizePass() {
+  return new BBVectorize();
+}
+
diff --git a/lib/Transforms/Vectorize/CMakeLists.txt b/lib/Transforms/Vectorize/CMakeLists.txt
new file mode 100644
index 0000000..4b66930
--- /dev/null
+++ b/lib/Transforms/Vectorize/CMakeLists.txt
@@ -0,0 +1,4 @@
+add_llvm_library(LLVMVectorize
+  BBVectorize.cpp
+  Vectorize.cpp
+  )
diff --git a/lib/Transforms/Vectorize/LLVMBuild.txt b/lib/Transforms/Vectorize/LLVMBuild.txt
new file mode 100644
index 0000000..7167d27
--- /dev/null
+++ b/lib/Transforms/Vectorize/LLVMBuild.txt
@@ -0,0 +1,24 @@
+;===- ./lib/Transforms/Scalar/LLVMBuild.txt --------------------*- Conf -*--===;
+;
+;                     The LLVM Compiler Infrastructure
+;
+; This file is distributed under the University of Illinois Open Source
+; License. See LICENSE.TXT for details.
+;
+;===------------------------------------------------------------------------===;
+;
+; This is an LLVMBuild description file for the components in this subdirectory.
+;
+; For more information on the LLVMBuild system, please see:
+;
+;   http://llvm.org/docs/LLVMBuild.html
+;
+;===------------------------------------------------------------------------===;
+
+[component_0]
+type = Library
+name = Vectorize
+parent = Transforms
+library_name = Vectorize
+required_libraries = Analysis Core InstCombine Support Target TransformUtils
+
diff --git a/lib/Transforms/Vectorize/Makefile b/lib/Transforms/Vectorize/Makefile
new file mode 100644
index 0000000..86c3658
--- /dev/null
+++ b/lib/Transforms/Vectorize/Makefile
@@ -0,0 +1,15 @@
+##===- lib/Transforms/Vectorize/Makefile -----------------*- Makefile -*-===##
+#
+#                     The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../..
+LIBRARYNAME = LLVMVectorize
+BUILD_ARCHIVE = 1
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Transforms/Vectorize/Vectorize.cpp b/lib/Transforms/Vectorize/Vectorize.cpp
new file mode 100644
index 0000000..1ef6002
--- /dev/null
+++ b/lib/Transforms/Vectorize/Vectorize.cpp
@@ -0,0 +1,39 @@
+//===-- Vectorize.cpp -----------------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements common infrastructure for libLLVMVectorizeOpts.a, which 
+// implements several vectorization transformations over the LLVM intermediate
+// representation, including the C bindings for that library.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm-c/Transforms/Vectorize.h"
+#include "llvm-c/Initialization.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/PassManager.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Transforms/Vectorize.h"
+
+using namespace llvm;
+
+/// initializeVectorizationPasses - Initialize all passes linked into the 
+/// Vectorization library.
+void llvm::initializeVectorization(PassRegistry &Registry) {
+  initializeBBVectorizePass(Registry);
+}
+
+void LLVMInitializeVectorization(LLVMPassRegistryRef R) {
+  initializeVectorization(*unwrap(R));
+}
+
+void LLVMAddBBVectorizePass(LLVMPassManagerRef PM) {
+  unwrap(PM)->add(createBBVectorizePass());
+}
+