Split the SelectionDAG-building code, including the FunctionLoweringInfo
and SelectionDAGLowering classes, out of SelectionDAGISel.cpp and put
it in a separate file, SelectionDAGBuild.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55701 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
new file mode 100644
index 0000000..9df4bba
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuild.cpp
@@ -0,0 +1,4765 @@
+//===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements routines for translating from LLVM IR into SelectionDAG IR.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "isel"
+#include "SelectionDAGBuild.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Constants.h"
+#include "llvm/CallingConv.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/ParameterAttributes.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/CodeGen/GCMetadata.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+using namespace llvm;
+
+/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
+/// insertvalue or extractvalue indices that identify a member, return
+/// the linearized index of the start of the member.
+///
+static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
+ const unsigned *Indices,
+ const unsigned *IndicesEnd,
+ unsigned CurIndex = 0) {
+ // Base case: We're done.
+ if (Indices && Indices == IndicesEnd)
+ return CurIndex;
+
+ // Given a struct type, recursively traverse the elements.
+ if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ for (StructType::element_iterator EB = STy->element_begin(),
+ EI = EB,
+ EE = STy->element_end();
+ EI != EE; ++EI) {
+ if (Indices && *Indices == unsigned(EI - EB))
+ return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
+ CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
+ }
+ }
+ // Given an array type, recursively traverse the elements.
+ else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ const Type *EltTy = ATy->getElementType();
+ for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
+ if (Indices && *Indices == i)
+ return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
+ CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
+ }
+ }
+ // We haven't found the type we're looking for, so keep searching.
+ return CurIndex + 1;
+}
+
+/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
+/// MVTs that represent all the individual underlying
+/// non-aggregate types that comprise it.
+///
+/// If Offsets is non-null, it points to a vector to be filled in
+/// with the in-memory offsets of each of the individual values.
+///
+static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
+ SmallVectorImpl<MVT> &ValueVTs,
+ SmallVectorImpl<uint64_t> *Offsets = 0,
+ uint64_t StartingOffset = 0) {
+ // Given a struct type, recursively traverse the elements.
+ if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
+ for (StructType::element_iterator EB = STy->element_begin(),
+ EI = EB,
+ EE = STy->element_end();
+ EI != EE; ++EI)
+ ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
+ StartingOffset + SL->getElementOffset(EI - EB));
+ return;
+ }
+ // Given an array type, recursively traverse the elements.
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ const Type *EltTy = ATy->getElementType();
+ uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
+ for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
+ ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
+ StartingOffset + i * EltSize);
+ return;
+ }
+ // Base case: we can get an MVT for this LLVM IR type.
+ ValueVTs.push_back(TLI.getValueType(Ty));
+ if (Offsets)
+ Offsets->push_back(StartingOffset);
+}
+
+namespace {
+ /// RegsForValue - This struct represents the registers (physical or virtual)
+ /// that a particular set of values is assigned, and the type information about
+ /// the value. The most common situation is to represent one value at a time,
+ /// but struct or array values are handled element-wise as multiple values.
+ /// The splitting of aggregates is performed recursively, so that we never
+ /// have aggregate-typed registers. The values at this point do not necessarily
+ /// have legal types, so each value may require one or more registers of some
+ /// legal type.
+ ///
+ struct VISIBILITY_HIDDEN RegsForValue {
+ /// TLI - The TargetLowering object.
+ ///
+ const TargetLowering *TLI;
+
+ /// ValueVTs - The value types of the values, which may not be legal, and
+ /// may need be promoted or synthesized from one or more registers.
+ ///
+ SmallVector<MVT, 4> ValueVTs;
+
+ /// RegVTs - The value types of the registers. This is the same size as
+ /// ValueVTs and it records, for each value, what the type of the assigned
+ /// register or registers are. (Individual values are never synthesized
+ /// from more than one type of register.)
+ ///
+ /// With virtual registers, the contents of RegVTs is redundant with TLI's
+ /// getRegisterType member function, however when with physical registers
+ /// it is necessary to have a separate record of the types.
+ ///
+ SmallVector<MVT, 4> RegVTs;
+
+ /// Regs - This list holds the registers assigned to the values.
+ /// Each legal or promoted value requires one register, and each
+ /// expanded value requires multiple registers.
+ ///
+ SmallVector<unsigned, 4> Regs;
+
+ RegsForValue() : TLI(0) {}
+
+ RegsForValue(const TargetLowering &tli,
+ const SmallVector<unsigned, 4> ®s,
+ MVT regvt, MVT valuevt)
+ : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
+ RegsForValue(const TargetLowering &tli,
+ const SmallVector<unsigned, 4> ®s,
+ const SmallVector<MVT, 4> ®vts,
+ const SmallVector<MVT, 4> &valuevts)
+ : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
+ RegsForValue(const TargetLowering &tli,
+ unsigned Reg, const Type *Ty) : TLI(&tli) {
+ ComputeValueVTs(tli, Ty, ValueVTs);
+
+ for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ MVT ValueVT = ValueVTs[Value];
+ unsigned NumRegs = TLI->getNumRegisters(ValueVT);
+ MVT RegisterVT = TLI->getRegisterType(ValueVT);
+ for (unsigned i = 0; i != NumRegs; ++i)
+ Regs.push_back(Reg + i);
+ RegVTs.push_back(RegisterVT);
+ Reg += NumRegs;
+ }
+ }
+
+ /// append - Add the specified values to this one.
+ void append(const RegsForValue &RHS) {
+ TLI = RHS.TLI;
+ ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
+ RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
+ Regs.append(RHS.Regs.begin(), RHS.Regs.end());
+ }
+
+
+ /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
+ /// this value and returns the result as a ValueVTs value. This uses
+ /// Chain/Flag as the input and updates them for the output Chain/Flag.
+ /// If the Flag pointer is NULL, no flag is used.
+ SDValue getCopyFromRegs(SelectionDAG &DAG,
+ SDValue &Chain, SDValue *Flag) const;
+
+ /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
+ /// specified value into the registers specified by this object. This uses
+ /// Chain/Flag as the input and updates them for the output Chain/Flag.
+ /// If the Flag pointer is NULL, no flag is used.
+ void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
+ SDValue &Chain, SDValue *Flag) const;
+
+ /// AddInlineAsmOperands - Add this value to the specified inlineasm node
+ /// operand list. This adds the code marker and includes the number of
+ /// values added into it.
+ void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
+ std::vector<SDValue> &Ops) const;
+ };
+}
+
+/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
+/// PHI nodes or outside of the basic block that defines it, or used by a
+/// switch or atomic instruction, which may expand to multiple basic blocks.
+static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
+ if (isa<PHINode>(I)) return true;
+ BasicBlock *BB = I->getParent();
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
+ if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
+ // FIXME: Remove switchinst special case.
+ isa<SwitchInst>(*UI))
+ return true;
+ return false;
+}
+
+/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
+/// entry block, return true. This includes arguments used by switches, since
+/// the switch may expand into multiple basic blocks.
+static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
+ // With FastISel active, we may be splitting blocks, so force creation
+ // of virtual registers for all non-dead arguments.
+ if (EnableFastISel)
+ return A->use_empty();
+
+ BasicBlock *Entry = A->getParent()->begin();
+ for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
+ if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
+ return false; // Use not in entry block.
+ return true;
+}
+
+FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
+ : TLI(tli) {
+}
+
+void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
+ bool EnableFastISel) {
+ Fn = &fn;
+ MF = &mf;
+ RegInfo = &MF->getRegInfo();
+
+ // Create a vreg for each argument register that is not dead and is used
+ // outside of the entry block for the function.
+ for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
+ AI != E; ++AI)
+ if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
+ InitializeRegForValue(AI);
+
+ // Initialize the mapping of values to registers. This is only set up for
+ // instruction values that are used outside of the block that defines
+ // them.
+ Function::iterator BB = Fn->begin(), EB = Fn->end();
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
+ if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
+ const Type *Ty = AI->getAllocatedType();
+ uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
+ unsigned Align =
+ std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
+ AI->getAlignment());
+
+ TySize *= CUI->getZExtValue(); // Get total allocated size.
+ if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
+ StaticAllocaMap[AI] =
+ MF->getFrameInfo()->CreateStackObject(TySize, Align);
+ }
+
+ for (; BB != EB; ++BB)
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
+ if (!isa<AllocaInst>(I) ||
+ !StaticAllocaMap.count(cast<AllocaInst>(I)))
+ InitializeRegForValue(I);
+
+ // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
+ // also creates the initial PHI MachineInstrs, though none of the input
+ // operands are populated.
+ for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
+ MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
+ MBBMap[BB] = MBB;
+ MF->push_back(MBB);
+
+ // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
+ // appropriate.
+ PHINode *PN;
+ for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
+ if (PN->use_empty()) continue;
+
+ unsigned PHIReg = ValueMap[PN];
+ assert(PHIReg && "PHI node does not have an assigned virtual register!");
+
+ SmallVector<MVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, PN->getType(), ValueVTs);
+ for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
+ MVT VT = ValueVTs[vti];
+ unsigned NumRegisters = TLI.getNumRegisters(VT);
+ const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
+ for (unsigned i = 0; i != NumRegisters; ++i)
+ BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
+ PHIReg += NumRegisters;
+ }
+ }
+ }
+}
+
+unsigned FunctionLoweringInfo::MakeReg(MVT VT) {
+ return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
+}
+
+/// CreateRegForValue - Allocate the appropriate number of virtual registers of
+/// the correctly promoted or expanded types. Assign these registers
+/// consecutive vreg numbers and return the first assigned number.
+///
+/// In the case that the given value has struct or array type, this function
+/// will assign registers for each member or element.
+///
+unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
+ SmallVector<MVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, V->getType(), ValueVTs);
+
+ unsigned FirstReg = 0;
+ for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ MVT ValueVT = ValueVTs[Value];
+ MVT RegisterVT = TLI.getRegisterType(ValueVT);
+
+ unsigned NumRegs = TLI.getNumRegisters(ValueVT);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ unsigned R = MakeReg(RegisterVT);
+ if (!FirstReg) FirstReg = R;
+ }
+ }
+ return FirstReg;
+}
+
+/// getCopyFromParts - Create a value that contains the specified legal parts
+/// combined into the value they represent. If the parts combine to a type
+/// larger then ValueVT then AssertOp can be used to specify whether the extra
+/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
+/// (ISD::AssertSext).
+static SDValue getCopyFromParts(SelectionDAG &DAG,
+ const SDValue *Parts,
+ unsigned NumParts,
+ MVT PartVT,
+ MVT ValueVT,
+ ISD::NodeType AssertOp = ISD::DELETED_NODE) {
+ assert(NumParts > 0 && "No parts to assemble!");
+ TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Val = Parts[0];
+
+ if (NumParts > 1) {
+ // Assemble the value from multiple parts.
+ if (!ValueVT.isVector()) {
+ unsigned PartBits = PartVT.getSizeInBits();
+ unsigned ValueBits = ValueVT.getSizeInBits();
+
+ // Assemble the power of 2 part.
+ unsigned RoundParts = NumParts & (NumParts - 1) ?
+ 1 << Log2_32(NumParts) : NumParts;
+ unsigned RoundBits = PartBits * RoundParts;
+ MVT RoundVT = RoundBits == ValueBits ?
+ ValueVT : MVT::getIntegerVT(RoundBits);
+ SDValue Lo, Hi;
+
+ if (RoundParts > 2) {
+ MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
+ Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
+ Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
+ PartVT, HalfVT);
+ } else {
+ Lo = Parts[0];
+ Hi = Parts[1];
+ }
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
+
+ if (RoundParts < NumParts) {
+ // Assemble the trailing non-power-of-2 part.
+ unsigned OddParts = NumParts - RoundParts;
+ MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
+ Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
+
+ // Combine the round and odd parts.
+ Lo = Val;
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
+ Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
+ Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
+ DAG.getConstant(Lo.getValueType().getSizeInBits(),
+ TLI.getShiftAmountTy()));
+ Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
+ Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
+ }
+ } else {
+ // Handle a multi-element vector.
+ MVT IntermediateVT, RegisterVT;
+ unsigned NumIntermediates;
+ unsigned NumRegs =
+ TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
+ RegisterVT);
+ assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
+ NumParts = NumRegs; // Silence a compiler warning.
+ assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
+ assert(RegisterVT == Parts[0].getValueType() &&
+ "Part type doesn't match part!");
+
+ // Assemble the parts into intermediate operands.
+ SmallVector<SDValue, 8> Ops(NumIntermediates);
+ if (NumIntermediates == NumParts) {
+ // If the register was not expanded, truncate or copy the value,
+ // as appropriate.
+ for (unsigned i = 0; i != NumParts; ++i)
+ Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
+ PartVT, IntermediateVT);
+ } else if (NumParts > 0) {
+ // If the intermediate type was expanded, build the intermediate operands
+ // from the parts.
+ assert(NumParts % NumIntermediates == 0 &&
+ "Must expand into a divisible number of parts!");
+ unsigned Factor = NumParts / NumIntermediates;
+ for (unsigned i = 0; i != NumIntermediates; ++i)
+ Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
+ PartVT, IntermediateVT);
+ }
+
+ // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
+ // operands.
+ Val = DAG.getNode(IntermediateVT.isVector() ?
+ ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
+ ValueVT, &Ops[0], NumIntermediates);
+ }
+ }
+
+ // There is now one part, held in Val. Correct it to match ValueVT.
+ PartVT = Val.getValueType();
+
+ if (PartVT == ValueVT)
+ return Val;
+
+ if (PartVT.isVector()) {
+ assert(ValueVT.isVector() && "Unknown vector conversion!");
+ return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
+ }
+
+ if (ValueVT.isVector()) {
+ assert(ValueVT.getVectorElementType() == PartVT &&
+ ValueVT.getVectorNumElements() == 1 &&
+ "Only trivial scalar-to-vector conversions should get here!");
+ return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
+ }
+
+ if (PartVT.isInteger() &&
+ ValueVT.isInteger()) {
+ if (ValueVT.bitsLT(PartVT)) {
+ // For a truncate, see if we have any information to
+ // indicate whether the truncated bits will always be
+ // zero or sign-extension.
+ if (AssertOp != ISD::DELETED_NODE)
+ Val = DAG.getNode(AssertOp, PartVT, Val,
+ DAG.getValueType(ValueVT));
+ return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
+ } else {
+ return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
+ }
+ }
+
+ if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
+ if (ValueVT.bitsLT(Val.getValueType()))
+ // FP_ROUND's are always exact here.
+ return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
+ DAG.getIntPtrConstant(1));
+ return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
+ }
+
+ if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
+ return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
+
+ assert(0 && "Unknown mismatch!");
+ return SDValue();
+}
+
+/// getCopyToParts - Create a series of nodes that contain the specified value
+/// split into legal parts. If the parts contain more bits than Val, then, for
+/// integers, ExtendKind can be used to specify how to generate the extra bits.
+static void getCopyToParts(SelectionDAG &DAG,
+ SDValue Val,
+ SDValue *Parts,
+ unsigned NumParts,
+ MVT PartVT,
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
+ TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ MVT PtrVT = TLI.getPointerTy();
+ MVT ValueVT = Val.getValueType();
+ unsigned PartBits = PartVT.getSizeInBits();
+ assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
+
+ if (!NumParts)
+ return;
+
+ if (!ValueVT.isVector()) {
+ if (PartVT == ValueVT) {
+ assert(NumParts == 1 && "No-op copy with multiple parts!");
+ Parts[0] = Val;
+ return;
+ }
+
+ if (NumParts * PartBits > ValueVT.getSizeInBits()) {
+ // If the parts cover more bits than the value has, promote the value.
+ if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
+ assert(NumParts == 1 && "Do not know what to promote to!");
+ Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
+ } else if (PartVT.isInteger() && ValueVT.isInteger()) {
+ ValueVT = MVT::getIntegerVT(NumParts * PartBits);
+ Val = DAG.getNode(ExtendKind, ValueVT, Val);
+ } else {
+ assert(0 && "Unknown mismatch!");
+ }
+ } else if (PartBits == ValueVT.getSizeInBits()) {
+ // Different types of the same size.
+ assert(NumParts == 1 && PartVT != ValueVT);
+ Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
+ } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
+ // If the parts cover less bits than value has, truncate the value.
+ if (PartVT.isInteger() && ValueVT.isInteger()) {
+ ValueVT = MVT::getIntegerVT(NumParts * PartBits);
+ Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
+ } else {
+ assert(0 && "Unknown mismatch!");
+ }
+ }
+
+ // The value may have changed - recompute ValueVT.
+ ValueVT = Val.getValueType();
+ assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
+ "Failed to tile the value with PartVT!");
+
+ if (NumParts == 1) {
+ assert(PartVT == ValueVT && "Type conversion failed!");
+ Parts[0] = Val;
+ return;
+ }
+
+ // Expand the value into multiple parts.
+ if (NumParts & (NumParts - 1)) {
+ // The number of parts is not a power of 2. Split off and copy the tail.
+ assert(PartVT.isInteger() && ValueVT.isInteger() &&
+ "Do not know what to expand to!");
+ unsigned RoundParts = 1 << Log2_32(NumParts);
+ unsigned RoundBits = RoundParts * PartBits;
+ unsigned OddParts = NumParts - RoundParts;
+ SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
+ DAG.getConstant(RoundBits,
+ TLI.getShiftAmountTy()));
+ getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
+ if (TLI.isBigEndian())
+ // The odd parts were reversed by getCopyToParts - unreverse them.
+ std::reverse(Parts + RoundParts, Parts + NumParts);
+ NumParts = RoundParts;
+ ValueVT = MVT::getIntegerVT(NumParts * PartBits);
+ Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
+ }
+
+ // The number of parts is a power of 2. Repeatedly bisect the value using
+ // EXTRACT_ELEMENT.
+ Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
+ MVT::getIntegerVT(ValueVT.getSizeInBits()),
+ Val);
+ for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
+ for (unsigned i = 0; i < NumParts; i += StepSize) {
+ unsigned ThisBits = StepSize * PartBits / 2;
+ MVT ThisVT = MVT::getIntegerVT (ThisBits);
+ SDValue &Part0 = Parts[i];
+ SDValue &Part1 = Parts[i+StepSize/2];
+
+ Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
+ DAG.getConstant(1, PtrVT));
+ Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
+ DAG.getConstant(0, PtrVT));
+
+ if (ThisBits == PartBits && ThisVT != PartVT) {
+ Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
+ Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
+ }
+ }
+ }
+
+ if (TLI.isBigEndian())
+ std::reverse(Parts, Parts + NumParts);
+
+ return;
+ }
+
+ // Vector ValueVT.
+ if (NumParts == 1) {
+ if (PartVT != ValueVT) {
+ if (PartVT.isVector()) {
+ Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
+ } else {
+ assert(ValueVT.getVectorElementType() == PartVT &&
+ ValueVT.getVectorNumElements() == 1 &&
+ "Only trivial vector-to-scalar conversions should get here!");
+ Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
+ DAG.getConstant(0, PtrVT));
+ }
+ }
+
+ Parts[0] = Val;
+ return;
+ }
+
+ // Handle a multi-element vector.
+ MVT IntermediateVT, RegisterVT;
+ unsigned NumIntermediates;
+ unsigned NumRegs =
+ DAG.getTargetLoweringInfo()
+ .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
+ RegisterVT);
+ unsigned NumElements = ValueVT.getVectorNumElements();
+
+ assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
+ NumParts = NumRegs; // Silence a compiler warning.
+ assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
+
+ // Split the vector into intermediate operands.
+ SmallVector<SDValue, 8> Ops(NumIntermediates);
+ for (unsigned i = 0; i != NumIntermediates; ++i)
+ if (IntermediateVT.isVector())
+ Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
+ IntermediateVT, Val,
+ DAG.getConstant(i * (NumElements / NumIntermediates),
+ PtrVT));
+ else
+ Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
+ IntermediateVT, Val,
+ DAG.getConstant(i, PtrVT));
+
+ // Split the intermediate operands into legal parts.
+ if (NumParts == NumIntermediates) {
+ // If the register was not expanded, promote or copy the value,
+ // as appropriate.
+ for (unsigned i = 0; i != NumParts; ++i)
+ getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
+ } else if (NumParts > 0) {
+ // If the intermediate type was expanded, split each the value into
+ // legal parts.
+ assert(NumParts % NumIntermediates == 0 &&
+ "Must expand into a divisible number of parts!");
+ unsigned Factor = NumParts / NumIntermediates;
+ for (unsigned i = 0; i != NumIntermediates; ++i)
+ getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
+ }
+}
+
+
+void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
+ AA = &aa;
+ GFI = gfi;
+ TD = DAG.getTarget().getTargetData();
+}
+
+/// clear - Clear out the curret SelectionDAG and the associated
+/// state and prepare this SelectionDAGLowering object to be used
+/// for a new block. This doesn't clear out information about
+/// additional blocks that are needed to complete switch lowering
+/// or PHI node updating; that information is cleared out as it is
+/// consumed.
+void SelectionDAGLowering::clear() {
+ NodeMap.clear();
+ PendingLoads.clear();
+ PendingExports.clear();
+ DAG.clear();
+}
+
+/// getRoot - Return the current virtual root of the Selection DAG,
+/// flushing any PendingLoad items. This must be done before emitting
+/// a store or any other node that may need to be ordered after any
+/// prior load instructions.
+///
+SDValue SelectionDAGLowering::getRoot() {
+ if (PendingLoads.empty())
+ return DAG.getRoot();
+
+ if (PendingLoads.size() == 1) {
+ SDValue Root = PendingLoads[0];
+ DAG.setRoot(Root);
+ PendingLoads.clear();
+ return Root;
+ }
+
+ // Otherwise, we have to make a token factor node.
+ SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
+ &PendingLoads[0], PendingLoads.size());
+ PendingLoads.clear();
+ DAG.setRoot(Root);
+ return Root;
+}
+
+/// getControlRoot - Similar to getRoot, but instead of flushing all the
+/// PendingLoad items, flush all the PendingExports items. It is necessary
+/// to do this before emitting a terminator instruction.
+///
+SDValue SelectionDAGLowering::getControlRoot() {
+ SDValue Root = DAG.getRoot();
+
+ if (PendingExports.empty())
+ return Root;
+
+ // Turn all of the CopyToReg chains into one factored node.
+ if (Root.getOpcode() != ISD::EntryToken) {
+ unsigned i = 0, e = PendingExports.size();
+ for (; i != e; ++i) {
+ assert(PendingExports[i].getNode()->getNumOperands() > 1);
+ if (PendingExports[i].getNode()->getOperand(0) == Root)
+ break; // Don't add the root if we already indirectly depend on it.
+ }
+
+ if (i == e)
+ PendingExports.push_back(Root);
+ }
+
+ Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
+ &PendingExports[0],
+ PendingExports.size());
+ PendingExports.clear();
+ DAG.setRoot(Root);
+ return Root;
+}
+
+void SelectionDAGLowering::visit(Instruction &I) {
+ visit(I.getOpcode(), I);
+}
+
+void SelectionDAGLowering::visit(unsigned Opcode, User &I) {
+ // Note: this doesn't use InstVisitor, because it has to work with
+ // ConstantExpr's in addition to instructions.
+ switch (Opcode) {
+ default: assert(0 && "Unknown instruction type encountered!");
+ abort();
+ // Build the switch statement using the Instruction.def file.
+#define HANDLE_INST(NUM, OPCODE, CLASS) \
+ case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
+#include "llvm/Instruction.def"
+ }
+}
+
+void SelectionDAGLowering::visitAdd(User &I) {
+ if (I.getType()->isFPOrFPVector())
+ visitBinary(I, ISD::FADD);
+ else
+ visitBinary(I, ISD::ADD);
+}
+
+void SelectionDAGLowering::visitMul(User &I) {
+ if (I.getType()->isFPOrFPVector())
+ visitBinary(I, ISD::FMUL);
+ else
+ visitBinary(I, ISD::MUL);
+}
+
+SDValue SelectionDAGLowering::getValue(const Value *V) {
+ SDValue &N = NodeMap[V];
+ if (N.getNode()) return N;
+
+ if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
+ MVT VT = TLI.getValueType(V->getType(), true);
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ return N = DAG.getConstant(CI->getValue(), VT);
+
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return N = DAG.getGlobalAddress(GV, VT);
+
+ if (isa<ConstantPointerNull>(C))
+ return N = DAG.getConstant(0, TLI.getPointerTy());
+
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
+
+ if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
+ !V->getType()->isAggregateType())
+ return N = DAG.getNode(ISD::UNDEF, VT);
+
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ visit(CE->getOpcode(), *CE);
+ SDValue N1 = NodeMap[V];
+ assert(N1.getNode() && "visit didn't populate the ValueMap!");
+ return N1;
+ }
+
+ if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
+ SmallVector<SDValue, 4> Constants;
+ for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
+ OI != OE; ++OI) {
+ SDNode *Val = getValue(*OI).getNode();
+ for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
+ Constants.push_back(SDValue(Val, i));
+ }
+ return DAG.getMergeValues(&Constants[0], Constants.size());
+ }
+
+ if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
+ assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
+ "Unknown struct or array constant!");
+
+ SmallVector<MVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, C->getType(), ValueVTs);
+ unsigned NumElts = ValueVTs.size();
+ if (NumElts == 0)
+ return SDValue(); // empty struct
+ SmallVector<SDValue, 4> Constants(NumElts);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ MVT EltVT = ValueVTs[i];
+ if (isa<UndefValue>(C))
+ Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
+ else if (EltVT.isFloatingPoint())
+ Constants[i] = DAG.getConstantFP(0, EltVT);
+ else
+ Constants[i] = DAG.getConstant(0, EltVT);
+ }
+ return DAG.getMergeValues(&Constants[0], NumElts);
+ }
+
+ const VectorType *VecTy = cast<VectorType>(V->getType());
+ unsigned NumElements = VecTy->getNumElements();
+
+ // Now that we know the number and type of the elements, get that number of
+ // elements into the Ops array based on what kind of constant it is.
+ SmallVector<SDValue, 16> Ops;
+ if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
+ for (unsigned i = 0; i != NumElements; ++i)
+ Ops.push_back(getValue(CP->getOperand(i)));
+ } else {
+ assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
+ "Unknown vector constant!");
+ MVT EltVT = TLI.getValueType(VecTy->getElementType());
+
+ SDValue Op;
+ if (isa<UndefValue>(C))
+ Op = DAG.getNode(ISD::UNDEF, EltVT);
+ else if (EltVT.isFloatingPoint())
+ Op = DAG.getConstantFP(0, EltVT);
+ else
+ Op = DAG.getConstant(0, EltVT);
+ Ops.assign(NumElements, Op);
+ }
+
+ // Create a BUILD_VECTOR node.
+ return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
+ }
+
+ // If this is a static alloca, generate it as the frameindex instead of
+ // computation.
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end())
+ return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
+ }
+
+ unsigned InReg = FuncInfo.ValueMap[V];
+ assert(InReg && "Value not in map!");
+
+ RegsForValue RFV(TLI, InReg, V->getType());
+ SDValue Chain = DAG.getEntryNode();
+ return RFV.getCopyFromRegs(DAG, Chain, NULL);
+}
+
+
+void SelectionDAGLowering::visitRet(ReturnInst &I) {
+ if (I.getNumOperands() == 0) {
+ DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
+ return;
+ }
+
+ SmallVector<SDValue, 8> NewValues;
+ NewValues.push_back(getControlRoot());
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+ SDValue RetOp = getValue(I.getOperand(i));
+
+ SmallVector<MVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
+ for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
+ MVT VT = ValueVTs[j];
+
+ // FIXME: C calling convention requires the return type to be promoted to
+ // at least 32-bit. But this is not necessary for non-C calling conventions.
+ if (VT.isInteger()) {
+ MVT MinVT = TLI.getRegisterType(MVT::i32);
+ if (VT.bitsLT(MinVT))
+ VT = MinVT;
+ }
+
+ unsigned NumParts = TLI.getNumRegisters(VT);
+ MVT PartVT = TLI.getRegisterType(VT);
+ SmallVector<SDValue, 4> Parts(NumParts);
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+ const Function *F = I.getParent()->getParent();
+ if (F->paramHasAttr(0, ParamAttr::SExt))
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (F->paramHasAttr(0, ParamAttr::ZExt))
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ getCopyToParts(DAG, SDValue(RetOp.getNode(), RetOp.getResNo() + j),
+ &Parts[0], NumParts, PartVT, ExtendKind);
+
+ for (unsigned i = 0; i < NumParts; ++i) {
+ NewValues.push_back(Parts[i]);
+ NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
+ }
+ }
+ }
+ DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
+ &NewValues[0], NewValues.size()));
+}
+
+/// ExportFromCurrentBlock - If this condition isn't known to be exported from
+/// the current basic block, add it to ValueMap now so that we'll get a
+/// CopyTo/FromReg.
+void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
+ // No need to export constants.
+ if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
+
+ // Already exported?
+ if (FuncInfo.isExportedInst(V)) return;
+
+ unsigned Reg = FuncInfo.InitializeRegForValue(V);
+ CopyValueToVirtualRegister(V, Reg);
+}
+
+bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
+ const BasicBlock *FromBB) {
+ // The operands of the setcc have to be in this block. We don't know
+ // how to export them from some other block.
+ if (Instruction *VI = dyn_cast<Instruction>(V)) {
+ // Can export from current BB.
+ if (VI->getParent() == FromBB)
+ return true;
+
+ // Is already exported, noop.
+ return FuncInfo.isExportedInst(V);
+ }
+
+ // If this is an argument, we can export it if the BB is the entry block or
+ // if it is already exported.
+ if (isa<Argument>(V)) {
+ if (FromBB == &FromBB->getParent()->getEntryBlock())
+ return true;
+
+ // Otherwise, can only export this if it is already exported.
+ return FuncInfo.isExportedInst(V);
+ }
+
+ // Otherwise, constants can always be exported.
+ return true;
+}
+
+static bool InBlock(const Value *V, const BasicBlock *BB) {
+ if (const Instruction *I = dyn_cast<Instruction>(V))
+ return I->getParent() == BB;
+ return true;
+}
+
+/// FindMergedConditions - If Cond is an expression like
+void SelectionDAGLowering::FindMergedConditions(Value *Cond,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ MachineBasicBlock *CurBB,
+ unsigned Opc) {
+ // If this node is not part of the or/and tree, emit it as a branch.
+ Instruction *BOp = dyn_cast<Instruction>(Cond);
+
+ if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
+ (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
+ BOp->getParent() != CurBB->getBasicBlock() ||
+ !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
+ !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
+ const BasicBlock *BB = CurBB->getBasicBlock();
+
+ // If the leaf of the tree is a comparison, merge the condition into
+ // the caseblock.
+ if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
+ // The operands of the cmp have to be in this block. We don't know
+ // how to export them from some other block. If this is the first block
+ // of the sequence, no exporting is needed.
+ (CurBB == CurMBB ||
+ (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
+ isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
+ BOp = cast<Instruction>(Cond);
+ ISD::CondCode Condition;
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
+ switch (IC->getPredicate()) {
+ default: assert(0 && "Unknown icmp predicate opcode!");
+ case ICmpInst::ICMP_EQ: Condition = ISD::SETEQ; break;
+ case ICmpInst::ICMP_NE: Condition = ISD::SETNE; break;
+ case ICmpInst::ICMP_SLE: Condition = ISD::SETLE; break;
+ case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
+ case ICmpInst::ICMP_SGE: Condition = ISD::SETGE; break;
+ case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
+ case ICmpInst::ICMP_SLT: Condition = ISD::SETLT; break;
+ case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
+ case ICmpInst::ICMP_SGT: Condition = ISD::SETGT; break;
+ case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
+ }
+ } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
+ ISD::CondCode FPC, FOC;
+ switch (FC->getPredicate()) {
+ default: assert(0 && "Unknown fcmp predicate opcode!");
+ case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
+ case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
+ case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
+ case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
+ case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
+ case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
+ case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
+ case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
+ case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
+ case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
+ case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
+ case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
+ case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
+ case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
+ case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
+ case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
+ }
+ if (FiniteOnlyFPMath())
+ Condition = FOC;
+ else
+ Condition = FPC;
+ } else {
+ Condition = ISD::SETEQ; // silence warning.
+ assert(0 && "Unknown compare instruction");
+ }
+
+ CaseBlock CB(Condition, BOp->getOperand(0),
+ BOp->getOperand(1), NULL, TBB, FBB, CurBB);
+ SwitchCases.push_back(CB);
+ return;
+ }
+
+ // Create a CaseBlock record representing this branch.
+ CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
+ NULL, TBB, FBB, CurBB);
+ SwitchCases.push_back(CB);
+ return;
+ }
+
+
+ // Create TmpBB after CurBB.
+ MachineFunction::iterator BBI = CurBB;
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
+ CurBB->getParent()->insert(++BBI, TmpBB);
+
+ if (Opc == Instruction::Or) {
+ // Codegen X | Y as:
+ // jmp_if_X TBB
+ // jmp TmpBB
+ // TmpBB:
+ // jmp_if_Y TBB
+ // jmp FBB
+ //
+
+ // Emit the LHS condition.
+ FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
+
+ // Emit the RHS condition into TmpBB.
+ FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
+ } else {
+ assert(Opc == Instruction::And && "Unknown merge op!");
+ // Codegen X & Y as:
+ // jmp_if_X TmpBB
+ // jmp FBB
+ // TmpBB:
+ // jmp_if_Y TBB
+ // jmp FBB
+ //
+ // This requires creation of TmpBB after CurBB.
+
+ // Emit the LHS condition.
+ FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
+
+ // Emit the RHS condition into TmpBB.
+ FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
+ }
+}
+
+/// If the set of cases should be emitted as a series of branches, return true.
+/// If we should emit this as a bunch of and/or'd together conditions, return
+/// false.
+bool
+SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
+ if (Cases.size() != 2) return true;
+
+ // If this is two comparisons of the same values or'd or and'd together, they
+ // will get folded into a single comparison, so don't emit two blocks.
+ if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
+ Cases[0].CmpRHS == Cases[1].CmpRHS) ||
+ (Cases[0].CmpRHS == Cases[1].CmpLHS &&
+ Cases[0].CmpLHS == Cases[1].CmpRHS)) {
+ return false;
+ }
+
+ return true;
+}
+
+void SelectionDAGLowering::visitBr(BranchInst &I) {
+ // Update machine-CFG edges.
+ MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
+
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CurMBB;
+ if (++BBI != CurMBB->getParent()->end())
+ NextBlock = BBI;
+
+ if (I.isUnconditional()) {
+ // Update machine-CFG edges.
+ CurMBB->addSuccessor(Succ0MBB);
+
+ // If this is not a fall-through branch, emit the branch.
+ if (Succ0MBB != NextBlock)
+ DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
+ DAG.getBasicBlock(Succ0MBB)));
+ return;
+ }
+
+ // If this condition is one of the special cases we handle, do special stuff
+ // now.
+ Value *CondVal = I.getCondition();
+ MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
+
+ // If this is a series of conditions that are or'd or and'd together, emit
+ // this as a sequence of branches instead of setcc's with and/or operations.
+ // For example, instead of something like:
+ // cmp A, B
+ // C = seteq
+ // cmp D, E
+ // F = setle
+ // or C, F
+ // jnz foo
+ // Emit:
+ // cmp A, B
+ // je foo
+ // cmp D, E
+ // jle foo
+ //
+ if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
+ if (BOp->hasOneUse() &&
+ (BOp->getOpcode() == Instruction::And ||
+ BOp->getOpcode() == Instruction::Or)) {
+ FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
+ // If the compares in later blocks need to use values not currently
+ // exported from this block, export them now. This block should always
+ // be the first entry.
+ assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
+
+ // Allow some cases to be rejected.
+ if (ShouldEmitAsBranches(SwitchCases)) {
+ for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
+ ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
+ ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
+ }
+
+ // Emit the branch for this block.
+ visitSwitchCase(SwitchCases[0]);
+ SwitchCases.erase(SwitchCases.begin());
+ return;
+ }
+
+ // Okay, we decided not to do this, remove any inserted MBB's and clear
+ // SwitchCases.
+ for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
+ CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
+
+ SwitchCases.clear();
+ }
+ }
+
+ // Create a CaseBlock record representing this branch.
+ CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
+ NULL, Succ0MBB, Succ1MBB, CurMBB);
+ // Use visitSwitchCase to actually insert the fast branch sequence for this
+ // cond branch.
+ visitSwitchCase(CB);
+}
+
+/// visitSwitchCase - Emits the necessary code to represent a single node in
+/// the binary search tree resulting from lowering a switch instruction.
+void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
+ SDValue Cond;
+ SDValue CondLHS = getValue(CB.CmpLHS);
+
+ // Build the setcc now.
+ if (CB.CmpMHS == NULL) {
+ // Fold "(X == true)" to X and "(X == false)" to !X to
+ // handle common cases produced by branch lowering.
+ if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
+ Cond = CondLHS;
+ else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
+ SDValue True = DAG.getConstant(1, CondLHS.getValueType());
+ Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
+ } else
+ Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
+ } else {
+ assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
+
+ uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
+ uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
+
+ SDValue CmpOp = getValue(CB.CmpMHS);
+ MVT VT = CmpOp.getValueType();
+
+ if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
+ Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
+ } else {
+ SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
+ Cond = DAG.getSetCC(MVT::i1, SUB,
+ DAG.getConstant(High-Low, VT), ISD::SETULE);
+ }
+ }
+
+ // Update successor info
+ CurMBB->addSuccessor(CB.TrueBB);
+ CurMBB->addSuccessor(CB.FalseBB);
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CurMBB;
+ if (++BBI != CurMBB->getParent()->end())
+ NextBlock = BBI;
+
+ // If the lhs block is the next block, invert the condition so that we can
+ // fall through to the lhs instead of the rhs block.
+ if (CB.TrueBB == NextBlock) {
+ std::swap(CB.TrueBB, CB.FalseBB);
+ SDValue True = DAG.getConstant(1, Cond.getValueType());
+ Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
+ }
+ SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
+ DAG.getBasicBlock(CB.TrueBB));
+
+ // If the branch was constant folded, fix up the CFG.
+ if (BrCond.getOpcode() == ISD::BR) {
+ CurMBB->removeSuccessor(CB.FalseBB);
+ DAG.setRoot(BrCond);
+ } else {
+ // Otherwise, go ahead and insert the false branch.
+ if (BrCond == getControlRoot())
+ CurMBB->removeSuccessor(CB.TrueBB);
+
+ if (CB.FalseBB == NextBlock)
+ DAG.setRoot(BrCond);
+ else
+ DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
+ DAG.getBasicBlock(CB.FalseBB)));
+ }
+}
+
+/// visitJumpTable - Emit JumpTable node in the current MBB
+void SelectionDAGLowering::visitJumpTable(JumpTable &JT) {
+ // Emit the code for the jump table
+ assert(JT.Reg != -1U && "Should lower JT Header first!");
+ MVT PTy = TLI.getPointerTy();
+ SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
+ SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
+ DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
+ Table, Index));
+ return;
+}
+
+/// visitJumpTableHeader - This function emits necessary code to produce index
+/// in the JumpTable from switch case.
+void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
+ JumpTableHeader &JTH) {
+ // Subtract the lowest switch case value from the value being switched on
+ // and conditional branch to default mbb if the result is greater than the
+ // difference between smallest and largest cases.
+ SDValue SwitchOp = getValue(JTH.SValue);
+ MVT VT = SwitchOp.getValueType();
+ SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
+ DAG.getConstant(JTH.First, VT));
+
+ // The SDNode we just created, which holds the value being switched on
+ // minus the the smallest case value, needs to be copied to a virtual
+ // register so it can be used as an index into the jump table in a
+ // subsequent basic block. This value may be smaller or larger than the
+ // target's pointer type, and therefore require extension or truncating.
+ if (VT.bitsGT(TLI.getPointerTy()))
+ SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
+ else
+ SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
+
+ unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
+ SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
+ JT.Reg = JumpTableReg;
+
+ // Emit the range check for the jump table, and branch to the default
+ // block for the switch statement if the value being switched on exceeds
+ // the largest case in the switch.
+ SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
+ DAG.getConstant(JTH.Last-JTH.First,VT),
+ ISD::SETUGT);
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CurMBB;
+ if (++BBI != CurMBB->getParent()->end())
+ NextBlock = BBI;
+
+ SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
+ DAG.getBasicBlock(JT.Default));
+
+ if (JT.MBB == NextBlock)
+ DAG.setRoot(BrCond);
+ else
+ DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
+ DAG.getBasicBlock(JT.MBB)));
+
+ return;
+}
+
+/// visitBitTestHeader - This function emits necessary code to produce value
+/// suitable for "bit tests"
+void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
+ // Subtract the minimum value
+ SDValue SwitchOp = getValue(B.SValue);
+ MVT VT = SwitchOp.getValueType();
+ SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
+ DAG.getConstant(B.First, VT));
+
+ // Check range
+ SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
+ DAG.getConstant(B.Range, VT),
+ ISD::SETUGT);
+
+ SDValue ShiftOp;
+ if (VT.bitsGT(TLI.getShiftAmountTy()))
+ ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
+ else
+ ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
+
+ // Make desired shift
+ SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
+ DAG.getConstant(1, TLI.getPointerTy()),
+ ShiftOp);
+
+ unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
+ SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
+ B.Reg = SwitchReg;
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CurMBB;
+ if (++BBI != CurMBB->getParent()->end())
+ NextBlock = BBI;
+
+ MachineBasicBlock* MBB = B.Cases[0].ThisBB;
+
+ CurMBB->addSuccessor(B.Default);
+ CurMBB->addSuccessor(MBB);
+
+ SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
+ DAG.getBasicBlock(B.Default));
+
+ if (MBB == NextBlock)
+ DAG.setRoot(BrRange);
+ else
+ DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
+ DAG.getBasicBlock(MBB)));
+
+ return;
+}
+
+/// visitBitTestCase - this function produces one "bit test"
+void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
+ unsigned Reg,
+ BitTestCase &B) {
+ // Emit bit tests and jumps
+ SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
+ TLI.getPointerTy());
+
+ SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
+ DAG.getConstant(B.Mask, TLI.getPointerTy()));
+ SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
+ DAG.getConstant(0, TLI.getPointerTy()),
+ ISD::SETNE);
+
+ CurMBB->addSuccessor(B.TargetBB);
+ CurMBB->addSuccessor(NextMBB);
+
+ SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
+ AndCmp, DAG.getBasicBlock(B.TargetBB));
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CurMBB;
+ if (++BBI != CurMBB->getParent()->end())
+ NextBlock = BBI;
+
+ if (NextMBB == NextBlock)
+ DAG.setRoot(BrAnd);
+ else
+ DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
+ DAG.getBasicBlock(NextMBB)));
+
+ return;
+}
+
+void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
+ // Retrieve successors.
+ MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
+ MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
+
+ if (isa<InlineAsm>(I.getCalledValue()))
+ visitInlineAsm(&I);
+ else
+ LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
+
+ // If the value of the invoke is used outside of its defining block, make it
+ // available as a virtual register.
+ if (!I.use_empty()) {
+ DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
+ if (VMI != FuncInfo.ValueMap.end())
+ CopyValueToVirtualRegister(&I, VMI->second);
+ }
+
+ // Update successor info
+ CurMBB->addSuccessor(Return);
+ CurMBB->addSuccessor(LandingPad);
+
+ // Drop into normal successor.
+ DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
+ DAG.getBasicBlock(Return)));
+}
+
+void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
+}
+
+/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
+/// small case ranges).
+bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
+ CaseRecVector& WorkList,
+ Value* SV,
+ MachineBasicBlock* Default) {
+ Case& BackCase = *(CR.Range.second-1);
+
+ // Size is the number of Cases represented by this range.
+ unsigned Size = CR.Range.second - CR.Range.first;
+ if (Size > 3)
+ return false;
+
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = CurMBB->getParent();
+
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CR.CaseBB;
+
+ if (++BBI != CurMBB->getParent()->end())
+ NextBlock = BBI;
+
+ // TODO: If any two of the cases has the same destination, and if one value
+ // is the same as the other, but has one bit unset that the other has set,
+ // use bit manipulation to do two compares at once. For example:
+ // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
+
+ // Rearrange the case blocks so that the last one falls through if possible.
+ if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
+ // The last case block won't fall through into 'NextBlock' if we emit the
+ // branches in this order. See if rearranging a case value would help.
+ for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
+ if (I->BB == NextBlock) {
+ std::swap(*I, BackCase);
+ break;
+ }
+ }
+ }
+
+ // Create a CaseBlock record representing a conditional branch to
+ // the Case's target mbb if the value being switched on SV is equal
+ // to C.
+ MachineBasicBlock *CurBlock = CR.CaseBB;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
+ MachineBasicBlock *FallThrough;
+ if (I != E-1) {
+ FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
+ CurMF->insert(BBI, FallThrough);
+ } else {
+ // If the last case doesn't match, go to the default block.
+ FallThrough = Default;
+ }
+
+ Value *RHS, *LHS, *MHS;
+ ISD::CondCode CC;
+ if (I->High == I->Low) {
+ // This is just small small case range :) containing exactly 1 case
+ CC = ISD::SETEQ;
+ LHS = SV; RHS = I->High; MHS = NULL;
+ } else {
+ CC = ISD::SETLE;
+ LHS = I->Low; MHS = SV; RHS = I->High;
+ }
+ CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
+
+ // If emitting the first comparison, just call visitSwitchCase to emit the
+ // code into the current block. Otherwise, push the CaseBlock onto the
+ // vector to be later processed by SDISel, and insert the node's MBB
+ // before the next MBB.
+ if (CurBlock == CurMBB)
+ visitSwitchCase(CB);
+ else
+ SwitchCases.push_back(CB);
+
+ CurBlock = FallThrough;
+ }
+
+ return true;
+}
+
+static inline bool areJTsAllowed(const TargetLowering &TLI) {
+ return !DisableJumpTables &&
+ (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
+ TLI.isOperationLegal(ISD::BRIND, MVT::Other));
+}
+
+/// handleJTSwitchCase - Emit jumptable for current switch case range
+bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
+ CaseRecVector& WorkList,
+ Value* SV,
+ MachineBasicBlock* Default) {
+ Case& FrontCase = *CR.Range.first;
+ Case& BackCase = *(CR.Range.second-1);
+
+ int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
+ int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
+
+ uint64_t TSize = 0;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second;
+ I!=E; ++I)
+ TSize += I->size();
+
+ if (!areJTsAllowed(TLI) || TSize <= 3)
+ return false;
+
+ double Density = (double)TSize / (double)((Last - First) + 1ULL);
+ if (Density < 0.4)
+ return false;
+
+ DOUT << "Lowering jump table\n"
+ << "First entry: " << First << ". Last entry: " << Last << "\n"
+ << "Size: " << TSize << ". Density: " << Density << "\n\n";
+
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = CurMBB->getParent();
+
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CR.CaseBB;
+
+ if (++BBI != CurMBB->getParent()->end())
+ NextBlock = BBI;
+
+ const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+ // Create a new basic block to hold the code for loading the address
+ // of the jump table, and jumping to it. Update successor information;
+ // we will either branch to the default case for the switch, or the jump
+ // table.
+ MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, JumpTableBB);
+ CR.CaseBB->addSuccessor(Default);
+ CR.CaseBB->addSuccessor(JumpTableBB);
+
+ // Build a vector of destination BBs, corresponding to each target
+ // of the jump table. If the value of the jump table slot corresponds to
+ // a case statement, push the case's BB onto the vector, otherwise, push
+ // the default BB.
+ std::vector<MachineBasicBlock*> DestBBs;
+ int64_t TEI = First;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
+ int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
+ int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
+
+ if ((Low <= TEI) && (TEI <= High)) {
+ DestBBs.push_back(I->BB);
+ if (TEI==High)
+ ++I;
+ } else {
+ DestBBs.push_back(Default);
+ }
+ }
+
+ // Update successor info. Add one edge to each unique successor.
+ BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
+ for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
+ E = DestBBs.end(); I != E; ++I) {
+ if (!SuccsHandled[(*I)->getNumber()]) {
+ SuccsHandled[(*I)->getNumber()] = true;
+ JumpTableBB->addSuccessor(*I);
+ }
+ }
+
+ // Create a jump table index for this jump table, or return an existing
+ // one.
+ unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
+
+ // Set the jump table information so that we can codegen it as a second
+ // MachineBasicBlock
+ JumpTable JT(-1U, JTI, JumpTableBB, Default);
+ JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
+ if (CR.CaseBB == CurMBB)
+ visitJumpTableHeader(JT, JTH);
+
+ JTCases.push_back(JumpTableBlock(JTH, JT));
+
+ return true;
+}
+
+/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
+/// 2 subtrees.
+bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
+ CaseRecVector& WorkList,
+ Value* SV,
+ MachineBasicBlock* Default) {
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = CurMBB->getParent();
+
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CR.CaseBB;
+
+ if (++BBI != CurMBB->getParent()->end())
+ NextBlock = BBI;
+
+ Case& FrontCase = *CR.Range.first;
+ Case& BackCase = *(CR.Range.second-1);
+ const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+ // Size is the number of Cases represented by this range.
+ unsigned Size = CR.Range.second - CR.Range.first;
+
+ int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
+ int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
+ double FMetric = 0;
+ CaseItr Pivot = CR.Range.first + Size/2;
+
+ // Select optimal pivot, maximizing sum density of LHS and RHS. This will
+ // (heuristically) allow us to emit JumpTable's later.
+ uint64_t TSize = 0;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second;
+ I!=E; ++I)
+ TSize += I->size();
+
+ uint64_t LSize = FrontCase.size();
+ uint64_t RSize = TSize-LSize;
+ DOUT << "Selecting best pivot: \n"
+ << "First: " << First << ", Last: " << Last <<"\n"
+ << "LSize: " << LSize << ", RSize: " << RSize << "\n";
+ for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
+ J!=E; ++I, ++J) {
+ int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
+ int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
+ assert((RBegin-LEnd>=1) && "Invalid case distance");
+ double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
+ double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
+ double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
+ // Should always split in some non-trivial place
+ DOUT <<"=>Step\n"
+ << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
+ << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
+ << "Metric: " << Metric << "\n";
+ if (FMetric < Metric) {
+ Pivot = J;
+ FMetric = Metric;
+ DOUT << "Current metric set to: " << FMetric << "\n";
+ }
+
+ LSize += J->size();
+ RSize -= J->size();
+ }
+ if (areJTsAllowed(TLI)) {
+ // If our case is dense we *really* should handle it earlier!
+ assert((FMetric > 0) && "Should handle dense range earlier!");
+ } else {
+ Pivot = CR.Range.first + Size/2;
+ }
+
+ CaseRange LHSR(CR.Range.first, Pivot);
+ CaseRange RHSR(Pivot, CR.Range.second);
+ Constant *C = Pivot->Low;
+ MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
+
+ // We know that we branch to the LHS if the Value being switched on is
+ // less than the Pivot value, C. We use this to optimize our binary
+ // tree a bit, by recognizing that if SV is greater than or equal to the
+ // LHS's Case Value, and that Case Value is exactly one less than the
+ // Pivot's Value, then we can branch directly to the LHS's Target,
+ // rather than creating a leaf node for it.
+ if ((LHSR.second - LHSR.first) == 1 &&
+ LHSR.first->High == CR.GE &&
+ cast<ConstantInt>(C)->getSExtValue() ==
+ (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
+ TrueBB = LHSR.first->BB;
+ } else {
+ TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, TrueBB);
+ WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
+ }
+
+ // Similar to the optimization above, if the Value being switched on is
+ // known to be less than the Constant CR.LT, and the current Case Value
+ // is CR.LT - 1, then we can branch directly to the target block for
+ // the current Case Value, rather than emitting a RHS leaf node for it.
+ if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
+ cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
+ (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
+ FalseBB = RHSR.first->BB;
+ } else {
+ FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, FalseBB);
+ WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
+ }
+
+ // Create a CaseBlock record representing a conditional branch to
+ // the LHS node if the value being switched on SV is less than C.
+ // Otherwise, branch to LHS.
+ CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
+
+ if (CR.CaseBB == CurMBB)
+ visitSwitchCase(CB);
+ else
+ SwitchCases.push_back(CB);
+
+ return true;
+}
+
+/// handleBitTestsSwitchCase - if current case range has few destination and
+/// range span less, than machine word bitwidth, encode case range into series
+/// of masks and emit bit tests with these masks.
+bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
+ CaseRecVector& WorkList,
+ Value* SV,
+ MachineBasicBlock* Default){
+ unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
+
+ Case& FrontCase = *CR.Range.first;
+ Case& BackCase = *(CR.Range.second-1);
+
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = CurMBB->getParent();
+
+ unsigned numCmps = 0;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second;
+ I!=E; ++I) {
+ // Single case counts one, case range - two.
+ if (I->Low == I->High)
+ numCmps +=1;
+ else
+ numCmps +=2;
+ }
+
+ // Count unique destinations
+ SmallSet<MachineBasicBlock*, 4> Dests;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
+ Dests.insert(I->BB);
+ if (Dests.size() > 3)
+ // Don't bother the code below, if there are too much unique destinations
+ return false;
+ }
+ DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
+ << "Total number of comparisons: " << numCmps << "\n";
+
+ // Compute span of values.
+ Constant* minValue = FrontCase.Low;
+ Constant* maxValue = BackCase.High;
+ uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
+ cast<ConstantInt>(minValue)->getSExtValue();
+ DOUT << "Compare range: " << range << "\n"
+ << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
+ << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
+
+ if (range>=IntPtrBits ||
+ (!(Dests.size() == 1 && numCmps >= 3) &&
+ !(Dests.size() == 2 && numCmps >= 5) &&
+ !(Dests.size() >= 3 && numCmps >= 6)))
+ return false;
+
+ DOUT << "Emitting bit tests\n";
+ int64_t lowBound = 0;
+
+ // Optimize the case where all the case values fit in a
+ // word without having to subtract minValue. In this case,
+ // we can optimize away the subtraction.
+ if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
+ cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) {
+ range = cast<ConstantInt>(maxValue)->getSExtValue();
+ } else {
+ lowBound = cast<ConstantInt>(minValue)->getSExtValue();
+ }
+
+ CaseBitsVector CasesBits;
+ unsigned i, count = 0;
+
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
+ MachineBasicBlock* Dest = I->BB;
+ for (i = 0; i < count; ++i)
+ if (Dest == CasesBits[i].BB)
+ break;
+
+ if (i == count) {
+ assert((count < 3) && "Too much destinations to test!");
+ CasesBits.push_back(CaseBits(0, Dest, 0));
+ count++;
+ }
+
+ uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
+ uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
+
+ for (uint64_t j = lo; j <= hi; j++) {
+ CasesBits[i].Mask |= 1ULL << j;
+ CasesBits[i].Bits++;
+ }
+
+ }
+ std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
+
+ BitTestInfo BTC;
+
+ // Figure out which block is immediately after the current one.
+ MachineFunction::iterator BBI = CR.CaseBB;
+ ++BBI;
+
+ const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+ DOUT << "Cases:\n";
+ for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
+ DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
+ << ", BB: " << CasesBits[i].BB << "\n";
+
+ MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, CaseBB);
+ BTC.push_back(BitTestCase(CasesBits[i].Mask,
+ CaseBB,
+ CasesBits[i].BB));
+ }
+
+ BitTestBlock BTB(lowBound, range, SV,
+ -1U, (CR.CaseBB == CurMBB),
+ CR.CaseBB, Default, BTC);
+
+ if (CR.CaseBB == CurMBB)
+ visitBitTestHeader(BTB);
+
+ BitTestCases.push_back(BTB);
+
+ return true;
+}
+
+
+/// Clusterify - Transform simple list of Cases into list of CaseRange's
+unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
+ const SwitchInst& SI) {
+ unsigned numCmps = 0;
+
+ // Start with "simple" cases
+ for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
+ MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
+ Cases.push_back(Case(SI.getSuccessorValue(i),
+ SI.getSuccessorValue(i),
+ SMBB));
+ }
+ std::sort(Cases.begin(), Cases.end(), CaseCmp());
+
+ // Merge case into clusters
+ if (Cases.size()>=2)
+ // Must recompute end() each iteration because it may be
+ // invalidated by erase if we hold on to it
+ for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
+ int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
+ int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
+ MachineBasicBlock* nextBB = J->BB;
+ MachineBasicBlock* currentBB = I->BB;
+
+ // If the two neighboring cases go to the same destination, merge them
+ // into a single case.
+ if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
+ I->High = J->High;
+ J = Cases.erase(J);
+ } else {
+ I = J++;
+ }
+ }
+
+ for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
+ if (I->Low != I->High)
+ // A range counts double, since it requires two compares.
+ ++numCmps;
+ }
+
+ return numCmps;
+}
+
+void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CurMBB;
+
+ MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
+
+ // If there is only the default destination, branch to it if it is not the
+ // next basic block. Otherwise, just fall through.
+ if (SI.getNumOperands() == 2) {
+ // Update machine-CFG edges.
+
+ // If this is not a fall-through branch, emit the branch.
+ CurMBB->addSuccessor(Default);
+ if (Default != NextBlock)
+ DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
+ DAG.getBasicBlock(Default)));
+
+ return;
+ }
+
+ // If there are any non-default case statements, create a vector of Cases
+ // representing each one, and sort the vector so that we can efficiently
+ // create a binary search tree from them.
+ CaseVector Cases;
+ unsigned numCmps = Clusterify(Cases, SI);
+ DOUT << "Clusterify finished. Total clusters: " << Cases.size()
+ << ". Total compares: " << numCmps << "\n";
+
+ // Get the Value to be switched on and default basic blocks, which will be
+ // inserted into CaseBlock records, representing basic blocks in the binary
+ // search tree.
+ Value *SV = SI.getOperand(0);
+
+ // Push the initial CaseRec onto the worklist
+ CaseRecVector WorkList;
+ WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
+
+ while (!WorkList.empty()) {
+ // Grab a record representing a case range to process off the worklist
+ CaseRec CR = WorkList.back();
+ WorkList.pop_back();
+
+ if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
+ continue;
+
+ // If the range has few cases (two or less) emit a series of specific
+ // tests.
+ if (handleSmallSwitchRange(CR, WorkList, SV, Default))
+ continue;
+
+ // If the switch has more than 5 blocks, and at least 40% dense, and the
+ // target supports indirect branches, then emit a jump table rather than
+ // lowering the switch to a binary tree of conditional branches.
+ if (handleJTSwitchCase(CR, WorkList, SV, Default))
+ continue;
+
+ // Emit binary tree. We need to pick a pivot, and push left and right ranges
+ // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
+ handleBTSplitSwitchCase(CR, WorkList, SV, Default);
+ }
+}
+
+
+void SelectionDAGLowering::visitSub(User &I) {
+ // -0.0 - X --> fneg
+ const Type *Ty = I.getType();
+ if (isa<VectorType>(Ty)) {
+ if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
+ const VectorType *DestTy = cast<VectorType>(I.getType());
+ const Type *ElTy = DestTy->getElementType();
+ if (ElTy->isFloatingPoint()) {
+ unsigned VL = DestTy->getNumElements();
+ std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
+ Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
+ if (CV == CNZ) {
+ SDValue Op2 = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
+ return;
+ }
+ }
+ }
+ }
+ if (Ty->isFloatingPoint()) {
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
+ if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
+ SDValue Op2 = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
+ return;
+ }
+ }
+
+ visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
+}
+
+void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+
+ setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
+}
+
+void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ if (!isa<VectorType>(I.getType())) {
+ if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
+ Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
+ else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
+ Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
+ }
+
+ setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
+}
+
+void SelectionDAGLowering::visitICmp(User &I) {
+ ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
+ if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
+ predicate = IC->getPredicate();
+ else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
+ predicate = ICmpInst::Predicate(IC->getPredicate());
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ ISD::CondCode Opcode;
+ switch (predicate) {
+ case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
+ case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
+ case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
+ case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
+ case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
+ case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
+ case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
+ case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
+ case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
+ case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
+ default:
+ assert(!"Invalid ICmp predicate value");
+ Opcode = ISD::SETEQ;
+ break;
+ }
+ setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
+}
+
+void SelectionDAGLowering::visitFCmp(User &I) {
+ FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
+ if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
+ predicate = FC->getPredicate();
+ else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
+ predicate = FCmpInst::Predicate(FC->getPredicate());
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ ISD::CondCode Condition, FOC, FPC;
+ switch (predicate) {
+ case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
+ case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
+ case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
+ case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
+ case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
+ case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
+ case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
+ case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
+ case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
+ case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
+ case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
+ case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
+ case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
+ case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
+ case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
+ case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
+ default:
+ assert(!"Invalid FCmp predicate value");
+ FOC = FPC = ISD::SETFALSE;
+ break;
+ }
+ if (FiniteOnlyFPMath())
+ Condition = FOC;
+ else
+ Condition = FPC;
+ setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
+}
+
+void SelectionDAGLowering::visitVICmp(User &I) {
+ ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
+ if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
+ predicate = IC->getPredicate();
+ else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
+ predicate = ICmpInst::Predicate(IC->getPredicate());
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ ISD::CondCode Opcode;
+ switch (predicate) {
+ case ICmpInst::ICMP_EQ : Opcode = ISD::SETEQ; break;
+ case ICmpInst::ICMP_NE : Opcode = ISD::SETNE; break;
+ case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
+ case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
+ case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
+ case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
+ case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
+ case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
+ case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
+ case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
+ default:
+ assert(!"Invalid ICmp predicate value");
+ Opcode = ISD::SETEQ;
+ break;
+ }
+ setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
+}
+
+void SelectionDAGLowering::visitVFCmp(User &I) {
+ FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
+ if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
+ predicate = FC->getPredicate();
+ else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
+ predicate = FCmpInst::Predicate(FC->getPredicate());
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ ISD::CondCode Condition, FOC, FPC;
+ switch (predicate) {
+ case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
+ case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
+ case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
+ case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
+ case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
+ case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
+ case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
+ case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
+ case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
+ case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
+ case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
+ case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
+ case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
+ case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
+ case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
+ case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
+ default:
+ assert(!"Invalid VFCmp predicate value");
+ FOC = FPC = ISD::SETFALSE;
+ break;
+ }
+ if (FiniteOnlyFPMath())
+ Condition = FOC;
+ else
+ Condition = FPC;
+
+ MVT DestVT = TLI.getValueType(I.getType());
+
+ setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
+}
+
+void SelectionDAGLowering::visitSelect(User &I) {
+ SDValue Cond = getValue(I.getOperand(0));
+ SDValue TrueVal = getValue(I.getOperand(1));
+ SDValue FalseVal = getValue(I.getOperand(2));
+ setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
+ TrueVal, FalseVal));
+}
+
+
+void SelectionDAGLowering::visitTrunc(User &I) {
+ // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
+ SDValue N = getValue(I.getOperand(0));
+ MVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
+}
+
+void SelectionDAGLowering::visitZExt(User &I) {
+ // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
+ // ZExt also can't be a cast to bool for same reason. So, nothing much to do
+ SDValue N = getValue(I.getOperand(0));
+ MVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
+}
+
+void SelectionDAGLowering::visitSExt(User &I) {
+ // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
+ // SExt also can't be a cast to bool for same reason. So, nothing much to do
+ SDValue N = getValue(I.getOperand(0));
+ MVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
+}
+
+void SelectionDAGLowering::visitFPTrunc(User &I) {
+ // FPTrunc is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ MVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
+}
+
+void SelectionDAGLowering::visitFPExt(User &I){
+ // FPTrunc is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ MVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
+}
+
+void SelectionDAGLowering::visitFPToUI(User &I) {
+ // FPToUI is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ MVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
+}
+
+void SelectionDAGLowering::visitFPToSI(User &I) {
+ // FPToSI is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ MVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
+}
+
+void SelectionDAGLowering::visitUIToFP(User &I) {
+ // UIToFP is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ MVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
+}
+
+void SelectionDAGLowering::visitSIToFP(User &I){
+ // UIToFP is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ MVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
+}
+
+void SelectionDAGLowering::visitPtrToInt(User &I) {
+ // What to do depends on the size of the integer and the size of the pointer.
+ // We can either truncate, zero extend, or no-op, accordingly.
+ SDValue N = getValue(I.getOperand(0));
+ MVT SrcVT = N.getValueType();
+ MVT DestVT = TLI.getValueType(I.getType());
+ SDValue Result;
+ if (DestVT.bitsLT(SrcVT))
+ Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
+ else
+ // Note: ZERO_EXTEND can handle cases where the sizes are equal too
+ Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
+ setValue(&I, Result);
+}
+
+void SelectionDAGLowering::visitIntToPtr(User &I) {
+ // What to do depends on the size of the integer and the size of the pointer.
+ // We can either truncate, zero extend, or no-op, accordingly.
+ SDValue N = getValue(I.getOperand(0));
+ MVT SrcVT = N.getValueType();
+ MVT DestVT = TLI.getValueType(I.getType());
+ if (DestVT.bitsLT(SrcVT))
+ setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
+ else
+ // Note: ZERO_EXTEND can handle cases where the sizes are equal too
+ setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
+}
+
+void SelectionDAGLowering::visitBitCast(User &I) {
+ SDValue N = getValue(I.getOperand(0));
+ MVT DestVT = TLI.getValueType(I.getType());
+
+ // BitCast assures us that source and destination are the same size so this
+ // is either a BIT_CONVERT or a no-op.
+ if (DestVT != N.getValueType())
+ setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
+ else
+ setValue(&I, N); // noop cast.
+}
+
+void SelectionDAGLowering::visitInsertElement(User &I) {
+ SDValue InVec = getValue(I.getOperand(0));
+ SDValue InVal = getValue(I.getOperand(1));
+ SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
+ getValue(I.getOperand(2)));
+
+ setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
+ TLI.getValueType(I.getType()),
+ InVec, InVal, InIdx));
+}
+
+void SelectionDAGLowering::visitExtractElement(User &I) {
+ SDValue InVec = getValue(I.getOperand(0));
+ SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
+ getValue(I.getOperand(1)));
+ setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
+ TLI.getValueType(I.getType()), InVec, InIdx));
+}
+
+void SelectionDAGLowering::visitShuffleVector(User &I) {
+ SDValue V1 = getValue(I.getOperand(0));
+ SDValue V2 = getValue(I.getOperand(1));
+ SDValue Mask = getValue(I.getOperand(2));
+
+ setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
+ TLI.getValueType(I.getType()),
+ V1, V2, Mask));
+}
+
+void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
+ const Value *Op0 = I.getOperand(0);
+ const Value *Op1 = I.getOperand(1);
+ const Type *AggTy = I.getType();
+ const Type *ValTy = Op1->getType();
+ bool IntoUndef = isa<UndefValue>(Op0);
+ bool FromUndef = isa<UndefValue>(Op1);
+
+ unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
+ I.idx_begin(), I.idx_end());
+
+ SmallVector<MVT, 4> AggValueVTs;
+ ComputeValueVTs(TLI, AggTy, AggValueVTs);
+ SmallVector<MVT, 4> ValValueVTs;
+ ComputeValueVTs(TLI, ValTy, ValValueVTs);
+
+ unsigned NumAggValues = AggValueVTs.size();
+ unsigned NumValValues = ValValueVTs.size();
+ SmallVector<SDValue, 4> Values(NumAggValues);
+
+ SDValue Agg = getValue(Op0);
+ SDValue Val = getValue(Op1);
+ unsigned i = 0;
+ // Copy the beginning value(s) from the original aggregate.
+ for (; i != LinearIndex; ++i)
+ Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
+ SDValue(Agg.getNode(), Agg.getResNo() + i);
+ // Copy values from the inserted value(s).
+ for (; i != LinearIndex + NumValValues; ++i)
+ Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
+ SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
+ // Copy remaining value(s) from the original aggregate.
+ for (; i != NumAggValues; ++i)
+ Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
+ SDValue(Agg.getNode(), Agg.getResNo() + i);
+
+ setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
+ &Values[0], NumAggValues));
+}
+
+void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
+ const Value *Op0 = I.getOperand(0);
+ const Type *AggTy = Op0->getType();
+ const Type *ValTy = I.getType();
+ bool OutOfUndef = isa<UndefValue>(Op0);
+
+ unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
+ I.idx_begin(), I.idx_end());
+
+ SmallVector<MVT, 4> ValValueVTs;
+ ComputeValueVTs(TLI, ValTy, ValValueVTs);
+
+ unsigned NumValValues = ValValueVTs.size();
+ SmallVector<SDValue, 4> Values(NumValValues);
+
+ SDValue Agg = getValue(Op0);
+ // Copy out the selected value(s).
+ for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
+ Values[i - LinearIndex] =
+ OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.getNode()->getValueType(Agg.getResNo() + i)) :
+ SDValue(Agg.getNode(), Agg.getResNo() + i);
+
+ setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
+ &Values[0], NumValValues));
+}
+
+
+void SelectionDAGLowering::visitGetElementPtr(User &I) {
+ SDValue N = getValue(I.getOperand(0));
+ const Type *Ty = I.getOperand(0)->getType();
+
+ for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
+ OI != E; ++OI) {
+ Value *Idx = *OI;
+ if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
+ unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
+ if (Field) {
+ // N = N + Offset
+ uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
+ N = DAG.getNode(ISD::ADD, N.getValueType(), N,
+ DAG.getIntPtrConstant(Offset));
+ }
+ Ty = StTy->getElementType(Field);
+ } else {
+ Ty = cast<SequentialType>(Ty)->getElementType();
+
+ // If this is a constant subscript, handle it quickly.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
+ if (CI->getZExtValue() == 0) continue;
+ uint64_t Offs =
+ TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
+ N = DAG.getNode(ISD::ADD, N.getValueType(), N,
+ DAG.getIntPtrConstant(Offs));
+ continue;
+ }
+
+ // N = N + Idx * ElementSize;
+ uint64_t ElementSize = TD->getABITypeSize(Ty);
+ SDValue IdxN = getValue(Idx);
+
+ // If the index is smaller or larger than intptr_t, truncate or extend
+ // it.
+ if (IdxN.getValueType().bitsLT(N.getValueType()))
+ IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
+ else if (IdxN.getValueType().bitsGT(N.getValueType()))
+ IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
+
+ // If this is a multiply by a power of two, turn it into a shl
+ // immediately. This is a very common case.
+ if (ElementSize != 1) {
+ if (isPowerOf2_64(ElementSize)) {
+ unsigned Amt = Log2_64(ElementSize);
+ IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
+ DAG.getConstant(Amt, TLI.getShiftAmountTy()));
+ } else {
+ SDValue Scale = DAG.getIntPtrConstant(ElementSize);
+ IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
+ }
+ }
+
+ N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
+ }
+ }
+ setValue(&I, N);
+}
+
+void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
+ // If this is a fixed sized alloca in the entry block of the function,
+ // allocate it statically on the stack.
+ if (FuncInfo.StaticAllocaMap.count(&I))
+ return; // getValue will auto-populate this.
+
+ const Type *Ty = I.getAllocatedType();
+ uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
+ unsigned Align =
+ std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
+ I.getAlignment());
+
+ SDValue AllocSize = getValue(I.getArraySize());
+ MVT IntPtr = TLI.getPointerTy();
+ if (IntPtr.bitsLT(AllocSize.getValueType()))
+ AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
+ else if (IntPtr.bitsGT(AllocSize.getValueType()))
+ AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
+
+ AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
+ DAG.getIntPtrConstant(TySize));
+
+ // Handle alignment. If the requested alignment is less than or equal to
+ // the stack alignment, ignore it. If the size is greater than or equal to
+ // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
+ unsigned StackAlign =
+ TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
+ if (Align <= StackAlign)
+ Align = 0;
+
+ // Round the size of the allocation up to the stack alignment size
+ // by add SA-1 to the size.
+ AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
+ DAG.getIntPtrConstant(StackAlign-1));
+ // Mask out the low bits for alignment purposes.
+ AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
+ DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
+
+ SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
+ const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
+ MVT::Other);
+ SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
+ setValue(&I, DSA);
+ DAG.setRoot(DSA.getValue(1));
+
+ // Inform the Frame Information that we have just allocated a variable-sized
+ // object.
+ CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
+}
+
+void SelectionDAGLowering::visitLoad(LoadInst &I) {
+ const Value *SV = I.getOperand(0);
+ SDValue Ptr = getValue(SV);
+
+ const Type *Ty = I.getType();
+ bool isVolatile = I.isVolatile();
+ unsigned Alignment = I.getAlignment();
+
+ SmallVector<MVT, 4> ValueVTs;
+ SmallVector<uint64_t, 4> Offsets;
+ ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0)
+ return;
+
+ SDValue Root;
+ bool ConstantMemory = false;
+ if (I.isVolatile())
+ // Serialize volatile loads with other side effects.
+ Root = getRoot();
+ else if (AA->pointsToConstantMemory(SV)) {
+ // Do not serialize (non-volatile) loads of constant memory with anything.
+ Root = DAG.getEntryNode();
+ ConstantMemory = true;
+ } else {
+ // Do not serialize non-volatile loads against each other.
+ Root = DAG.getRoot();
+ }
+
+ SmallVector<SDValue, 4> Values(NumValues);
+ SmallVector<SDValue, 4> Chains(NumValues);
+ MVT PtrVT = Ptr.getValueType();
+ for (unsigned i = 0; i != NumValues; ++i) {
+ SDValue L = DAG.getLoad(ValueVTs[i], Root,
+ DAG.getNode(ISD::ADD, PtrVT, Ptr,
+ DAG.getConstant(Offsets[i], PtrVT)),
+ SV, Offsets[i],
+ isVolatile, Alignment);
+ Values[i] = L;
+ Chains[i] = L.getValue(1);
+ }
+
+ if (!ConstantMemory) {
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
+ &Chains[0], NumValues);
+ if (isVolatile)
+ DAG.setRoot(Chain);
+ else
+ PendingLoads.push_back(Chain);
+ }
+
+ setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
+ &Values[0], NumValues));
+}
+
+
+void SelectionDAGLowering::visitStore(StoreInst &I) {
+ Value *SrcV = I.getOperand(0);
+ Value *PtrV = I.getOperand(1);
+
+ SmallVector<MVT, 4> ValueVTs;
+ SmallVector<uint64_t, 4> Offsets;
+ ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0)
+ return;
+
+ // Get the lowered operands. Note that we do this after
+ // checking if NumResults is zero, because with zero results
+ // the operands won't have values in the map.
+ SDValue Src = getValue(SrcV);
+ SDValue Ptr = getValue(PtrV);
+
+ SDValue Root = getRoot();
+ SmallVector<SDValue, 4> Chains(NumValues);
+ MVT PtrVT = Ptr.getValueType();
+ bool isVolatile = I.isVolatile();
+ unsigned Alignment = I.getAlignment();
+ for (unsigned i = 0; i != NumValues; ++i)
+ Chains[i] = DAG.getStore(Root, SDValue(Src.getNode(), Src.getResNo() + i),
+ DAG.getNode(ISD::ADD, PtrVT, Ptr,
+ DAG.getConstant(Offsets[i], PtrVT)),
+ PtrV, Offsets[i],
+ isVolatile, Alignment);
+
+ DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
+}
+
+/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
+/// node.
+void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
+ unsigned Intrinsic) {
+ bool HasChain = !I.doesNotAccessMemory();
+ bool OnlyLoad = HasChain && I.onlyReadsMemory();
+
+ // Build the operand list.
+ SmallVector<SDValue, 8> Ops;
+ if (HasChain) { // If this intrinsic has side-effects, chainify it.
+ if (OnlyLoad) {
+ // We don't need to serialize loads against other loads.
+ Ops.push_back(DAG.getRoot());
+ } else {
+ Ops.push_back(getRoot());
+ }
+ }
+
+ // Add the intrinsic ID as an integer operand.
+ Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
+
+ // Add all operands of the call to the operand list.
+ for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
+ SDValue Op = getValue(I.getOperand(i));
+ assert(TLI.isTypeLegal(Op.getValueType()) &&
+ "Intrinsic uses a non-legal type?");
+ Ops.push_back(Op);
+ }
+
+ std::vector<MVT> VTs;
+ if (I.getType() != Type::VoidTy) {
+ MVT VT = TLI.getValueType(I.getType());
+ if (VT.isVector()) {
+ const VectorType *DestTy = cast<VectorType>(I.getType());
+ MVT EltVT = TLI.getValueType(DestTy->getElementType());
+
+ VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
+ assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
+ }
+
+ assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
+ VTs.push_back(VT);
+ }
+ if (HasChain)
+ VTs.push_back(MVT::Other);
+
+ const MVT *VTList = DAG.getNodeValueTypes(VTs);
+
+ // Create the node.
+ SDValue Result;
+ if (!HasChain)
+ Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
+ &Ops[0], Ops.size());
+ else if (I.getType() != Type::VoidTy)
+ Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
+ &Ops[0], Ops.size());
+ else
+ Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
+ &Ops[0], Ops.size());
+
+ if (HasChain) {
+ SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
+ if (OnlyLoad)
+ PendingLoads.push_back(Chain);
+ else
+ DAG.setRoot(Chain);
+ }
+ if (I.getType() != Type::VoidTy) {
+ if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
+ MVT VT = TLI.getValueType(PTy);
+ Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
+ }
+ setValue(&I, Result);
+ }
+}
+
+/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
+static GlobalVariable *ExtractTypeInfo(Value *V) {
+ V = V->stripPointerCasts();
+ GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
+ assert ((GV || isa<ConstantPointerNull>(V)) &&
+ "TypeInfo must be a global variable or NULL");
+ return GV;
+}
+
+namespace llvm {
+
+/// AddCatchInfo - Extract the personality and type infos from an eh.selector
+/// call, and add them to the specified machine basic block.
+void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
+ MachineBasicBlock *MBB) {
+ // Inform the MachineModuleInfo of the personality for this landing pad.
+ ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
+ assert(CE->getOpcode() == Instruction::BitCast &&
+ isa<Function>(CE->getOperand(0)) &&
+ "Personality should be a function");
+ MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
+
+ // Gather all the type infos for this landing pad and pass them along to
+ // MachineModuleInfo.
+ std::vector<GlobalVariable *> TyInfo;
+ unsigned N = I.getNumOperands();
+
+ for (unsigned i = N - 1; i > 2; --i) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
+ unsigned FilterLength = CI->getZExtValue();
+ unsigned FirstCatch = i + FilterLength + !FilterLength;
+ assert (FirstCatch <= N && "Invalid filter length");
+
+ if (FirstCatch < N) {
+ TyInfo.reserve(N - FirstCatch);
+ for (unsigned j = FirstCatch; j < N; ++j)
+ TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
+ MMI->addCatchTypeInfo(MBB, TyInfo);
+ TyInfo.clear();
+ }
+
+ if (!FilterLength) {
+ // Cleanup.
+ MMI->addCleanup(MBB);
+ } else {
+ // Filter.
+ TyInfo.reserve(FilterLength - 1);
+ for (unsigned j = i + 1; j < FirstCatch; ++j)
+ TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
+ MMI->addFilterTypeInfo(MBB, TyInfo);
+ TyInfo.clear();
+ }
+
+ N = i;
+ }
+ }
+
+ if (N > 3) {
+ TyInfo.reserve(N - 3);
+ for (unsigned j = 3; j < N; ++j)
+ TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
+ MMI->addCatchTypeInfo(MBB, TyInfo);
+ }
+}
+
+}
+
+/// Inlined utility function to implement binary input atomic intrinsics for
+/// visitIntrinsicCall: I is a call instruction
+/// Op is the associated NodeType for I
+const char *
+SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
+ SDValue Root = getRoot();
+ SDValue L = DAG.getAtomic(Op, Root,
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2)),
+ I.getOperand(1));
+ setValue(&I, L);
+ DAG.setRoot(L.getValue(1));
+ return 0;
+}
+
+/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
+/// we want to emit this as a call to a named external function, return the name
+/// otherwise lower it and return null.
+const char *
+SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
+ switch (Intrinsic) {
+ default:
+ // By default, turn this into a target intrinsic node.
+ visitTargetIntrinsic(I, Intrinsic);
+ return 0;
+ case Intrinsic::vastart: visitVAStart(I); return 0;
+ case Intrinsic::vaend: visitVAEnd(I); return 0;
+ case Intrinsic::vacopy: visitVACopy(I); return 0;
+ case Intrinsic::returnaddress:
+ setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::frameaddress:
+ setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::setjmp:
+ return "_setjmp"+!TLI.usesUnderscoreSetJmp();
+ break;
+ case Intrinsic::longjmp:
+ return "_longjmp"+!TLI.usesUnderscoreLongJmp();
+ break;
+ case Intrinsic::memcpy_i32:
+ case Intrinsic::memcpy_i64: {
+ SDValue Op1 = getValue(I.getOperand(1));
+ SDValue Op2 = getValue(I.getOperand(2));
+ SDValue Op3 = getValue(I.getOperand(3));
+ unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
+ DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
+ I.getOperand(1), 0, I.getOperand(2), 0));
+ return 0;
+ }
+ case Intrinsic::memset_i32:
+ case Intrinsic::memset_i64: {
+ SDValue Op1 = getValue(I.getOperand(1));
+ SDValue Op2 = getValue(I.getOperand(2));
+ SDValue Op3 = getValue(I.getOperand(3));
+ unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
+ DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
+ I.getOperand(1), 0));
+ return 0;
+ }
+ case Intrinsic::memmove_i32:
+ case Intrinsic::memmove_i64: {
+ SDValue Op1 = getValue(I.getOperand(1));
+ SDValue Op2 = getValue(I.getOperand(2));
+ SDValue Op3 = getValue(I.getOperand(3));
+ unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
+
+ // If the source and destination are known to not be aliases, we can
+ // lower memmove as memcpy.
+ uint64_t Size = -1ULL;
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
+ Size = C->getValue();
+ if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
+ AliasAnalysis::NoAlias) {
+ DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
+ I.getOperand(1), 0, I.getOperand(2), 0));
+ return 0;
+ }
+
+ DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
+ I.getOperand(1), 0, I.getOperand(2), 0));
+ return 0;
+ }
+ case Intrinsic::dbg_stoppoint: {
+ MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+ DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
+ if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
+ DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
+ assert(DD && "Not a debug information descriptor");
+ DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
+ SPI.getLine(),
+ SPI.getColumn(),
+ cast<CompileUnitDesc>(DD)));
+ }
+
+ return 0;
+ }
+ case Intrinsic::dbg_region_start: {
+ MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+ DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
+ if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
+ unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
+ DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
+ }
+
+ return 0;
+ }
+ case Intrinsic::dbg_region_end: {
+ MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+ DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
+ if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
+ unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
+ DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
+ }
+
+ return 0;
+ }
+ case Intrinsic::dbg_func_start: {
+ MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+ if (!MMI) return 0;
+ DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
+ Value *SP = FSI.getSubprogram();
+ if (SP && MMI->Verify(SP)) {
+ // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
+ // what (most?) gdb expects.
+ DebugInfoDesc *DD = MMI->getDescFor(SP);
+ assert(DD && "Not a debug information descriptor");
+ SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
+ const CompileUnitDesc *CompileUnit = Subprogram->getFile();
+ unsigned SrcFile = MMI->RecordSource(CompileUnit);
+ // Record the source line but does create a label. It will be emitted
+ // at asm emission time.
+ MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
+ }
+
+ return 0;
+ }
+ case Intrinsic::dbg_declare: {
+ MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+ DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
+ Value *Variable = DI.getVariable();
+ if (MMI && Variable && MMI->Verify(Variable))
+ DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
+ getValue(DI.getAddress()), getValue(Variable)));
+ return 0;
+ }
+
+ case Intrinsic::eh_exception: {
+ if (!CurMBB->isLandingPad()) {
+ // FIXME: Mark exception register as live in. Hack for PR1508.
+ unsigned Reg = TLI.getExceptionAddressRegister();
+ if (Reg) CurMBB->addLiveIn(Reg);
+ }
+ // Insert the EXCEPTIONADDR instruction.
+ SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
+ SDValue Ops[1];
+ Ops[0] = DAG.getRoot();
+ SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
+ setValue(&I, Op);
+ DAG.setRoot(Op.getValue(1));
+ return 0;
+ }
+
+ case Intrinsic::eh_selector_i32:
+ case Intrinsic::eh_selector_i64: {
+ MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+ MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
+ MVT::i32 : MVT::i64);
+
+ if (MMI) {
+ if (CurMBB->isLandingPad())
+ AddCatchInfo(I, MMI, CurMBB);
+ else {
+#ifndef NDEBUG
+ FuncInfo.CatchInfoLost.insert(&I);
+#endif
+ // FIXME: Mark exception selector register as live in. Hack for PR1508.
+ unsigned Reg = TLI.getExceptionSelectorRegister();
+ if (Reg) CurMBB->addLiveIn(Reg);
+ }
+
+ // Insert the EHSELECTION instruction.
+ SDVTList VTs = DAG.getVTList(VT, MVT::Other);
+ SDValue Ops[2];
+ Ops[0] = getValue(I.getOperand(1));
+ Ops[1] = getRoot();
+ SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
+ setValue(&I, Op);
+ DAG.setRoot(Op.getValue(1));
+ } else {
+ setValue(&I, DAG.getConstant(0, VT));
+ }
+
+ return 0;
+ }
+
+ case Intrinsic::eh_typeid_for_i32:
+ case Intrinsic::eh_typeid_for_i64: {
+ MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+ MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
+ MVT::i32 : MVT::i64);
+
+ if (MMI) {
+ // Find the type id for the given typeinfo.
+ GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
+
+ unsigned TypeID = MMI->getTypeIDFor(GV);
+ setValue(&I, DAG.getConstant(TypeID, VT));
+ } else {
+ // Return something different to eh_selector.
+ setValue(&I, DAG.getConstant(1, VT));
+ }
+
+ return 0;
+ }
+
+ case Intrinsic::eh_return: {
+ MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+
+ if (MMI) {
+ MMI->setCallsEHReturn(true);
+ DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
+ MVT::Other,
+ getControlRoot(),
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2))));
+ } else {
+ setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
+ }
+
+ return 0;
+ }
+
+ case Intrinsic::eh_unwind_init: {
+ if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
+ MMI->setCallsUnwindInit(true);
+ }
+
+ return 0;
+ }
+
+ case Intrinsic::eh_dwarf_cfa: {
+ MVT VT = getValue(I.getOperand(1)).getValueType();
+ SDValue CfaArg;
+ if (VT.bitsGT(TLI.getPointerTy()))
+ CfaArg = DAG.getNode(ISD::TRUNCATE,
+ TLI.getPointerTy(), getValue(I.getOperand(1)));
+ else
+ CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
+ TLI.getPointerTy(), getValue(I.getOperand(1)));
+
+ SDValue Offset = DAG.getNode(ISD::ADD,
+ TLI.getPointerTy(),
+ DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
+ TLI.getPointerTy()),
+ CfaArg);
+ setValue(&I, DAG.getNode(ISD::ADD,
+ TLI.getPointerTy(),
+ DAG.getNode(ISD::FRAMEADDR,
+ TLI.getPointerTy(),
+ DAG.getConstant(0,
+ TLI.getPointerTy())),
+ Offset));
+ return 0;
+ }
+
+ case Intrinsic::sqrt:
+ setValue(&I, DAG.getNode(ISD::FSQRT,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::powi:
+ setValue(&I, DAG.getNode(ISD::FPOWI,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2))));
+ return 0;
+ case Intrinsic::sin:
+ setValue(&I, DAG.getNode(ISD::FSIN,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::cos:
+ setValue(&I, DAG.getNode(ISD::FCOS,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::pow:
+ setValue(&I, DAG.getNode(ISD::FPOW,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2))));
+ return 0;
+ case Intrinsic::pcmarker: {
+ SDValue Tmp = getValue(I.getOperand(1));
+ DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
+ return 0;
+ }
+ case Intrinsic::readcyclecounter: {
+ SDValue Op = getRoot();
+ SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
+ DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
+ &Op, 1);
+ setValue(&I, Tmp);
+ DAG.setRoot(Tmp.getValue(1));
+ return 0;
+ }
+ case Intrinsic::part_select: {
+ // Currently not implemented: just abort
+ assert(0 && "part_select intrinsic not implemented");
+ abort();
+ }
+ case Intrinsic::part_set: {
+ // Currently not implemented: just abort
+ assert(0 && "part_set intrinsic not implemented");
+ abort();
+ }
+ case Intrinsic::bswap:
+ setValue(&I, DAG.getNode(ISD::BSWAP,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::cttz: {
+ SDValue Arg = getValue(I.getOperand(1));
+ MVT Ty = Arg.getValueType();
+ SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
+ setValue(&I, result);
+ return 0;
+ }
+ case Intrinsic::ctlz: {
+ SDValue Arg = getValue(I.getOperand(1));
+ MVT Ty = Arg.getValueType();
+ SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
+ setValue(&I, result);
+ return 0;
+ }
+ case Intrinsic::ctpop: {
+ SDValue Arg = getValue(I.getOperand(1));
+ MVT Ty = Arg.getValueType();
+ SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
+ setValue(&I, result);
+ return 0;
+ }
+ case Intrinsic::stacksave: {
+ SDValue Op = getRoot();
+ SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
+ DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
+ setValue(&I, Tmp);
+ DAG.setRoot(Tmp.getValue(1));
+ return 0;
+ }
+ case Intrinsic::stackrestore: {
+ SDValue Tmp = getValue(I.getOperand(1));
+ DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
+ return 0;
+ }
+ case Intrinsic::var_annotation:
+ // Discard annotate attributes
+ return 0;
+
+ case Intrinsic::init_trampoline: {
+ const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
+
+ SDValue Ops[6];
+ Ops[0] = getRoot();
+ Ops[1] = getValue(I.getOperand(1));
+ Ops[2] = getValue(I.getOperand(2));
+ Ops[3] = getValue(I.getOperand(3));
+ Ops[4] = DAG.getSrcValue(I.getOperand(1));
+ Ops[5] = DAG.getSrcValue(F);
+
+ SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
+ DAG.getNodeValueTypes(TLI.getPointerTy(),
+ MVT::Other), 2,
+ Ops, 6);
+
+ setValue(&I, Tmp);
+ DAG.setRoot(Tmp.getValue(1));
+ return 0;
+ }
+
+ case Intrinsic::gcroot:
+ if (GFI) {
+ Value *Alloca = I.getOperand(1);
+ Constant *TypeMap = cast<Constant>(I.getOperand(2));
+
+ FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
+ GFI->addStackRoot(FI->getIndex(), TypeMap);
+ }
+ return 0;
+
+ case Intrinsic::gcread:
+ case Intrinsic::gcwrite:
+ assert(0 && "GC failed to lower gcread/gcwrite intrinsics!");
+ return 0;
+
+ case Intrinsic::flt_rounds: {
+ setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
+ return 0;
+ }
+
+ case Intrinsic::trap: {
+ DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
+ return 0;
+ }
+ case Intrinsic::prefetch: {
+ SDValue Ops[4];
+ Ops[0] = getRoot();
+ Ops[1] = getValue(I.getOperand(1));
+ Ops[2] = getValue(I.getOperand(2));
+ Ops[3] = getValue(I.getOperand(3));
+ DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
+ return 0;
+ }
+
+ case Intrinsic::memory_barrier: {
+ SDValue Ops[6];
+ Ops[0] = getRoot();
+ for (int x = 1; x < 6; ++x)
+ Ops[x] = getValue(I.getOperand(x));
+
+ DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
+ return 0;
+ }
+ case Intrinsic::atomic_cmp_swap: {
+ SDValue Root = getRoot();
+ SDValue L;
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_8, Root,
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2)),
+ getValue(I.getOperand(3)),
+ I.getOperand(1));
+ break;
+ case MVT::i16:
+ L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_16, Root,
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2)),
+ getValue(I.getOperand(3)),
+ I.getOperand(1));
+ break;
+ case MVT::i32:
+ L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_32, Root,
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2)),
+ getValue(I.getOperand(3)),
+ I.getOperand(1));
+ break;
+ case MVT::i64:
+ L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_64, Root,
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2)),
+ getValue(I.getOperand(3)),
+ I.getOperand(1));
+ break;
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ setValue(&I, L);
+ DAG.setRoot(L.getValue(1));
+ return 0;
+ }
+ case Intrinsic::atomic_load_add:
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_8);
+ case MVT::i16:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_16);
+ case MVT::i32:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_32);
+ case MVT::i64:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_64);
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ case Intrinsic::atomic_load_sub:
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_8);
+ case MVT::i16:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_16);
+ case MVT::i32:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_32);
+ case MVT::i64:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_64);
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ case Intrinsic::atomic_load_or:
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_8);
+ case MVT::i16:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_16);
+ case MVT::i32:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_32);
+ case MVT::i64:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_64);
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ case Intrinsic::atomic_load_xor:
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_8);
+ case MVT::i16:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_16);
+ case MVT::i32:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_32);
+ case MVT::i64:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_64);
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ case Intrinsic::atomic_load_and:
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_8);
+ case MVT::i16:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_16);
+ case MVT::i32:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_32);
+ case MVT::i64:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_64);
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ case Intrinsic::atomic_load_nand:
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_8);
+ case MVT::i16:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_16);
+ case MVT::i32:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_32);
+ case MVT::i64:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_64);
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ case Intrinsic::atomic_load_max:
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_8);
+ case MVT::i16:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_16);
+ case MVT::i32:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_32);
+ case MVT::i64:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_64);
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ case Intrinsic::atomic_load_min:
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_8);
+ case MVT::i16:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_16);
+ case MVT::i32:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_32);
+ case MVT::i64:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_64);
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ case Intrinsic::atomic_load_umin:
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_8);
+ case MVT::i16:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_16);
+ case MVT::i32:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_32);
+ case MVT::i64:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_64);
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ case Intrinsic::atomic_load_umax:
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_8);
+ case MVT::i16:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_16);
+ case MVT::i32:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_32);
+ case MVT::i64:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_64);
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ case Intrinsic::atomic_swap:
+ switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
+ case MVT::i8:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_8);
+ case MVT::i16:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_16);
+ case MVT::i32:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_32);
+ case MVT::i64:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_64);
+ default:
+ assert(0 && "Invalid atomic type");
+ abort();
+ }
+ }
+}
+
+
+void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
+ bool IsTailCall,
+ MachineBasicBlock *LandingPad) {
+ const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+ const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+ MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+ unsigned BeginLabel = 0, EndLabel = 0;
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Args.reserve(CS.arg_size());
+ for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+ i != e; ++i) {
+ SDValue ArgNode = getValue(*i);
+ Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
+
+ unsigned attrInd = i - CS.arg_begin() + 1;
+ Entry.isSExt = CS.paramHasAttr(attrInd, ParamAttr::SExt);
+ Entry.isZExt = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
+ Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
+ Entry.isSRet = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
+ Entry.isNest = CS.paramHasAttr(attrInd, ParamAttr::Nest);
+ Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
+ Entry.Alignment = CS.getParamAlignment(attrInd);
+ Args.push_back(Entry);
+ }
+
+ if (LandingPad && MMI) {
+ // Insert a label before the invoke call to mark the try range. This can be
+ // used to detect deletion of the invoke via the MachineModuleInfo.
+ BeginLabel = MMI->NextLabelID();
+ // Both PendingLoads and PendingExports must be flushed here;
+ // this call might not return.
+ (void)getRoot();
+ DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
+ }
+
+ std::pair<SDValue,SDValue> Result =
+ TLI.LowerCallTo(getRoot(), CS.getType(),
+ CS.paramHasAttr(0, ParamAttr::SExt),
+ CS.paramHasAttr(0, ParamAttr::ZExt),
+ FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
+ Callee, Args, DAG);
+ if (CS.getType() != Type::VoidTy)
+ setValue(CS.getInstruction(), Result.first);
+ DAG.setRoot(Result.second);
+
+ if (LandingPad && MMI) {
+ // Insert a label at the end of the invoke call to mark the try range. This
+ // can be used to detect deletion of the invoke via the MachineModuleInfo.
+ EndLabel = MMI->NextLabelID();
+ DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
+
+ // Inform MachineModuleInfo of range.
+ MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
+ }
+}
+
+
+void SelectionDAGLowering::visitCall(CallInst &I) {
+ const char *RenameFn = 0;
+ if (Function *F = I.getCalledFunction()) {
+ if (F->isDeclaration()) {
+ if (unsigned IID = F->getIntrinsicID()) {
+ RenameFn = visitIntrinsicCall(I, IID);
+ if (!RenameFn)
+ return;
+ }
+ }
+
+ // Check for well-known libc/libm calls. If the function is internal, it
+ // can't be a library call.
+ unsigned NameLen = F->getNameLen();
+ if (!F->hasInternalLinkage() && NameLen) {
+ const char *NameStr = F->getNameStart();
+ if (NameStr[0] == 'c' &&
+ ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
+ (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
+ if (I.getNumOperands() == 3 && // Basic sanity checks.
+ I.getOperand(1)->getType()->isFloatingPoint() &&
+ I.getType() == I.getOperand(1)->getType() &&
+ I.getType() == I.getOperand(2)->getType()) {
+ SDValue LHS = getValue(I.getOperand(1));
+ SDValue RHS = getValue(I.getOperand(2));
+ setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
+ LHS, RHS));
+ return;
+ }
+ } else if (NameStr[0] == 'f' &&
+ ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
+ (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
+ (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
+ if (I.getNumOperands() == 2 && // Basic sanity checks.
+ I.getOperand(1)->getType()->isFloatingPoint() &&
+ I.getType() == I.getOperand(1)->getType()) {
+ SDValue Tmp = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
+ return;
+ }
+ } else if (NameStr[0] == 's' &&
+ ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
+ (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
+ (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
+ if (I.getNumOperands() == 2 && // Basic sanity checks.
+ I.getOperand(1)->getType()->isFloatingPoint() &&
+ I.getType() == I.getOperand(1)->getType()) {
+ SDValue Tmp = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
+ return;
+ }
+ } else if (NameStr[0] == 'c' &&
+ ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
+ (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
+ (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
+ if (I.getNumOperands() == 2 && // Basic sanity checks.
+ I.getOperand(1)->getType()->isFloatingPoint() &&
+ I.getType() == I.getOperand(1)->getType()) {
+ SDValue Tmp = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
+ return;
+ }
+ }
+ }
+ } else if (isa<InlineAsm>(I.getOperand(0))) {
+ visitInlineAsm(&I);
+ return;
+ }
+
+ SDValue Callee;
+ if (!RenameFn)
+ Callee = getValue(I.getOperand(0));
+ else
+ Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
+
+ LowerCallTo(&I, Callee, I.isTailCall());
+}
+
+
+/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
+/// this value and returns the result as a ValueVT value. This uses
+/// Chain/Flag as the input and updates them for the output Chain/Flag.
+/// If the Flag pointer is NULL, no flag is used.
+SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
+ SDValue &Chain,
+ SDValue *Flag) const {
+ // Assemble the legal parts into the final values.
+ SmallVector<SDValue, 4> Values(ValueVTs.size());
+ SmallVector<SDValue, 8> Parts;
+ for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ // Copy the legal parts from the registers.
+ MVT ValueVT = ValueVTs[Value];
+ unsigned NumRegs = TLI->getNumRegisters(ValueVT);
+ MVT RegisterVT = RegVTs[Value];
+
+ Parts.resize(NumRegs);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ SDValue P;
+ if (Flag == 0)
+ P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
+ else {
+ P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
+ *Flag = P.getValue(2);
+ }
+ Chain = P.getValue(1);
+
+ // If the source register was virtual and if we know something about it,
+ // add an assert node.
+ if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
+ RegisterVT.isInteger() && !RegisterVT.isVector()) {
+ unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
+ FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
+ if (FLI.LiveOutRegInfo.size() > SlotNo) {
+ FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
+
+ unsigned RegSize = RegisterVT.getSizeInBits();
+ unsigned NumSignBits = LOI.NumSignBits;
+ unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
+
+ // FIXME: We capture more information than the dag can represent. For
+ // now, just use the tightest assertzext/assertsext possible.
+ bool isSExt = true;
+ MVT FromVT(MVT::Other);
+ if (NumSignBits == RegSize)
+ isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
+ else if (NumZeroBits >= RegSize-1)
+ isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
+ else if (NumSignBits > RegSize-8)
+ isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
+ else if (NumZeroBits >= RegSize-9)
+ isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
+ else if (NumSignBits > RegSize-16)
+ isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
+ else if (NumZeroBits >= RegSize-17)
+ isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
+ else if (NumSignBits > RegSize-32)
+ isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
+ else if (NumZeroBits >= RegSize-33)
+ isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
+
+ if (FromVT != MVT::Other) {
+ P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
+ RegisterVT, P, DAG.getValueType(FromVT));
+
+ }
+ }
+ }
+
+ Parts[i] = P;
+ }
+
+ Values[Value] = getCopyFromParts(DAG, Parts.begin(), NumRegs, RegisterVT,
+ ValueVT);
+ Part += NumRegs;
+ Parts.clear();
+ }
+
+ return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
+ &Values[0], ValueVTs.size());
+}
+
+/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
+/// specified value into the registers specified by this object. This uses
+/// Chain/Flag as the input and updates them for the output Chain/Flag.
+/// If the Flag pointer is NULL, no flag is used.
+void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
+ SDValue &Chain, SDValue *Flag) const {
+ // Get the list of the values's legal parts.
+ unsigned NumRegs = Regs.size();
+ SmallVector<SDValue, 8> Parts(NumRegs);
+ for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ MVT ValueVT = ValueVTs[Value];
+ unsigned NumParts = TLI->getNumRegisters(ValueVT);
+ MVT RegisterVT = RegVTs[Value];
+
+ getCopyToParts(DAG, Val.getValue(Val.getResNo() + Value),
+ &Parts[Part], NumParts, RegisterVT);
+ Part += NumParts;
+ }
+
+ // Copy the parts into the registers.
+ SmallVector<SDValue, 8> Chains(NumRegs);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ SDValue Part;
+ if (Flag == 0)
+ Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
+ else {
+ Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
+ *Flag = Part.getValue(1);
+ }
+ Chains[i] = Part.getValue(0);
+ }
+
+ if (NumRegs == 1 || Flag)
+ // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
+ // flagged to it. That is the CopyToReg nodes and the user are considered
+ // a single scheduling unit. If we create a TokenFactor and return it as
+ // chain, then the TokenFactor is both a predecessor (operand) of the
+ // user as well as a successor (the TF operands are flagged to the user).
+ // c1, f1 = CopyToReg
+ // c2, f2 = CopyToReg
+ // c3 = TokenFactor c1, c2
+ // ...
+ // = op c3, ..., f2
+ Chain = Chains[NumRegs-1];
+ else
+ Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
+}
+
+/// AddInlineAsmOperands - Add this value to the specified inlineasm node
+/// operand list. This adds the code marker and includes the number of
+/// values added into it.
+void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
+ std::vector<SDValue> &Ops) const {
+ MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
+ Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
+ for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
+ MVT RegisterVT = RegVTs[Value];
+ for (unsigned i = 0; i != NumRegs; ++i)
+ Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
+ }
+}
+
+/// isAllocatableRegister - If the specified register is safe to allocate,
+/// i.e. it isn't a stack pointer or some other special register, return the
+/// register class for the register. Otherwise, return null.
+static const TargetRegisterClass *
+isAllocatableRegister(unsigned Reg, MachineFunction &MF,
+ const TargetLowering &TLI,
+ const TargetRegisterInfo *TRI) {
+ MVT FoundVT = MVT::Other;
+ const TargetRegisterClass *FoundRC = 0;
+ for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
+ E = TRI->regclass_end(); RCI != E; ++RCI) {
+ MVT ThisVT = MVT::Other;
+
+ const TargetRegisterClass *RC = *RCI;
+ // If none of the the value types for this register class are valid, we
+ // can't use it. For example, 64-bit reg classes on 32-bit targets.
+ for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
+ I != E; ++I) {
+ if (TLI.isTypeLegal(*I)) {
+ // If we have already found this register in a different register class,
+ // choose the one with the largest VT specified. For example, on
+ // PowerPC, we favor f64 register classes over f32.
+ if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
+ ThisVT = *I;
+ break;
+ }
+ }
+ }
+
+ if (ThisVT == MVT::Other) continue;
+
+ // NOTE: This isn't ideal. In particular, this might allocate the
+ // frame pointer in functions that need it (due to them not being taken
+ // out of allocation, because a variable sized allocation hasn't been seen
+ // yet). This is a slight code pessimization, but should still work.
+ for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
+ E = RC->allocation_order_end(MF); I != E; ++I)
+ if (*I == Reg) {
+ // We found a matching register class. Keep looking at others in case
+ // we find one with larger registers that this physreg is also in.
+ FoundRC = RC;
+ FoundVT = ThisVT;
+ break;
+ }
+ }
+ return FoundRC;
+}
+
+
+namespace llvm {
+/// AsmOperandInfo - This contains information for each constraint that we are
+/// lowering.
+struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
+ /// CallOperand - If this is the result output operand or a clobber
+ /// this is null, otherwise it is the incoming operand to the CallInst.
+ /// This gets modified as the asm is processed.
+ SDValue CallOperand;
+
+ /// AssignedRegs - If this is a register or register class operand, this
+ /// contains the set of register corresponding to the operand.
+ RegsForValue AssignedRegs;
+
+ explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
+ : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
+ }
+
+ /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
+ /// busy in OutputRegs/InputRegs.
+ void MarkAllocatedRegs(bool isOutReg, bool isInReg,
+ std::set<unsigned> &OutputRegs,
+ std::set<unsigned> &InputRegs,
+ const TargetRegisterInfo &TRI) const {
+ if (isOutReg) {
+ for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
+ MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
+ }
+ if (isInReg) {
+ for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
+ MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
+ }
+ }
+
+private:
+ /// MarkRegAndAliases - Mark the specified register and all aliases in the
+ /// specified set.
+ static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
+ const TargetRegisterInfo &TRI) {
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
+ Regs.insert(Reg);
+ if (const unsigned *Aliases = TRI.getAliasSet(Reg))
+ for (; *Aliases; ++Aliases)
+ Regs.insert(*Aliases);
+ }
+};
+} // end llvm namespace.
+
+
+/// GetRegistersForValue - Assign registers (virtual or physical) for the
+/// specified operand. We prefer to assign virtual registers, to allow the
+/// register allocator handle the assignment process. However, if the asm uses
+/// features that we can't model on machineinstrs, we have SDISel do the
+/// allocation. This produces generally horrible, but correct, code.
+///
+/// OpInfo describes the operand.
+/// HasEarlyClobber is true if there are any early clobber constraints (=&r)
+/// or any explicitly clobbered registers.
+/// Input and OutputRegs are the set of already allocated physical registers.
+///
+void SelectionDAGLowering::
+GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
+ std::set<unsigned> &OutputRegs,
+ std::set<unsigned> &InputRegs) {
+ // Compute whether this value requires an input register, an output register,
+ // or both.
+ bool isOutReg = false;
+ bool isInReg = false;
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput:
+ isOutReg = true;
+
+ // If this is an early-clobber output, or if there is an input
+ // constraint that matches this, we need to reserve the input register
+ // so no other inputs allocate to it.
+ isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
+ break;
+ case InlineAsm::isInput:
+ isInReg = true;
+ isOutReg = false;
+ break;
+ case InlineAsm::isClobber:
+ isOutReg = true;
+ isInReg = true;
+ break;
+ }
+
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ SmallVector<unsigned, 4> Regs;
+
+ // If this is a constraint for a single physreg, or a constraint for a
+ // register class, find it.
+ std::pair<unsigned, const TargetRegisterClass*> PhysReg =
+ TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+
+ unsigned NumRegs = 1;
+ if (OpInfo.ConstraintVT != MVT::Other)
+ NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
+ MVT RegVT;
+ MVT ValueVT = OpInfo.ConstraintVT;
+
+
+ // If this is a constraint for a specific physical register, like {r17},
+ // assign it now.
+ if (PhysReg.first) {
+ if (OpInfo.ConstraintVT == MVT::Other)
+ ValueVT = *PhysReg.second->vt_begin();
+
+ // Get the actual register value type. This is important, because the user
+ // may have asked for (e.g.) the AX register in i32 type. We need to
+ // remember that AX is actually i16 to get the right extension.
+ RegVT = *PhysReg.second->vt_begin();
+
+ // This is a explicit reference to a physical register.
+ Regs.push_back(PhysReg.first);
+
+ // If this is an expanded reference, add the rest of the regs to Regs.
+ if (NumRegs != 1) {
+ TargetRegisterClass::iterator I = PhysReg.second->begin();
+ for (; *I != PhysReg.first; ++I)
+ assert(I != PhysReg.second->end() && "Didn't find reg!");
+
+ // Already added the first reg.
+ --NumRegs; ++I;
+ for (; NumRegs; --NumRegs, ++I) {
+ assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
+ Regs.push_back(*I);
+ }
+ }
+ OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
+ const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
+ OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
+ return;
+ }
+
+ // Otherwise, if this was a reference to an LLVM register class, create vregs
+ // for this reference.
+ std::vector<unsigned> RegClassRegs;
+ const TargetRegisterClass *RC = PhysReg.second;
+ if (RC) {
+ // If this is an early clobber or tied register, our regalloc doesn't know
+ // how to maintain the constraint. If it isn't, go ahead and create vreg
+ // and let the regalloc do the right thing.
+ if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
+ // If there is some other early clobber and this is an input register,
+ // then we are forced to pre-allocate the input reg so it doesn't
+ // conflict with the earlyclobber.
+ !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
+ RegVT = *PhysReg.second->vt_begin();
+
+ if (OpInfo.ConstraintVT == MVT::Other)
+ ValueVT = RegVT;
+
+ // Create the appropriate number of virtual registers.
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ for (; NumRegs; --NumRegs)
+ Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
+
+ OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
+ return;
+ }
+
+ // Otherwise, we can't allocate it. Let the code below figure out how to
+ // maintain these constraints.
+ RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
+
+ } else {
+ // This is a reference to a register class that doesn't directly correspond
+ // to an LLVM register class. Allocate NumRegs consecutive, available,
+ // registers from the class.
+ RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+ }
+
+ const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
+ unsigned NumAllocated = 0;
+ for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
+ unsigned Reg = RegClassRegs[i];
+ // See if this register is available.
+ if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
+ (isInReg && InputRegs.count(Reg))) { // Already used.
+ // Make sure we find consecutive registers.
+ NumAllocated = 0;
+ continue;
+ }
+
+ // Check to see if this register is allocatable (i.e. don't give out the
+ // stack pointer).
+ if (RC == 0) {
+ RC = isAllocatableRegister(Reg, MF, TLI, TRI);
+ if (!RC) { // Couldn't allocate this register.
+ // Reset NumAllocated to make sure we return consecutive registers.
+ NumAllocated = 0;
+ continue;
+ }
+ }
+
+ // Okay, this register is good, we can use it.
+ ++NumAllocated;
+
+ // If we allocated enough consecutive registers, succeed.
+ if (NumAllocated == NumRegs) {
+ unsigned RegStart = (i-NumAllocated)+1;
+ unsigned RegEnd = i+1;
+ // Mark all of the allocated registers used.
+ for (unsigned i = RegStart; i != RegEnd; ++i)
+ Regs.push_back(RegClassRegs[i]);
+
+ OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
+ OpInfo.ConstraintVT);
+ OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
+ return;
+ }
+ }
+
+ // Otherwise, we couldn't allocate enough registers for this.
+}
+
+
+/// visitInlineAsm - Handle a call to an InlineAsm object.
+///
+void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
+ InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
+
+ /// ConstraintOperands - Information about all of the constraints.
+ std::vector<SDISelAsmOperandInfo> ConstraintOperands;
+
+ SDValue Chain = getRoot();
+ SDValue Flag;
+
+ std::set<unsigned> OutputRegs, InputRegs;
+
+ // Do a prepass over the constraints, canonicalizing them, and building up the
+ // ConstraintOperands list.
+ std::vector<InlineAsm::ConstraintInfo>
+ ConstraintInfos = IA->ParseConstraints();
+
+ // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
+ // constraint. If so, we can't let the register allocator allocate any input
+ // registers, because it will not know to avoid the earlyclobbered output reg.
+ bool SawEarlyClobber = false;
+
+ unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
+ unsigned ResNo = 0; // ResNo - The result number of the next output.
+ for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
+ ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
+ SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
+
+ MVT OpVT = MVT::Other;
+
+ // Compute the value type for each operand.
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput:
+ // Indirect outputs just consume an argument.
+ if (OpInfo.isIndirect) {
+ OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
+ break;
+ }
+ // The return value of the call is this value. As such, there is no
+ // corresponding argument.
+ assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
+ if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
+ OpVT = TLI.getValueType(STy->getElementType(ResNo));
+ } else {
+ assert(ResNo == 0 && "Asm only has one result!");
+ OpVT = TLI.getValueType(CS.getType());
+ }
+ ++ResNo;
+ break;
+ case InlineAsm::isInput:
+ OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
+ break;
+ case InlineAsm::isClobber:
+ // Nothing to do.
+ break;
+ }
+
+ // If this is an input or an indirect output, process the call argument.
+ // BasicBlocks are labels, currently appearing only in asm's.
+ if (OpInfo.CallOperandVal) {
+ if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
+ OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
+ else {
+ OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
+ const Type *OpTy = OpInfo.CallOperandVal->getType();
+ // If this is an indirect operand, the operand is a pointer to the
+ // accessed type.
+ if (OpInfo.isIndirect)
+ OpTy = cast<PointerType>(OpTy)->getElementType();
+
+ // If OpTy is not a single value, it may be a struct/union that we
+ // can tile with integers.
+ if (!OpTy->isSingleValueType() && OpTy->isSized()) {
+ unsigned BitSize = TD->getTypeSizeInBits(OpTy);
+ switch (BitSize) {
+ default: break;
+ case 1:
+ case 8:
+ case 16:
+ case 32:
+ case 64:
+ OpTy = IntegerType::get(BitSize);
+ break;
+ }
+ }
+
+ OpVT = TLI.getValueType(OpTy, true);
+ }
+ }
+
+ OpInfo.ConstraintVT = OpVT;
+
+ // Compute the constraint code and ConstraintType to use.
+ TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
+
+ // Keep track of whether we see an earlyclobber.
+ SawEarlyClobber |= OpInfo.isEarlyClobber;
+
+ // If we see a clobber of a register, it is an early clobber.
+ if (!SawEarlyClobber &&
+ OpInfo.Type == InlineAsm::isClobber &&
+ OpInfo.ConstraintType == TargetLowering::C_Register) {
+ // Note that we want to ignore things that we don't track here, like
+ // dirflag, fpsr, flags, etc.
+ std::pair<unsigned, const TargetRegisterClass*> PhysReg =
+ TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+ if (PhysReg.first || PhysReg.second) {
+ // This is a register we know of.
+ SawEarlyClobber = true;
+ }
+ }
+
+ // If this is a memory input, and if the operand is not indirect, do what we
+ // need to to provide an address for the memory input.
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
+ !OpInfo.isIndirect) {
+ assert(OpInfo.Type == InlineAsm::isInput &&
+ "Can only indirectify direct input operands!");
+
+ // Memory operands really want the address of the value. If we don't have
+ // an indirect input, put it in the constpool if we can, otherwise spill
+ // it to a stack slot.
+
+ // If the operand is a float, integer, or vector constant, spill to a
+ // constant pool entry to get its address.
+ Value *OpVal = OpInfo.CallOperandVal;
+ if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
+ isa<ConstantVector>(OpVal)) {
+ OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
+ TLI.getPointerTy());
+ } else {
+ // Otherwise, create a stack slot and emit a store to it before the
+ // asm.
+ const Type *Ty = OpVal->getType();
+ uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
+ unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
+ MachineFunction &MF = DAG.getMachineFunction();
+ int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
+ Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
+ OpInfo.CallOperand = StackSlot;
+ }
+
+ // There is no longer a Value* corresponding to this operand.
+ OpInfo.CallOperandVal = 0;
+ // It is now an indirect operand.
+ OpInfo.isIndirect = true;
+ }
+
+ // If this constraint is for a specific register, allocate it before
+ // anything else.
+ if (OpInfo.ConstraintType == TargetLowering::C_Register)
+ GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
+ }
+ ConstraintInfos.clear();
+
+
+ // Second pass - Loop over all of the operands, assigning virtual or physregs
+ // to registerclass operands.
+ for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
+ SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
+
+ // C_Register operands have already been allocated, Other/Memory don't need
+ // to be.
+ if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
+ GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
+ }
+
+ // AsmNodeOperands - The operands for the ISD::INLINEASM node.
+ std::vector<SDValue> AsmNodeOperands;
+ AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
+ AsmNodeOperands.push_back(
+ DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
+
+
+ // Loop over all of the inputs, copying the operand values into the
+ // appropriate registers and processing the output regs.
+ RegsForValue RetValRegs;
+
+ // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
+ std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
+
+ for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
+ SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
+
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput: {
+ if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
+ OpInfo.ConstraintType != TargetLowering::C_Register) {
+ // Memory output, or 'other' output (e.g. 'X' constraint).
+ assert(OpInfo.isIndirect && "Memory output must be indirect operand");
+
+ // Add information to the INLINEASM node to know about this output.
+ unsigned ResOpType = 4/*MEM*/ | (1 << 3);
+ AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+ TLI.getPointerTy()));
+ AsmNodeOperands.push_back(OpInfo.CallOperand);
+ break;
+ }
+
+ // Otherwise, this is a register or register class output.
+
+ // Copy the output from the appropriate register. Find a register that
+ // we can use.
+ if (OpInfo.AssignedRegs.Regs.empty()) {
+ cerr << "Couldn't allocate output reg for constraint '"
+ << OpInfo.ConstraintCode << "'!\n";
+ exit(1);
+ }
+
+ // If this is an indirect operand, store through the pointer after the
+ // asm.
+ if (OpInfo.isIndirect) {
+ IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
+ OpInfo.CallOperandVal));
+ } else {
+ // This is the result value of the call.
+ assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
+ // Concatenate this output onto the outputs list.
+ RetValRegs.append(OpInfo.AssignedRegs);
+ }
+
+ // Add information to the INLINEASM node to know that this register is
+ // set.
+ OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
+ AsmNodeOperands);
+ break;
+ }
+ case InlineAsm::isInput: {
+ SDValue InOperandVal = OpInfo.CallOperand;
+
+ if (isdigit(OpInfo.ConstraintCode[0])) { // Matching constraint?
+ // If this is required to match an output register we have already set,
+ // just use its register.
+ unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
+
+ // Scan until we find the definition we already emitted of this operand.
+ // When we find it, create a RegsForValue operand.
+ unsigned CurOp = 2; // The first operand.
+ for (; OperandNo; --OperandNo) {
+ // Advance to the next operand.
+ unsigned NumOps =
+ cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
+ assert(((NumOps & 7) == 2 /*REGDEF*/ ||
+ (NumOps & 7) == 4 /*MEM*/) &&
+ "Skipped past definitions?");
+ CurOp += (NumOps>>3)+1;
+ }
+
+ unsigned NumOps =
+ cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
+ if ((NumOps & 7) == 2 /*REGDEF*/) {
+ // Add NumOps>>3 registers to MatchedRegs.
+ RegsForValue MatchedRegs;
+ MatchedRegs.TLI = &TLI;
+ MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
+ MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
+ for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
+ unsigned Reg =
+ cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
+ MatchedRegs.Regs.push_back(Reg);
+ }
+
+ // Use the produced MatchedRegs object to
+ MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
+ MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
+ break;
+ } else {
+ assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
+ assert((NumOps >> 3) == 1 && "Unexpected number of operands");
+ // Add information to the INLINEASM node to know about this input.
+ unsigned ResOpType = 4/*MEM*/ | (1 << 3);
+ AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+ TLI.getPointerTy()));
+ AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
+ break;
+ }
+ }
+
+ if (OpInfo.ConstraintType == TargetLowering::C_Other) {
+ assert(!OpInfo.isIndirect &&
+ "Don't know how to handle indirect other inputs yet!");
+
+ std::vector<SDValue> Ops;
+ TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
+ Ops, DAG);
+ if (Ops.empty()) {
+ cerr << "Invalid operand for inline asm constraint '"
+ << OpInfo.ConstraintCode << "'!\n";
+ exit(1);
+ }
+
+ // Add information to the INLINEASM node to know about this input.
+ unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
+ AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+ TLI.getPointerTy()));
+ AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
+ break;
+ } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
+ assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
+ assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
+ "Memory operands expect pointer values");
+
+ // Add information to the INLINEASM node to know about this input.
+ unsigned ResOpType = 4/*MEM*/ | (1 << 3);
+ AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+ TLI.getPointerTy()));
+ AsmNodeOperands.push_back(InOperandVal);
+ break;
+ }
+
+ assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
+ OpInfo.ConstraintType == TargetLowering::C_Register) &&
+ "Unknown constraint type!");
+ assert(!OpInfo.isIndirect &&
+ "Don't know how to handle indirect register inputs yet!");
+
+ // Copy the input into the appropriate registers.
+ assert(!OpInfo.AssignedRegs.Regs.empty() &&
+ "Couldn't allocate input reg!");
+
+ OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
+
+ OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
+ AsmNodeOperands);
+ break;
+ }
+ case InlineAsm::isClobber: {
+ // Add the clobbered value to the operand list, so that the register
+ // allocator is aware that the physreg got clobbered.
+ if (!OpInfo.AssignedRegs.Regs.empty())
+ OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
+ AsmNodeOperands);
+ break;
+ }
+ }
+ }
+
+ // Finish up input operands.
+ AsmNodeOperands[0] = Chain;
+ if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
+
+ Chain = DAG.getNode(ISD::INLINEASM,
+ DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
+ &AsmNodeOperands[0], AsmNodeOperands.size());
+ Flag = Chain.getValue(1);
+
+ // If this asm returns a register value, copy the result from that register
+ // and set it as the value of the call.
+ if (!RetValRegs.Regs.empty()) {
+ SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
+
+ // If any of the results of the inline asm is a vector, it may have the
+ // wrong width/num elts. This can happen for register classes that can
+ // contain multiple different value types. The preg or vreg allocated may
+ // not have the same VT as was expected. Convert it to the right type with
+ // bit_convert.
+ if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
+ for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
+ if (Val.getNode()->getValueType(i).isVector())
+ Val = DAG.getNode(ISD::BIT_CONVERT,
+ TLI.getValueType(ResSTy->getElementType(i)), Val);
+ }
+ } else {
+ if (Val.getValueType().isVector())
+ Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
+ Val);
+ }
+
+ setValue(CS.getInstruction(), Val);
+ }
+
+ std::vector<std::pair<SDValue, Value*> > StoresToEmit;
+
+ // Process indirect outputs, first output all of the flagged copies out of
+ // physregs.
+ for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
+ RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
+ Value *Ptr = IndirectStoresToEmit[i].second;
+ SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
+ StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
+ }
+
+ // Emit the non-flagged stores from the physregs.
+ SmallVector<SDValue, 8> OutChains;
+ for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
+ OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
+ getValue(StoresToEmit[i].second),
+ StoresToEmit[i].second, 0));
+ if (!OutChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
+ &OutChains[0], OutChains.size());
+ DAG.setRoot(Chain);
+}
+
+
+void SelectionDAGLowering::visitMalloc(MallocInst &I) {
+ SDValue Src = getValue(I.getOperand(0));
+
+ MVT IntPtr = TLI.getPointerTy();
+
+ if (IntPtr.bitsLT(Src.getValueType()))
+ Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
+ else if (IntPtr.bitsGT(Src.getValueType()))
+ Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
+
+ // Scale the source by the type size.
+ uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
+ Src = DAG.getNode(ISD::MUL, Src.getValueType(),
+ Src, DAG.getIntPtrConstant(ElementSize));
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Node = Src;
+ Entry.Ty = TLI.getTargetData()->getIntPtrType();
+ Args.push_back(Entry);
+
+ std::pair<SDValue,SDValue> Result =
+ TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
+ true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
+ setValue(&I, Result.first); // Pointers always fit in registers
+ DAG.setRoot(Result.second);
+}
+
+void SelectionDAGLowering::visitFree(FreeInst &I) {
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Node = getValue(I.getOperand(0));
+ Entry.Ty = TLI.getTargetData()->getIntPtrType();
+ Args.push_back(Entry);
+ MVT IntPtr = TLI.getPointerTy();
+ std::pair<SDValue,SDValue> Result =
+ TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
+ CallingConv::C, true,
+ DAG.getExternalSymbol("free", IntPtr), Args, DAG);
+ DAG.setRoot(Result.second);
+}
+
+void SelectionDAGLowering::visitVAStart(CallInst &I) {
+ DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
+ getValue(I.getOperand(1)),
+ DAG.getSrcValue(I.getOperand(1))));
+}
+
+void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
+ SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
+ getValue(I.getOperand(0)),
+ DAG.getSrcValue(I.getOperand(0)));
+ setValue(&I, V);
+ DAG.setRoot(V.getValue(1));
+}
+
+void SelectionDAGLowering::visitVAEnd(CallInst &I) {
+ DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
+ getValue(I.getOperand(1)),
+ DAG.getSrcValue(I.getOperand(1))));
+}
+
+void SelectionDAGLowering::visitVACopy(CallInst &I) {
+ DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2)),
+ DAG.getSrcValue(I.getOperand(1)),
+ DAG.getSrcValue(I.getOperand(2))));
+}
+
+/// TargetLowering::LowerArguments - This is the default LowerArguments
+/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
+/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
+/// integrated into SDISel.
+void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &ArgValues) {
+ // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
+ SmallVector<SDValue, 3+16> Ops;
+ Ops.push_back(DAG.getRoot());
+ Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
+ Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
+
+ // Add one result value for each formal argument.
+ SmallVector<MVT, 16> RetVals;
+ unsigned j = 1;
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
+ I != E; ++I, ++j) {
+ SmallVector<MVT, 4> ValueVTs;
+ ComputeValueVTs(*this, I->getType(), ValueVTs);
+ for (unsigned Value = 0, NumValues = ValueVTs.size();
+ Value != NumValues; ++Value) {
+ MVT VT = ValueVTs[Value];
+ const Type *ArgTy = VT.getTypeForMVT();
+ ISD::ArgFlagsTy Flags;
+ unsigned OriginalAlignment =
+ getTargetData()->getABITypeAlignment(ArgTy);
+
+ if (F.paramHasAttr(j, ParamAttr::ZExt))
+ Flags.setZExt();
+ if (F.paramHasAttr(j, ParamAttr::SExt))
+ Flags.setSExt();
+ if (F.paramHasAttr(j, ParamAttr::InReg))
+ Flags.setInReg();
+ if (F.paramHasAttr(j, ParamAttr::StructRet))
+ Flags.setSRet();
+ if (F.paramHasAttr(j, ParamAttr::ByVal)) {
+ Flags.setByVal();
+ const PointerType *Ty = cast<PointerType>(I->getType());
+ const Type *ElementTy = Ty->getElementType();
+ unsigned FrameAlign = getByValTypeAlignment(ElementTy);
+ unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
+ // For ByVal, alignment should be passed from FE. BE will guess if
+ // this info is not there but there are cases it cannot get right.
+ if (F.getParamAlignment(j))
+ FrameAlign = F.getParamAlignment(j);
+ Flags.setByValAlign(FrameAlign);
+ Flags.setByValSize(FrameSize);
+ }
+ if (F.paramHasAttr(j, ParamAttr::Nest))
+ Flags.setNest();
+ Flags.setOrigAlign(OriginalAlignment);
+
+ MVT RegisterVT = getRegisterType(VT);
+ unsigned NumRegs = getNumRegisters(VT);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ RetVals.push_back(RegisterVT);
+ ISD::ArgFlagsTy MyFlags = Flags;
+ if (NumRegs > 1 && i == 0)
+ MyFlags.setSplit();
+ // if it isn't first piece, alignment must be 1
+ else if (i > 0)
+ MyFlags.setOrigAlign(1);
+ Ops.push_back(DAG.getArgFlags(MyFlags));
+ }
+ }
+ }
+
+ RetVals.push_back(MVT::Other);
+
+ // Create the node.
+ SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
+ DAG.getVTList(&RetVals[0], RetVals.size()),
+ &Ops[0], Ops.size()).getNode();
+
+ // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but
+ // allows exposing the loads that may be part of the argument access to the
+ // first DAGCombiner pass.
+ SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
+
+ // The number of results should match up, except that the lowered one may have
+ // an extra flag result.
+ assert((Result->getNumValues() == TmpRes.getNode()->getNumValues() ||
+ (Result->getNumValues()+1 == TmpRes.getNode()->getNumValues() &&
+ TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
+ && "Lowering produced unexpected number of results!");
+
+ // The FORMAL_ARGUMENTS node itself is likely no longer needed.
+ if (Result != TmpRes.getNode() && Result->use_empty()) {
+ HandleSDNode Dummy(DAG.getRoot());
+ DAG.RemoveDeadNode(Result);
+ }
+
+ Result = TmpRes.getNode();
+
+ unsigned NumArgRegs = Result->getNumValues() - 1;
+ DAG.setRoot(SDValue(Result, NumArgRegs));
+
+ // Set up the return result vector.
+ unsigned i = 0;
+ unsigned Idx = 1;
+ for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
+ ++I, ++Idx) {
+ SmallVector<MVT, 4> ValueVTs;
+ ComputeValueVTs(*this, I->getType(), ValueVTs);
+ for (unsigned Value = 0, NumValues = ValueVTs.size();
+ Value != NumValues; ++Value) {
+ MVT VT = ValueVTs[Value];
+ MVT PartVT = getRegisterType(VT);
+
+ unsigned NumParts = getNumRegisters(VT);
+ SmallVector<SDValue, 4> Parts(NumParts);
+ for (unsigned j = 0; j != NumParts; ++j)
+ Parts[j] = SDValue(Result, i++);
+
+ ISD::NodeType AssertOp = ISD::DELETED_NODE;
+ if (F.paramHasAttr(Idx, ParamAttr::SExt))
+ AssertOp = ISD::AssertSext;
+ else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
+ AssertOp = ISD::AssertZext;
+
+ ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
+ AssertOp));
+ }
+ }
+ assert(i == NumArgRegs && "Argument register count mismatch!");
+}
+
+
+/// TargetLowering::LowerCallTo - This is the default LowerCallTo
+/// implementation, which just inserts an ISD::CALL node, which is later custom
+/// lowered by the target to something concrete. FIXME: When all targets are
+/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
+std::pair<SDValue, SDValue>
+TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
+ bool RetSExt, bool RetZExt, bool isVarArg,
+ unsigned CallingConv, bool isTailCall,
+ SDValue Callee,
+ ArgListTy &Args, SelectionDAG &DAG) {
+ SmallVector<SDValue, 32> Ops;
+ Ops.push_back(Chain); // Op#0 - Chain
+ Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
+ Ops.push_back(DAG.getConstant(isVarArg, getPointerTy())); // Op#2 - VarArg
+ Ops.push_back(DAG.getConstant(isTailCall, getPointerTy())); // Op#3 - Tail
+ Ops.push_back(Callee);
+
+ // Handle all of the outgoing arguments.
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ SmallVector<MVT, 4> ValueVTs;
+ ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
+ for (unsigned Value = 0, NumValues = ValueVTs.size();
+ Value != NumValues; ++Value) {
+ MVT VT = ValueVTs[Value];
+ const Type *ArgTy = VT.getTypeForMVT();
+ SDValue Op = SDValue(Args[i].Node.getNode(), Args[i].Node.getResNo() + Value);
+ ISD::ArgFlagsTy Flags;
+ unsigned OriginalAlignment =
+ getTargetData()->getABITypeAlignment(ArgTy);
+
+ if (Args[i].isZExt)
+ Flags.setZExt();
+ if (Args[i].isSExt)
+ Flags.setSExt();
+ if (Args[i].isInReg)
+ Flags.setInReg();
+ if (Args[i].isSRet)
+ Flags.setSRet();
+ if (Args[i].isByVal) {
+ Flags.setByVal();
+ const PointerType *Ty = cast<PointerType>(Args[i].Ty);
+ const Type *ElementTy = Ty->getElementType();
+ unsigned FrameAlign = getByValTypeAlignment(ElementTy);
+ unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
+ // For ByVal, alignment should come from FE. BE will guess if this
+ // info is not there but there are cases it cannot get right.
+ if (Args[i].Alignment)
+ FrameAlign = Args[i].Alignment;
+ Flags.setByValAlign(FrameAlign);
+ Flags.setByValSize(FrameSize);
+ }
+ if (Args[i].isNest)
+ Flags.setNest();
+ Flags.setOrigAlign(OriginalAlignment);
+
+ MVT PartVT = getRegisterType(VT);
+ unsigned NumParts = getNumRegisters(VT);
+ SmallVector<SDValue, 4> Parts(NumParts);
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+ if (Args[i].isSExt)
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (Args[i].isZExt)
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
+
+ for (unsigned i = 0; i != NumParts; ++i) {
+ // if it isn't first piece, alignment must be 1
+ ISD::ArgFlagsTy MyFlags = Flags;
+ if (NumParts > 1 && i == 0)
+ MyFlags.setSplit();
+ else if (i != 0)
+ MyFlags.setOrigAlign(1);
+
+ Ops.push_back(Parts[i]);
+ Ops.push_back(DAG.getArgFlags(MyFlags));
+ }
+ }
+ }
+
+ // Figure out the result value types. We start by making a list of
+ // the potentially illegal return value types.
+ SmallVector<MVT, 4> LoweredRetTys;
+ SmallVector<MVT, 4> RetTys;
+ ComputeValueVTs(*this, RetTy, RetTys);
+
+ // Then we translate that to a list of legal types.
+ for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
+ MVT VT = RetTys[I];
+ MVT RegisterVT = getRegisterType(VT);
+ unsigned NumRegs = getNumRegisters(VT);
+ for (unsigned i = 0; i != NumRegs; ++i)
+ LoweredRetTys.push_back(RegisterVT);
+ }
+
+ LoweredRetTys.push_back(MVT::Other); // Always has a chain.
+
+ // Create the CALL node.
+ SDValue Res = DAG.getNode(ISD::CALL,
+ DAG.getVTList(&LoweredRetTys[0],
+ LoweredRetTys.size()),
+ &Ops[0], Ops.size());
+ Chain = Res.getValue(LoweredRetTys.size() - 1);
+
+ // Gather up the call result into a single value.
+ if (RetTy != Type::VoidTy) {
+ ISD::NodeType AssertOp = ISD::DELETED_NODE;
+
+ if (RetSExt)
+ AssertOp = ISD::AssertSext;
+ else if (RetZExt)
+ AssertOp = ISD::AssertZext;
+
+ SmallVector<SDValue, 4> ReturnValues;
+ unsigned RegNo = 0;
+ for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
+ MVT VT = RetTys[I];
+ MVT RegisterVT = getRegisterType(VT);
+ unsigned NumRegs = getNumRegisters(VT);
+ unsigned RegNoEnd = NumRegs + RegNo;
+ SmallVector<SDValue, 4> Results;
+ for (; RegNo != RegNoEnd; ++RegNo)
+ Results.push_back(Res.getValue(RegNo));
+ SDValue ReturnValue =
+ getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
+ AssertOp);
+ ReturnValues.push_back(ReturnValue);
+ }
+ Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
+ &ReturnValues[0], ReturnValues.size());
+ }
+
+ return std::make_pair(Res, Chain);
+}
+
+SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
+ assert(0 && "LowerOperation not implemented for this target!");
+ abort();
+ return SDValue();
+}
+
+
+void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
+ SDValue Op = getValue(V);
+ assert((Op.getOpcode() != ISD::CopyFromReg ||
+ cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
+ "Copy from a reg to the same reg!");
+ assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
+
+ RegsForValue RFV(TLI, Reg, V->getType());
+ SDValue Chain = DAG.getEntryNode();
+ RFV.getCopyToRegs(Op, DAG, Chain, 0);
+ PendingExports.push_back(Chain);
+}
+
+#include "llvm/CodeGen/SelectionDAGISel.h"
+
+void SelectionDAGISel::
+LowerArguments(BasicBlock *LLVMBB) {
+ // If this is the entry block, emit arguments.
+ Function &F = *LLVMBB->getParent();
+ SDValue OldRoot = SDL->DAG.getRoot();
+ SmallVector<SDValue, 16> Args;
+ TLI.LowerArguments(F, SDL->DAG, Args);
+
+ unsigned a = 0;
+ for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
+ AI != E; ++AI) {
+ SmallVector<MVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, AI->getType(), ValueVTs);
+ unsigned NumValues = ValueVTs.size();
+ if (!AI->use_empty()) {
+ SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues));
+ // If this argument is live outside of the entry block, insert a copy from
+ // whereever we got it to the vreg that other BB's will reference it as.
+ DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo->ValueMap.find(AI);
+ if (VMI != FuncInfo->ValueMap.end()) {
+ SDL->CopyValueToVirtualRegister(AI, VMI->second);
+ }
+ }
+ a += NumValues;
+ }
+
+ // Finally, if the target has anything special to do, allow it to do so.
+ // FIXME: this should insert code into the DAG!
+ EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction());
+}
+
+/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
+/// ensure constants are generated when needed. Remember the virtual registers
+/// that need to be added to the Machine PHI nodes as input. We cannot just
+/// directly add them, because expansion might result in multiple MBB's for one
+/// BB. As such, the start of the BB might correspond to a different MBB than
+/// the end.
+///
+void
+SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
+ TerminatorInst *TI = LLVMBB->getTerminator();
+
+ SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
+
+ // Check successor nodes' PHI nodes that expect a constant to be available
+ // from this block.
+ for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
+ BasicBlock *SuccBB = TI->getSuccessor(succ);
+ if (!isa<PHINode>(SuccBB->begin())) continue;
+ MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
+
+ // If this terminator has multiple identical successors (common for
+ // switches), only handle each succ once.
+ if (!SuccsHandled.insert(SuccMBB)) continue;
+
+ MachineBasicBlock::iterator MBBI = SuccMBB->begin();
+ PHINode *PN;
+
+ // At this point we know that there is a 1-1 correspondence between LLVM PHI
+ // nodes and Machine PHI nodes, but the incoming operands have not been
+ // emitted yet.
+ for (BasicBlock::iterator I = SuccBB->begin();
+ (PN = dyn_cast<PHINode>(I)); ++I) {
+ // Ignore dead phi's.
+ if (PN->use_empty()) continue;
+
+ unsigned Reg;
+ Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
+
+ if (Constant *C = dyn_cast<Constant>(PHIOp)) {
+ unsigned &RegOut = SDL->ConstantsOut[C];
+ if (RegOut == 0) {
+ RegOut = FuncInfo->CreateRegForValue(C);
+ SDL->CopyValueToVirtualRegister(C, RegOut);
+ }
+ Reg = RegOut;
+ } else {
+ Reg = FuncInfo->ValueMap[PHIOp];
+ if (Reg == 0) {
+ assert(isa<AllocaInst>(PHIOp) &&
+ FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
+ "Didn't codegen value into a register!??");
+ Reg = FuncInfo->CreateRegForValue(PHIOp);
+ SDL->CopyValueToVirtualRegister(PHIOp, Reg);
+ }
+ }
+
+ // Remember that this register needs to added to the machine PHI node as
+ // the input for this MBB.
+ SmallVector<MVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, PN->getType(), ValueVTs);
+ for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
+ MVT VT = ValueVTs[vti];
+ unsigned NumRegisters = TLI.getNumRegisters(VT);
+ for (unsigned i = 0, e = NumRegisters; i != e; ++i)
+ SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
+ Reg += NumRegisters;
+ }
+ }
+ }
+ SDL->ConstantsOut.clear();
+
+ // Lower the terminator after the copies are emitted.
+ SDL->visit(*LLVMBB->getTerminator());
+}
+
+