It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/ARM/ARMInstrInfo.cpp b/lib/Target/ARM/ARMInstrInfo.cpp
new file mode 100644
index 0000000..b404ec0
--- /dev/null
+++ b/lib/Target/ARM/ARMInstrInfo.cpp
@@ -0,0 +1,612 @@
+//===- ARMInstrInfo.cpp - ARM Instruction Information -----------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the "Instituto Nokia de Tecnologia" and
+// is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the ARM implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMInstrInfo.h"
+#include "ARM.h"
+#include "ARMAddressingModes.h"
+#include "ARMGenInstrInfo.inc"
+#include "ARMMachineFunctionInfo.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+static cl::opt<bool> EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
+                                  cl::desc("Enable ARM 2-addr to 3-addr conv"));
+
+ARMInstrInfo::ARMInstrInfo(const ARMSubtarget &STI)
+  : TargetInstrInfo(ARMInsts, sizeof(ARMInsts)/sizeof(ARMInsts[0])),
+    RI(*this, STI) {
+}
+
+const TargetRegisterClass *ARMInstrInfo::getPointerRegClass() const {
+  return &ARM::GPRRegClass;
+}
+
+/// Return true if the instruction is a register to register move and
+/// leave the source and dest operands in the passed parameters.
+///
+bool ARMInstrInfo::isMoveInstr(const MachineInstr &MI,
+                               unsigned &SrcReg, unsigned &DstReg) const {
+  MachineOpCode oc = MI.getOpcode();
+  switch (oc) {
+  default:
+    return false;
+  case ARM::FCPYS:
+  case ARM::FCPYD:
+    SrcReg = MI.getOperand(1).getReg();
+    DstReg = MI.getOperand(0).getReg();
+    return true;
+  case ARM::MOVr:
+  case ARM::tMOVr:
+    assert(MI.getInstrDescriptor()->numOperands >= 2 &&
+           MI.getOperand(0).isRegister() &&
+           MI.getOperand(1).isRegister() &&
+           "Invalid ARM MOV instruction");
+    SrcReg = MI.getOperand(1).getReg();
+    DstReg = MI.getOperand(0).getReg();
+    return true;
+  }
+}
+
+unsigned ARMInstrInfo::isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
+  switch (MI->getOpcode()) {
+  default: break;
+  case ARM::LDR:
+    if (MI->getOperand(1).isFrameIndex() &&
+        MI->getOperand(2).isReg() &&
+        MI->getOperand(3).isImmediate() && 
+        MI->getOperand(2).getReg() == 0 &&
+        MI->getOperand(3).getImmedValue() == 0) {
+      FrameIndex = MI->getOperand(1).getFrameIndex();
+      return MI->getOperand(0).getReg();
+    }
+    break;
+  case ARM::FLDD:
+  case ARM::FLDS:
+    if (MI->getOperand(1).isFrameIndex() &&
+        MI->getOperand(2).isImmediate() && 
+        MI->getOperand(2).getImmedValue() == 0) {
+      FrameIndex = MI->getOperand(1).getFrameIndex();
+      return MI->getOperand(0).getReg();
+    }
+    break;
+  case ARM::tRestore:
+    if (MI->getOperand(1).isFrameIndex() &&
+        MI->getOperand(2).isImmediate() && 
+        MI->getOperand(2).getImmedValue() == 0) {
+      FrameIndex = MI->getOperand(1).getFrameIndex();
+      return MI->getOperand(0).getReg();
+    }
+    break;
+  }
+  return 0;
+}
+
+unsigned ARMInstrInfo::isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
+  switch (MI->getOpcode()) {
+  default: break;
+  case ARM::STR:
+    if (MI->getOperand(1).isFrameIndex() &&
+        MI->getOperand(2).isReg() &&
+        MI->getOperand(3).isImmediate() && 
+        MI->getOperand(2).getReg() == 0 &&
+        MI->getOperand(3).getImmedValue() == 0) {
+      FrameIndex = MI->getOperand(1).getFrameIndex();
+      return MI->getOperand(0).getReg();
+    }
+    break;
+  case ARM::FSTD:
+  case ARM::FSTS:
+    if (MI->getOperand(1).isFrameIndex() &&
+        MI->getOperand(2).isImmediate() && 
+        MI->getOperand(2).getImmedValue() == 0) {
+      FrameIndex = MI->getOperand(1).getFrameIndex();
+      return MI->getOperand(0).getReg();
+    }
+    break;
+  case ARM::tSpill:
+    if (MI->getOperand(1).isFrameIndex() &&
+        MI->getOperand(2).isImmediate() && 
+        MI->getOperand(2).getImmedValue() == 0) {
+      FrameIndex = MI->getOperand(1).getFrameIndex();
+      return MI->getOperand(0).getReg();
+    }
+    break;
+  }
+  return 0;
+}
+
+static unsigned getUnindexedOpcode(unsigned Opc) {
+  switch (Opc) {
+  default: break;
+  case ARM::LDR_PRE:
+  case ARM::LDR_POST:
+    return ARM::LDR;
+  case ARM::LDRH_PRE:
+  case ARM::LDRH_POST:
+    return ARM::LDRH;
+  case ARM::LDRB_PRE:
+  case ARM::LDRB_POST:
+    return ARM::LDRB;
+  case ARM::LDRSH_PRE:
+  case ARM::LDRSH_POST:
+    return ARM::LDRSH;
+  case ARM::LDRSB_PRE:
+  case ARM::LDRSB_POST:
+    return ARM::LDRSB;
+  case ARM::STR_PRE:
+  case ARM::STR_POST:
+    return ARM::STR;
+  case ARM::STRH_PRE:
+  case ARM::STRH_POST:
+    return ARM::STRH;
+  case ARM::STRB_PRE:
+  case ARM::STRB_POST:
+    return ARM::STRB;
+  }
+  return 0;
+}
+
+MachineInstr *
+ARMInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
+                                    MachineBasicBlock::iterator &MBBI,
+                                    LiveVariables &LV) const {
+  if (!EnableARM3Addr)
+    return NULL;
+
+  MachineInstr *MI = MBBI;
+  unsigned TSFlags = MI->getInstrDescriptor()->TSFlags;
+  bool isPre = false;
+  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
+  default: return NULL;
+  case ARMII::IndexModePre:
+    isPre = true;
+    break;
+  case ARMII::IndexModePost:
+    break;
+  }
+
+  // Try spliting an indexed load / store to a un-indexed one plus an add/sub
+  // operation.
+  unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
+  if (MemOpc == 0)
+    return NULL;
+
+  MachineInstr *UpdateMI = NULL;
+  MachineInstr *MemMI = NULL;
+  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
+  const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
+  unsigned NumOps = TID->numOperands;
+  bool isLoad = (TID->Flags & M_LOAD_FLAG) != 0;
+  const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
+  const MachineOperand &Base = MI->getOperand(2);
+  const MachineOperand &Offset = MI->getOperand(NumOps-3);
+  unsigned WBReg = WB.getReg();
+  unsigned BaseReg = Base.getReg();
+  unsigned OffReg = Offset.getReg();
+  unsigned OffImm = MI->getOperand(NumOps-2).getImm();
+  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
+  switch (AddrMode) {
+  default:
+    assert(false && "Unknown indexed op!");
+    return NULL;
+  case ARMII::AddrMode2: {
+    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
+    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
+    if (OffReg == 0) {
+      int SOImmVal = ARM_AM::getSOImmVal(Amt);
+      if (SOImmVal == -1)
+        // Can't encode it in a so_imm operand. This transformation will
+        // add more than 1 instruction. Abandon!
+        return NULL;
+      UpdateMI = BuildMI(get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+        .addReg(BaseReg).addImm(SOImmVal)
+        .addImm(Pred).addReg(0).addReg(0);
+    } else if (Amt != 0) {
+      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
+      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
+      UpdateMI = BuildMI(get(isSub ? ARM::SUBrs : ARM::ADDrs), WBReg)
+        .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
+        .addImm(Pred).addReg(0).addReg(0);
+    } else 
+      UpdateMI = BuildMI(get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+        .addReg(BaseReg).addReg(OffReg)
+        .addImm(Pred).addReg(0).addReg(0);
+    break;
+  }
+  case ARMII::AddrMode3 : {
+    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
+    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
+    if (OffReg == 0)
+      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
+      UpdateMI = BuildMI(get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+        .addReg(BaseReg).addImm(Amt)
+        .addImm(Pred).addReg(0).addReg(0);
+    else
+      UpdateMI = BuildMI(get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+        .addReg(BaseReg).addReg(OffReg)
+        .addImm(Pred).addReg(0).addReg(0);
+    break;
+  }
+  }
+
+  std::vector<MachineInstr*> NewMIs;
+  if (isPre) {
+    if (isLoad)
+      MemMI = BuildMI(get(MemOpc), MI->getOperand(0).getReg())
+        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
+    else
+      MemMI = BuildMI(get(MemOpc)).addReg(MI->getOperand(1).getReg())
+        .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
+    NewMIs.push_back(MemMI);
+    NewMIs.push_back(UpdateMI);
+  } else {
+    if (isLoad)
+      MemMI = BuildMI(get(MemOpc), MI->getOperand(0).getReg())
+        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
+    else
+      MemMI = BuildMI(get(MemOpc)).addReg(MI->getOperand(1).getReg())
+        .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
+    if (WB.isDead())
+      UpdateMI->getOperand(0).setIsDead();
+    NewMIs.push_back(UpdateMI);
+    NewMIs.push_back(MemMI);
+  }
+  
+  // Transfer LiveVariables states, kill / dead info.
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (MO.isRegister() && MO.getReg() &&
+        MRegisterInfo::isVirtualRegister(MO.getReg())) {
+      unsigned Reg = MO.getReg();
+      LiveVariables::VarInfo &VI = LV.getVarInfo(Reg);
+      if (MO.isDef()) {
+        MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
+        if (MO.isDead())
+          LV.addVirtualRegisterDead(Reg, NewMI);
+        // Update the defining instruction.
+        if (VI.DefInst == MI)
+          VI.DefInst = NewMI;
+      }
+      if (MO.isUse() && MO.isKill()) {
+        for (unsigned j = 0; j < 2; ++j) {
+          // Look at the two new MI's in reverse order.
+          MachineInstr *NewMI = NewMIs[j];
+          int NIdx = NewMI->findRegisterUseOperandIdx(Reg);
+          if (NIdx == -1)
+            continue;
+          LV.addVirtualRegisterKilled(Reg, NewMI);
+          if (VI.removeKill(MI))
+            VI.Kills.push_back(NewMI);
+          break;
+        }
+      }
+    }
+  }
+
+  MFI->insert(MBBI, NewMIs[1]);
+  MFI->insert(MBBI, NewMIs[0]);
+  return NewMIs[0];
+}
+
+// Branch analysis.
+bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
+                                 MachineBasicBlock *&FBB,
+                                 std::vector<MachineOperand> &Cond) const {
+  // If the block has no terminators, it just falls into the block after it.
+  MachineBasicBlock::iterator I = MBB.end();
+  if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
+    return false;
+  
+  // Get the last instruction in the block.
+  MachineInstr *LastInst = I;
+  
+  // If there is only one terminator instruction, process it.
+  unsigned LastOpc = LastInst->getOpcode();
+  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+    if (LastOpc == ARM::B || LastOpc == ARM::tB) {
+      TBB = LastInst->getOperand(0).getMachineBasicBlock();
+      return false;
+    }
+    if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
+      // Block ends with fall-through condbranch.
+      TBB = LastInst->getOperand(0).getMachineBasicBlock();
+      Cond.push_back(LastInst->getOperand(1));
+      Cond.push_back(LastInst->getOperand(2));
+      return false;
+    }
+    return true;  // Can't handle indirect branch.
+  }
+  
+  // Get the instruction before it if it is a terminator.
+  MachineInstr *SecondLastInst = I;
+  
+  // If there are three terminators, we don't know what sort of block this is.
+  if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
+    return true;
+  
+  // If the block ends with ARM::B/ARM::tB and a ARM::Bcc/ARM::tBcc, handle it.
+  unsigned SecondLastOpc = SecondLastInst->getOpcode();
+  if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
+      (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
+    TBB =  SecondLastInst->getOperand(0).getMachineBasicBlock();
+    Cond.push_back(SecondLastInst->getOperand(1));
+    Cond.push_back(SecondLastInst->getOperand(2));
+    FBB = LastInst->getOperand(0).getMachineBasicBlock();
+    return false;
+  }
+  
+  // If the block ends with two unconditional branches, handle it.  The second 
+  // one is not executed, so remove it.
+  if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) &&
+      (LastOpc == ARM::B || LastOpc == ARM::tB)) {
+    TBB = SecondLastInst->getOperand(0).getMachineBasicBlock();
+    I = LastInst;
+    I->eraseFromParent();
+    return false;
+  }
+
+  // Likewise if it ends with a branch table followed by an unconditional branch.
+  // The branch folder can create these, and we must get rid of them for
+  // correctness of Thumb constant islands.
+  if ((SecondLastOpc == ARM::BR_JTr || SecondLastOpc==ARM::BR_JTm ||
+       SecondLastOpc == ARM::BR_JTadd || SecondLastOpc==ARM::tBR_JTr) &&
+      (LastOpc == ARM::B || LastOpc == ARM::tB)) {
+    I = LastInst;
+    I->eraseFromParent();
+    return true;
+  } 
+
+  // Otherwise, can't handle this.
+  return true;
+}
+
+
+unsigned ARMInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+  MachineFunction &MF = *MBB.getParent();
+  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+  int BOpc   = AFI->isThumbFunction() ? ARM::tB : ARM::B;
+  int BccOpc = AFI->isThumbFunction() ? ARM::tBcc : ARM::Bcc;
+
+  MachineBasicBlock::iterator I = MBB.end();
+  if (I == MBB.begin()) return 0;
+  --I;
+  if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc)
+    return 0;
+  
+  // Remove the branch.
+  I->eraseFromParent();
+  
+  I = MBB.end();
+  
+  if (I == MBB.begin()) return 1;
+  --I;
+  if (I->getOpcode() != BccOpc)
+    return 1;
+  
+  // Remove the branch.
+  I->eraseFromParent();
+  return 2;
+}
+
+unsigned ARMInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+                                MachineBasicBlock *FBB,
+                                const std::vector<MachineOperand> &Cond) const {
+  MachineFunction &MF = *MBB.getParent();
+  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+  int BOpc   = AFI->isThumbFunction() ? ARM::tB : ARM::B;
+  int BccOpc = AFI->isThumbFunction() ? ARM::tBcc : ARM::Bcc;
+
+  // Shouldn't be a fall through.
+  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+  assert((Cond.size() == 2 || Cond.size() == 0) &&
+         "ARM branch conditions have two components!");
+  
+  if (FBB == 0) {
+    if (Cond.empty()) // Unconditional branch?
+      BuildMI(&MBB, get(BOpc)).addMBB(TBB);
+    else
+      BuildMI(&MBB, get(BccOpc)).addMBB(TBB)
+        .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
+    return 1;
+  }
+  
+  // Two-way conditional branch.
+  BuildMI(&MBB, get(BccOpc)).addMBB(TBB)
+    .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
+  BuildMI(&MBB, get(BOpc)).addMBB(FBB);
+  return 2;
+}
+
+bool ARMInstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
+  if (MBB.empty()) return false;
+  
+  switch (MBB.back().getOpcode()) {
+  case ARM::BX_RET:   // Return.
+  case ARM::LDM_RET:
+  case ARM::tBX_RET:
+  case ARM::tBX_RET_vararg:
+  case ARM::tPOP_RET:
+  case ARM::B:
+  case ARM::tB:       // Uncond branch.
+  case ARM::tBR_JTr:
+  case ARM::BR_JTr:   // Jumptable branch.
+  case ARM::BR_JTm:   // Jumptable branch through mem.
+  case ARM::BR_JTadd: // Jumptable branch add to pc.
+    return true;
+  default: return false;
+  }
+}
+
+bool ARMInstrInfo::
+ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
+  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
+  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
+  return false;
+}
+
+bool ARMInstrInfo::isPredicated(const MachineInstr *MI) const {
+  int PIdx = MI->findFirstPredOperandIdx();
+  return PIdx != -1 && MI->getOperand(PIdx).getImmedValue() != ARMCC::AL;
+}
+
+bool ARMInstrInfo::PredicateInstruction(MachineInstr *MI,
+                                const std::vector<MachineOperand> &Pred) const {
+  unsigned Opc = MI->getOpcode();
+  if (Opc == ARM::B || Opc == ARM::tB) {
+    MI->setInstrDescriptor(get(Opc == ARM::B ? ARM::Bcc : ARM::tBcc));
+    MI->addImmOperand(Pred[0].getImmedValue());
+    MI->addRegOperand(Pred[1].getReg(), false);
+    return true;
+  }
+
+  int PIdx = MI->findFirstPredOperandIdx();
+  if (PIdx != -1) {
+    MachineOperand &PMO = MI->getOperand(PIdx);
+    PMO.setImm(Pred[0].getImmedValue());
+    MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
+    return true;
+  }
+  return false;
+}
+
+bool
+ARMInstrInfo::SubsumesPredicate(const std::vector<MachineOperand> &Pred1,
+                                const std::vector<MachineOperand> &Pred2) const{
+  if (Pred1.size() > 2 || Pred2.size() > 2)
+    return false;
+
+  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImmedValue();
+  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImmedValue();
+  if (CC1 == CC2)
+    return true;
+
+  switch (CC1) {
+  default:
+    return false;
+  case ARMCC::AL:
+    return true;
+  case ARMCC::HS:
+    return CC2 == ARMCC::HI;
+  case ARMCC::LS:
+    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
+  case ARMCC::GE:
+    return CC2 == ARMCC::GT;
+  case ARMCC::LE:
+    return CC2 == ARMCC::LT;
+  }
+}
+
+bool ARMInstrInfo::DefinesPredicate(MachineInstr *MI,
+                                    std::vector<MachineOperand> &Pred) const {
+  const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
+  if (!TID->ImplicitDefs && (TID->Flags & M_HAS_OPTIONAL_DEF) == 0)
+    return false;
+
+  bool Found = false;
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    const MachineOperand &MO = MI->getOperand(i);
+    if (MO.isReg() && MO.getReg() == ARM::CPSR) {
+      Pred.push_back(MO);
+      Found = true;
+    }
+  }
+
+  return Found;
+}
+
+
+/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing
+static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
+                                unsigned JTI) DISABLE_INLINE;
+static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
+                                unsigned JTI) {
+  return JT[JTI].MBBs.size();
+}
+
+/// GetInstSize - Return the size of the specified MachineInstr.
+///
+unsigned ARM::GetInstSize(MachineInstr *MI) {
+  MachineBasicBlock &MBB = *MI->getParent();
+  const MachineFunction *MF = MBB.getParent();
+  const TargetAsmInfo *TAI = MF->getTarget().getTargetAsmInfo();
+
+  // Basic size info comes from the TSFlags field.
+  const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
+  unsigned TSFlags = TID->TSFlags;
+  
+  switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
+  default:
+    // If this machine instr is an inline asm, measure it.
+    if (MI->getOpcode() == ARM::INLINEASM)
+      return TAI->getInlineAsmLength(MI->getOperand(0).getSymbolName());
+    if (MI->getOpcode() == ARM::LABEL)
+      return 0;
+    assert(0 && "Unknown or unset size field for instr!");
+    break;
+  case ARMII::Size8Bytes: return 8;          // Arm instruction x 2.
+  case ARMII::Size4Bytes: return 4;          // Arm instruction.
+  case ARMII::Size2Bytes: return 2;          // Thumb instruction.
+  case ARMII::SizeSpecial: {
+    switch (MI->getOpcode()) {
+    case ARM::CONSTPOOL_ENTRY:
+      // If this machine instr is a constant pool entry, its size is recorded as
+      // operand #2.
+      return MI->getOperand(2).getImm();
+    case ARM::BR_JTr:
+    case ARM::BR_JTm:
+    case ARM::BR_JTadd:
+    case ARM::tBR_JTr: {
+      // These are jumptable branches, i.e. a branch followed by an inlined
+      // jumptable. The size is 4 + 4 * number of entries.
+      unsigned NumOps = TID->numOperands;
+      MachineOperand JTOP =
+        MI->getOperand(NumOps - ((TID->Flags & M_PREDICABLE) ? 3 : 2));
+      unsigned JTI = JTOP.getJumpTableIndex();
+      MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+      const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+      assert(JTI < JT.size());
+      // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
+      // 4 aligned. The assembler / linker may add 2 byte padding just before
+      // the JT entries.  The size does not include this padding; the
+      // constant islands pass does separate bookkeeping for it.
+      // FIXME: If we know the size of the function is less than (1 << 16) *2
+      // bytes, we can use 16-bit entries instead. Then there won't be an
+      // alignment issue.
+      return getNumJTEntries(JT, JTI) * 4 + 
+             (MI->getOpcode()==ARM::tBR_JTr ? 2 : 4);
+    }
+    default:
+      // Otherwise, pseudo-instruction sizes are zero.
+      return 0;
+    }
+  }
+  }
+}
+
+/// GetFunctionSize - Returns the size of the specified MachineFunction.
+///
+unsigned ARM::GetFunctionSize(MachineFunction &MF) {
+  unsigned FnSize = 0;
+  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
+       MBBI != E; ++MBBI) {
+    MachineBasicBlock &MBB = *MBBI;
+    for (MachineBasicBlock::iterator I = MBB.begin(),E = MBB.end(); I != E; ++I)
+      FnSize += ARM::GetInstSize(I);
+  }
+  return FnSize;
+}