| //===-- SlotCalculator.cpp - Calculate what slots values land in ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a useful analysis step to figure out what numbered slots |
| // values in a program will land in (keeping track of per plane information). |
| // |
| // This is used when writing a file to disk, either in bytecode or assembly. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SlotCalculator.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/TypeSymbolTable.h" |
| #include "llvm/Type.h" |
| #include "llvm/ValueSymbolTable.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| #include <functional> |
| using namespace llvm; |
| |
| #ifndef NDEBUG |
| #include "llvm/Support/Streams.h" |
| #include "llvm/Support/CommandLine.h" |
| static cl::opt<bool> SlotCalculatorDebugOption("scdebug",cl::init(false), |
| cl::desc("Enable SlotCalculator debug output"), cl::Hidden); |
| #define SC_DEBUG(X) if (SlotCalculatorDebugOption) cerr << X |
| #else |
| #define SC_DEBUG(X) |
| #endif |
| |
| void SlotCalculator::insertPrimitives() { |
| // Preload the table with the built-in types. These built-in types are |
| // inserted first to ensure that they have low integer indices which helps to |
| // keep bytecode sizes small. Note that the first group of indices must match |
| // the Type::TypeIDs for the primitive types. After that the integer types are |
| // added, but the order and value is not critical. What is critical is that |
| // the indices of these "well known" slot numbers be properly maintained in |
| // Reader.h which uses them directly to extract values of these types. |
| SC_DEBUG("Inserting primitive types:\n"); |
| // See WellKnownTypeSlots in Reader.h |
| getOrCreateTypeSlot(Type::VoidTy ); // 0: VoidTySlot |
| getOrCreateTypeSlot(Type::FloatTy ); // 1: FloatTySlot |
| getOrCreateTypeSlot(Type::DoubleTy); // 2: DoubleTySlot |
| getOrCreateTypeSlot(Type::LabelTy ); // 3: LabelTySlot |
| assert(TypeMap.size() == Type::FirstDerivedTyID &&"Invalid primitive insert"); |
| // Above here *must* correspond 1:1 with the primitive types. |
| getOrCreateTypeSlot(Type::Int1Ty ); // 4: Int1TySlot |
| getOrCreateTypeSlot(Type::Int8Ty ); // 5: Int8TySlot |
| getOrCreateTypeSlot(Type::Int16Ty ); // 6: Int16TySlot |
| getOrCreateTypeSlot(Type::Int32Ty ); // 7: Int32TySlot |
| getOrCreateTypeSlot(Type::Int64Ty ); // 8: Int64TySlot |
| } |
| |
| SlotCalculator::SlotCalculator(const Module *M) { |
| assert(M); |
| TheModule = M; |
| |
| insertPrimitives(); |
| processModule(); |
| } |
| |
| // processModule - Process all of the module level function declarations and |
| // types that are available. |
| // |
| void SlotCalculator::processModule() { |
| SC_DEBUG("begin processModule!\n"); |
| |
| // Add all of the global variables to the value table... |
| // |
| for (Module::const_global_iterator I = TheModule->global_begin(), |
| E = TheModule->global_end(); I != E; ++I) |
| CreateSlotIfNeeded(I); |
| |
| // Scavenge the types out of the functions, then add the functions themselves |
| // to the value table... |
| // |
| for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); |
| I != E; ++I) |
| CreateSlotIfNeeded(I); |
| |
| // Add all of the module level constants used as initializers |
| // |
| for (Module::const_global_iterator I = TheModule->global_begin(), |
| E = TheModule->global_end(); I != E; ++I) |
| if (I->hasInitializer()) |
| CreateSlotIfNeeded(I->getInitializer()); |
| |
| // Now that all global constants have been added, rearrange constant planes |
| // that contain constant strings so that the strings occur at the start of the |
| // plane, not somewhere in the middle. |
| // |
| for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) { |
| if (const ArrayType *AT = dyn_cast<ArrayType>(Types[plane])) |
| if (AT->getElementType() == Type::Int8Ty) { |
| TypePlane &Plane = Table[plane]; |
| unsigned FirstNonStringID = 0; |
| for (unsigned i = 0, e = Plane.size(); i != e; ++i) |
| if (isa<ConstantAggregateZero>(Plane[i]) || |
| (isa<ConstantArray>(Plane[i]) && |
| cast<ConstantArray>(Plane[i])->isString())) { |
| // Check to see if we have to shuffle this string around. If not, |
| // don't do anything. |
| if (i != FirstNonStringID) { |
| // Swap the plane entries.... |
| std::swap(Plane[i], Plane[FirstNonStringID]); |
| |
| // Keep the NodeMap up to date. |
| NodeMap[Plane[i]] = i; |
| NodeMap[Plane[FirstNonStringID]] = FirstNonStringID; |
| } |
| ++FirstNonStringID; |
| } |
| } |
| } |
| |
| // Scan all of the functions for their constants, which allows us to emit |
| // more compact modules. |
| SC_DEBUG("Inserting function constants:\n"); |
| for (Module::const_iterator F = TheModule->begin(), E = TheModule->end(); |
| F != E; ++F) { |
| for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ |
| for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); |
| OI != E; ++OI) { |
| if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || |
| isa<InlineAsm>(*OI)) |
| CreateSlotIfNeeded(*OI); |
| } |
| getOrCreateTypeSlot(I->getType()); |
| } |
| } |
| |
| // Insert constants that are named at module level into the slot pool so that |
| // the module symbol table can refer to them... |
| SC_DEBUG("Inserting SymbolTable values:\n"); |
| processTypeSymbolTable(&TheModule->getTypeSymbolTable()); |
| processValueSymbolTable(&TheModule->getValueSymbolTable()); |
| |
| // Now that we have collected together all of the information relevant to the |
| // module, compactify the type table if it is particularly big and outputting |
| // a bytecode file. The basic problem we run into is that some programs have |
| // a large number of types, which causes the type field to overflow its size, |
| // which causes instructions to explode in size (particularly call |
| // instructions). To avoid this behavior, we "sort" the type table so that |
| // all non-value types are pushed to the end of the type table, giving nice |
| // low numbers to the types that can be used by instructions, thus reducing |
| // the amount of explodage we suffer. |
| if (Types.size() >= 64) { |
| unsigned FirstNonValueTypeID = 0; |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) |
| if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) { |
| // Check to see if we have to shuffle this type around. If not, don't |
| // do anything. |
| if (i != FirstNonValueTypeID) { |
| // Swap the type ID's. |
| std::swap(Types[i], Types[FirstNonValueTypeID]); |
| |
| // Keep the TypeMap up to date. |
| TypeMap[Types[i]] = i; |
| TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID; |
| |
| // When we move a type, make sure to move its value plane as needed. |
| if (Table.size() > FirstNonValueTypeID) { |
| if (Table.size() <= i) Table.resize(i+1); |
| std::swap(Table[i], Table[FirstNonValueTypeID]); |
| } |
| } |
| ++FirstNonValueTypeID; |
| } |
| } |
| |
| NumModuleTypes = getNumPlanes(); |
| |
| SC_DEBUG("end processModule!\n"); |
| } |
| |
| // processTypeSymbolTable - Insert all of the type sin the specified symbol |
| // table. |
| void SlotCalculator::processTypeSymbolTable(const TypeSymbolTable *TST) { |
| for (TypeSymbolTable::const_iterator TI = TST->begin(), TE = TST->end(); |
| TI != TE; ++TI ) |
| getOrCreateTypeSlot(TI->second); |
| } |
| |
| // processSymbolTable - Insert all of the values in the specified symbol table |
| // into the values table... |
| // |
| void SlotCalculator::processValueSymbolTable(const ValueSymbolTable *VST) { |
| for (ValueSymbolTable::const_iterator VI = VST->begin(), VE = VST->end(); |
| VI != VE; ++VI) |
| CreateSlotIfNeeded(VI->getValue()); |
| } |
| |
| void SlotCalculator::CreateSlotIfNeeded(const Value *V) { |
| // Check to see if it's already in! |
| if (NodeMap.count(V)) return; |
| |
| const Type *Ty = V->getType(); |
| assert(Ty != Type::VoidTy && "Can't insert void values!"); |
| |
| if (const Constant *C = dyn_cast<Constant>(V)) { |
| if (isa<GlobalValue>(C)) { |
| // Initializers for globals are handled explicitly elsewhere. |
| } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { |
| // Do not index the characters that make up constant strings. We emit |
| // constant strings as special entities that don't require their |
| // individual characters to be emitted. |
| if (!C->isNullValue()) |
| ConstantStrings.push_back(cast<ConstantArray>(C)); |
| } else { |
| // This makes sure that if a constant has uses (for example an array of |
| // const ints), that they are inserted also. |
| for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); |
| I != E; ++I) |
| CreateSlotIfNeeded(*I); |
| } |
| } |
| |
| unsigned TyPlane = getOrCreateTypeSlot(Ty); |
| if (Table.size() <= TyPlane) // Make sure we have the type plane allocated. |
| Table.resize(TyPlane+1, TypePlane()); |
| |
| // If this is the first value to get inserted into the type plane, make sure |
| // to insert the implicit null value. |
| if (Table[TyPlane].empty()) { |
| // Label's and opaque types can't have a null value. |
| if (Ty != Type::LabelTy && !isa<OpaqueType>(Ty)) { |
| Value *ZeroInitializer = Constant::getNullValue(Ty); |
| |
| // If we are pushing zeroinit, it will be handled below. |
| if (V != ZeroInitializer) { |
| Table[TyPlane].push_back(ZeroInitializer); |
| NodeMap[ZeroInitializer] = 0; |
| } |
| } |
| } |
| |
| // Insert node into table and NodeMap... |
| NodeMap[V] = Table[TyPlane].size(); |
| Table[TyPlane].push_back(V); |
| |
| SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" << |
| NodeMap[V] << "\n"); |
| } |
| |
| |
| unsigned SlotCalculator::getOrCreateTypeSlot(const Type *Ty) { |
| TypeMapType::iterator TyIt = TypeMap.find(Ty); |
| if (TyIt != TypeMap.end()) return TyIt->second; |
| |
| // Insert into TypeMap. |
| unsigned ResultSlot = TypeMap[Ty] = Types.size(); |
| Types.push_back(Ty); |
| SC_DEBUG(" Inserting type [" << ResultSlot << "] = " << *Ty << "\n" ); |
| |
| // Loop over any contained types in the definition, ensuring they are also |
| // inserted. |
| for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); |
| I != E; ++I) |
| getOrCreateTypeSlot(*I); |
| |
| return ResultSlot; |
| } |
| |
| |
| |
| void SlotCalculator::incorporateFunction(const Function *F) { |
| SC_DEBUG("begin processFunction!\n"); |
| |
| // Iterate over function arguments, adding them to the value table... |
| for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| CreateFunctionValueSlot(I); |
| |
| SC_DEBUG("Inserting Instructions:\n"); |
| |
| // Add all of the instructions to the type planes... |
| for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { |
| CreateFunctionValueSlot(BB); |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { |
| if (I->getType() != Type::VoidTy) |
| CreateFunctionValueSlot(I); |
| } |
| } |
| |
| SC_DEBUG("end processFunction!\n"); |
| } |
| |
| void SlotCalculator::purgeFunction() { |
| SC_DEBUG("begin purgeFunction!\n"); |
| |
| // Next, remove values from existing type planes |
| for (DenseMap<unsigned,unsigned, |
| ModuleLevelDenseMapKeyInfo>::iterator I = ModuleLevel.begin(), |
| E = ModuleLevel.end(); I != E; ++I) { |
| unsigned PlaneNo = I->first; |
| unsigned ModuleLev = I->second; |
| |
| // Pop all function-local values in this type-plane off of Table. |
| TypePlane &Plane = getPlane(PlaneNo); |
| assert(ModuleLev < Plane.size() && "module levels higher than elements?"); |
| for (unsigned i = ModuleLev, e = Plane.size(); i != e; ++i) { |
| NodeMap.erase(Plane.back()); // Erase from nodemap |
| Plane.pop_back(); // Shrink plane |
| } |
| } |
| |
| ModuleLevel.clear(); |
| |
| // Finally, remove any type planes defined by the function... |
| while (Table.size() > NumModuleTypes) { |
| TypePlane &Plane = Table.back(); |
| SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size " |
| << Plane.size() << "\n"); |
| for (unsigned i = 0, e = Plane.size(); i != e; ++i) |
| NodeMap.erase(Plane[i]); // Erase from nodemap |
| |
| Table.pop_back(); // Nuke the plane, we don't like it. |
| } |
| |
| SC_DEBUG("end purgeFunction!\n"); |
| } |
| |
| inline static bool hasImplicitNull(const Type* Ty) { |
| return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa<OpaqueType>(Ty); |
| } |
| |
| void SlotCalculator::CreateFunctionValueSlot(const Value *V) { |
| assert(!NodeMap.count(V) && "Function-local value can't be inserted!"); |
| |
| const Type *Ty = V->getType(); |
| assert(Ty != Type::VoidTy && "Can't insert void values!"); |
| assert(!isa<Constant>(V) && "Not a function-local value!"); |
| |
| unsigned TyPlane = getOrCreateTypeSlot(Ty); |
| if (Table.size() <= TyPlane) // Make sure we have the type plane allocated. |
| Table.resize(TyPlane+1, TypePlane()); |
| |
| // If this is the first value noticed of this type within this function, |
| // remember the module level for this type plane in ModuleLevel. This reminds |
| // us to remove the values in purgeFunction and tells us how many to remove. |
| if (TyPlane < NumModuleTypes) |
| ModuleLevel.insert(std::make_pair(TyPlane, Table[TyPlane].size())); |
| |
| // If this is the first value to get inserted into the type plane, make sure |
| // to insert the implicit null value. |
| if (Table[TyPlane].empty()) { |
| // Label's and opaque types can't have a null value. |
| if (hasImplicitNull(Ty)) { |
| Value *ZeroInitializer = Constant::getNullValue(Ty); |
| |
| // If we are pushing zeroinit, it will be handled below. |
| if (V != ZeroInitializer) { |
| Table[TyPlane].push_back(ZeroInitializer); |
| NodeMap[ZeroInitializer] = 0; |
| } |
| } |
| } |
| |
| // Insert node into table and NodeMap... |
| NodeMap[V] = Table[TyPlane].size(); |
| Table[TyPlane].push_back(V); |
| |
| SC_DEBUG(" Inserting value [" << TyPlane << "] = " << *V << " slot=" << |
| NodeMap[V] << "\n"); |
| } |