It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp
new file mode 100644
index 0000000..37dea79
--- /dev/null
+++ b/lib/Target/X86/X86ISelLowering.cpp
@@ -0,0 +1,5094 @@
+//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that X86 uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86InstrBuilder.h"
+#include "X86ISelLowering.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86TargetMachine.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Function.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/ADT/VectorExtras.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/ADT/StringExtras.h"
+using namespace llvm;
+
+X86TargetLowering::X86TargetLowering(TargetMachine &TM)
+  : TargetLowering(TM) {
+  Subtarget = &TM.getSubtarget<X86Subtarget>();
+  X86ScalarSSE = Subtarget->hasSSE2();
+  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
+
+  RegInfo = TM.getRegisterInfo();
+
+  // Set up the TargetLowering object.
+
+  // X86 is weird, it always uses i8 for shift amounts and setcc results.
+  setShiftAmountType(MVT::i8);
+  setSetCCResultType(MVT::i8);
+  setSetCCResultContents(ZeroOrOneSetCCResult);
+  setSchedulingPreference(SchedulingForRegPressure);
+  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
+  setStackPointerRegisterToSaveRestore(X86StackPtr);
+
+  if (Subtarget->isTargetDarwin()) {
+    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
+    setUseUnderscoreSetJmp(false);
+    setUseUnderscoreLongJmp(false);
+  } else if (Subtarget->isTargetMingw()) {
+    // MS runtime is weird: it exports _setjmp, but longjmp!
+    setUseUnderscoreSetJmp(true);
+    setUseUnderscoreLongJmp(false);
+  } else {
+    setUseUnderscoreSetJmp(true);
+    setUseUnderscoreLongJmp(true);
+  }
+  
+  // Set up the register classes.
+  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
+  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
+  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
+  if (Subtarget->is64Bit())
+    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
+
+  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
+
+  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
+  // operation.
+  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
+  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
+  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
+
+  if (Subtarget->is64Bit()) {
+    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
+    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
+  } else {
+    if (X86ScalarSSE)
+      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
+      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
+    else
+      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
+  }
+
+  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
+  // this operation.
+  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
+  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
+  // SSE has no i16 to fp conversion, only i32
+  if (X86ScalarSSE)
+    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
+  else {
+    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
+    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
+  }
+
+  if (!Subtarget->is64Bit()) {
+    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
+    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
+    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
+  }
+
+  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
+  // this operation.
+  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
+  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
+
+  if (X86ScalarSSE) {
+    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
+  } else {
+    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
+    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
+  }
+
+  // Handle FP_TO_UINT by promoting the destination to a larger signed
+  // conversion.
+  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
+  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
+  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
+
+  if (Subtarget->is64Bit()) {
+    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
+    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
+  } else {
+    if (X86ScalarSSE && !Subtarget->hasSSE3())
+      // Expand FP_TO_UINT into a select.
+      // FIXME: We would like to use a Custom expander here eventually to do
+      // the optimal thing for SSE vs. the default expansion in the legalizer.
+      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
+    else
+      // With SSE3 we can use fisttpll to convert to a signed i64.
+      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
+  }
+
+  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
+  if (!X86ScalarSSE) {
+    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
+    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
+  }
+
+  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
+  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
+  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
+  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
+  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
+  if (Subtarget->is64Bit())
+    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
+  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
+  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
+  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
+  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
+  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
+
+  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
+  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
+  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
+  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
+  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
+  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
+  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
+  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
+  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
+  if (Subtarget->is64Bit()) {
+    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
+    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
+    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
+  }
+
+  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
+  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
+
+  // These should be promoted to a larger select which is supported.
+  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
+  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
+  // X86 wants to expand cmov itself.
+  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
+  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
+  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
+  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
+  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
+  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
+  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
+  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
+  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
+  if (Subtarget->is64Bit()) {
+    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
+    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
+  }
+  // X86 ret instruction may pop stack.
+  setOperationAction(ISD::RET             , MVT::Other, Custom);
+  if (!Subtarget->is64Bit())
+    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
+
+  // Darwin ABI issue.
+  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
+  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
+  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
+  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
+  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
+  if (Subtarget->is64Bit()) {
+    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
+    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
+    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
+    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
+  }
+  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
+  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
+  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
+  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
+  // X86 wants to expand memset / memcpy itself.
+  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
+  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
+
+  // We don't have line number support yet.
+  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
+  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
+  // FIXME - use subtarget debug flags
+  if (!Subtarget->isTargetDarwin() &&
+      !Subtarget->isTargetELF() &&
+      !Subtarget->isTargetCygMing())
+    setOperationAction(ISD::LABEL, MVT::Other, Expand);
+
+  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
+  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
+  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
+  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
+  if (Subtarget->is64Bit()) {
+    // FIXME: Verify
+    setExceptionPointerRegister(X86::RAX);
+    setExceptionSelectorRegister(X86::RDX);
+  } else {
+    setExceptionPointerRegister(X86::EAX);
+    setExceptionSelectorRegister(X86::EDX);
+  }
+  
+  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
+  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
+  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
+  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
+  if (Subtarget->is64Bit())
+    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
+  else
+    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
+
+  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
+  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
+  if (Subtarget->is64Bit())
+    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
+  if (Subtarget->isTargetCygMing())
+    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
+  else
+    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
+
+  if (X86ScalarSSE) {
+    // Set up the FP register classes.
+    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
+    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
+
+    // Use ANDPD to simulate FABS.
+    setOperationAction(ISD::FABS , MVT::f64, Custom);
+    setOperationAction(ISD::FABS , MVT::f32, Custom);
+
+    // Use XORP to simulate FNEG.
+    setOperationAction(ISD::FNEG , MVT::f64, Custom);
+    setOperationAction(ISD::FNEG , MVT::f32, Custom);
+
+    // Use ANDPD and ORPD to simulate FCOPYSIGN.
+    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+
+    // We don't support sin/cos/fmod
+    setOperationAction(ISD::FSIN , MVT::f64, Expand);
+    setOperationAction(ISD::FCOS , MVT::f64, Expand);
+    setOperationAction(ISD::FREM , MVT::f64, Expand);
+    setOperationAction(ISD::FSIN , MVT::f32, Expand);
+    setOperationAction(ISD::FCOS , MVT::f32, Expand);
+    setOperationAction(ISD::FREM , MVT::f32, Expand);
+
+    // Expand FP immediates into loads from the stack, except for the special
+    // cases we handle.
+    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
+    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
+    addLegalFPImmediate(+0.0); // xorps / xorpd
+  } else {
+    // Set up the FP register classes.
+    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
+    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
+
+    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
+    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
+    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+    setOperationAction(ISD::FP_ROUND,  MVT::f32, Expand);
+
+    if (!UnsafeFPMath) {
+      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
+      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
+    }
+
+    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
+    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
+    addLegalFPImmediate(+0.0); // FLD0
+    addLegalFPImmediate(+1.0); // FLD1
+    addLegalFPImmediate(-0.0); // FLD0/FCHS
+    addLegalFPImmediate(-1.0); // FLD1/FCHS
+  }
+
+  // First set operation action for all vector types to expand. Then we
+  // will selectively turn on ones that can be effectively codegen'd.
+  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
+    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
+    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
+  }
+
+  if (Subtarget->hasMMX()) {
+    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
+    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
+    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
+    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
+
+    // FIXME: add MMX packed arithmetics
+
+    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
+    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
+    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
+    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
+
+    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
+    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
+    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
+
+    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
+    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
+
+    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
+    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
+    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
+    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
+    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
+    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
+    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
+
+    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
+    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
+    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
+    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
+    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
+    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
+    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
+
+    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
+    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
+    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
+    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
+    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
+    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
+    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
+
+    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
+    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
+    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
+    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
+    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
+    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
+    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
+
+    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
+    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
+    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
+    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
+
+    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
+    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
+    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
+    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
+
+    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
+    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
+    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
+    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
+  }
+
+  if (Subtarget->hasSSE1()) {
+    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
+
+    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
+    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
+    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
+    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
+    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
+    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
+    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
+    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
+    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
+    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
+    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
+    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
+  }
+
+  if (Subtarget->hasSSE2()) {
+    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
+    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
+    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
+    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
+    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
+
+    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
+    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
+    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
+    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
+    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
+    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
+    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
+    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
+    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
+    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
+    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
+    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
+    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
+    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
+    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
+    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
+
+    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
+    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
+    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
+    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
+    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
+    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
+
+    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
+    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
+      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
+      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
+      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
+    }
+    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
+    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
+    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
+    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
+    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
+    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
+
+    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
+    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
+      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
+      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
+      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
+      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
+      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
+      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
+      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
+      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
+      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
+      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
+    }
+
+    // Custom lower v2i64 and v2f64 selects.
+    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
+    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
+    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
+    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
+  }
+
+  // We want to custom lower some of our intrinsics.
+  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+
+  // We have target-specific dag combine patterns for the following nodes:
+  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
+  setTargetDAGCombine(ISD::SELECT);
+
+  computeRegisterProperties();
+
+  // FIXME: These should be based on subtarget info. Plus, the values should
+  // be smaller when we are in optimizing for size mode.
+  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
+  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
+  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
+  allowUnalignedMemoryAccesses = true; // x86 supports it!
+}
+
+
+//===----------------------------------------------------------------------===//
+//               Return Value Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "X86GenCallingConv.inc"
+    
+/// LowerRET - Lower an ISD::RET node.
+SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
+  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
+  
+  SmallVector<CCValAssign, 16> RVLocs;
+  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
+  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
+  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
+  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
+  
+  
+  // If this is the first return lowered for this function, add the regs to the
+  // liveout set for the function.
+  if (DAG.getMachineFunction().liveout_empty()) {
+    for (unsigned i = 0; i != RVLocs.size(); ++i)
+      if (RVLocs[i].isRegLoc())
+        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
+  }
+  
+  SDOperand Chain = Op.getOperand(0);
+  SDOperand Flag;
+  
+  // Copy the result values into the output registers.
+  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
+      RVLocs[0].getLocReg() != X86::ST0) {
+    for (unsigned i = 0; i != RVLocs.size(); ++i) {
+      CCValAssign &VA = RVLocs[i];
+      assert(VA.isRegLoc() && "Can only return in registers!");
+      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
+                               Flag);
+      Flag = Chain.getValue(1);
+    }
+  } else {
+    // We need to handle a destination of ST0 specially, because it isn't really
+    // a register.
+    SDOperand Value = Op.getOperand(1);
+    
+    // If this is an FP return with ScalarSSE, we need to move the value from
+    // an XMM register onto the fp-stack.
+    if (X86ScalarSSE) {
+      SDOperand MemLoc;
+      
+      // If this is a load into a scalarsse value, don't store the loaded value
+      // back to the stack, only to reload it: just replace the scalar-sse load.
+      if (ISD::isNON_EXTLoad(Value.Val) &&
+          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
+        Chain  = Value.getOperand(0);
+        MemLoc = Value.getOperand(1);
+      } else {
+        // Spill the value to memory and reload it into top of stack.
+        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
+        MachineFunction &MF = DAG.getMachineFunction();
+        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
+        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
+        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
+      }
+      SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
+      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
+      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
+      Chain = Value.getValue(1);
+    }
+    
+    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
+    SDOperand Ops[] = { Chain, Value };
+    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
+    Flag = Chain.getValue(1);
+  }
+  
+  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
+  if (Flag.Val)
+    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
+  else
+    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
+}
+
+
+/// LowerCallResult - Lower the result values of an ISD::CALL into the
+/// appropriate copies out of appropriate physical registers.  This assumes that
+/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
+/// being lowered.  The returns a SDNode with the same number of values as the
+/// ISD::CALL.
+SDNode *X86TargetLowering::
+LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall, 
+                unsigned CallingConv, SelectionDAG &DAG) {
+  
+  // Assign locations to each value returned by this call.
+  SmallVector<CCValAssign, 16> RVLocs;
+  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
+  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
+  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
+
+  
+  SmallVector<SDOperand, 8> ResultVals;
+  
+  // Copy all of the result registers out of their specified physreg.
+  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
+    for (unsigned i = 0; i != RVLocs.size(); ++i) {
+      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
+                                 RVLocs[i].getValVT(), InFlag).getValue(1);
+      InFlag = Chain.getValue(2);
+      ResultVals.push_back(Chain.getValue(0));
+    }
+  } else {
+    // Copies from the FP stack are special, as ST0 isn't a valid register
+    // before the fp stackifier runs.
+    
+    // Copy ST0 into an RFP register with FP_GET_RESULT.
+    SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
+    SDOperand GROps[] = { Chain, InFlag };
+    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
+    Chain  = RetVal.getValue(1);
+    InFlag = RetVal.getValue(2);
+    
+    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
+    // an XMM register.
+    if (X86ScalarSSE) {
+      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
+      // shouldn't be necessary except that RFP cannot be live across
+      // multiple blocks. When stackifier is fixed, they can be uncoupled.
+      MachineFunction &MF = DAG.getMachineFunction();
+      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
+      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+      SDOperand Ops[] = {
+        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
+      };
+      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
+      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
+      Chain = RetVal.getValue(1);
+    }
+    ResultVals.push_back(RetVal);
+  }
+  
+  // Merge everything together with a MERGE_VALUES node.
+  ResultVals.push_back(Chain);
+  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
+                     &ResultVals[0], ResultVals.size()).Val;
+}
+
+
+//===----------------------------------------------------------------------===//
+//                C & StdCall Calling Convention implementation
+//===----------------------------------------------------------------------===//
+//  StdCall calling convention seems to be standard for many Windows' API
+//  routines and around. It differs from C calling convention just a little:
+//  callee should clean up the stack, not caller. Symbols should be also
+//  decorated in some fancy way :) It doesn't support any vector arguments.
+
+/// AddLiveIn - This helper function adds the specified physical register to the
+/// MachineFunction as a live in value.  It also creates a corresponding virtual
+/// register for it.
+static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
+                          const TargetRegisterClass *RC) {
+  assert(RC->contains(PReg) && "Not the correct regclass!");
+  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
+  MF.addLiveIn(PReg, VReg);
+  return VReg;
+}
+
+SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
+                                               bool isStdCall) {
+  unsigned NumArgs = Op.Val->getNumValues() - 1;
+  MachineFunction &MF = DAG.getMachineFunction();
+  MachineFrameInfo *MFI = MF.getFrameInfo();
+  SDOperand Root = Op.getOperand(0);
+  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
+
+  // Assign locations to all of the incoming arguments.
+  SmallVector<CCValAssign, 16> ArgLocs;
+  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
+                 getTargetMachine(), ArgLocs);
+  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
+   
+  SmallVector<SDOperand, 8> ArgValues;
+  unsigned LastVal = ~0U;
+  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+    CCValAssign &VA = ArgLocs[i];
+    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
+    // places.
+    assert(VA.getValNo() != LastVal &&
+           "Don't support value assigned to multiple locs yet");
+    LastVal = VA.getValNo();
+    
+    if (VA.isRegLoc()) {
+      MVT::ValueType RegVT = VA.getLocVT();
+      TargetRegisterClass *RC;
+      if (RegVT == MVT::i32)
+        RC = X86::GR32RegisterClass;
+      else {
+        assert(MVT::isVector(RegVT));
+        RC = X86::VR128RegisterClass;
+      }
+      
+      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
+      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
+      
+      // If this is an 8 or 16-bit value, it is really passed promoted to 32
+      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
+      // right size.
+      if (VA.getLocInfo() == CCValAssign::SExt)
+        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
+                               DAG.getValueType(VA.getValVT()));
+      else if (VA.getLocInfo() == CCValAssign::ZExt)
+        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
+                               DAG.getValueType(VA.getValVT()));
+      
+      if (VA.getLocInfo() != CCValAssign::Full)
+        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
+      
+      ArgValues.push_back(ArgValue);
+    } else {
+      assert(VA.isMemLoc());
+      
+      // Create the nodes corresponding to a load from this parameter slot.
+      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
+                                      VA.getLocMemOffset());
+      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
+      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
+    }
+  }
+  
+  unsigned StackSize = CCInfo.getNextStackOffset();
+
+  ArgValues.push_back(Root);
+
+  // If the function takes variable number of arguments, make a frame index for
+  // the start of the first vararg value... for expansion of llvm.va_start.
+  if (isVarArg)
+    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
+
+  if (isStdCall && !isVarArg) {
+    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
+    BytesCallerReserves = 0;
+  } else {
+    BytesToPopOnReturn  = 0; // Callee pops nothing.
+    
+    // If this is an sret function, the return should pop the hidden pointer.
+    if (NumArgs &&
+        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
+         ISD::ParamFlags::StructReturn))
+      BytesToPopOnReturn = 4;  
+    
+    BytesCallerReserves = StackSize;
+  }
+  
+  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
+  ReturnAddrIndex = 0;            // No return address slot generated yet.
+
+  MF.getInfo<X86MachineFunctionInfo>()
+    ->setBytesToPopOnReturn(BytesToPopOnReturn);
+
+  // Return the new list of results.
+  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
+                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
+}
+
+SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
+                                            unsigned CC) {
+  SDOperand Chain     = Op.getOperand(0);
+  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
+  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
+  SDOperand Callee    = Op.getOperand(4);
+  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
+
+  // Analyze operands of the call, assigning locations to each operand.
+  SmallVector<CCValAssign, 16> ArgLocs;
+  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
+  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
+  
+  // Get a count of how many bytes are to be pushed on the stack.
+  unsigned NumBytes = CCInfo.getNextStackOffset();
+
+  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
+
+  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
+  SmallVector<SDOperand, 8> MemOpChains;
+
+  SDOperand StackPtr;
+
+  // Walk the register/memloc assignments, inserting copies/loads.
+  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+    CCValAssign &VA = ArgLocs[i];
+    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
+    
+    // Promote the value if needed.
+    switch (VA.getLocInfo()) {
+    default: assert(0 && "Unknown loc info!");
+    case CCValAssign::Full: break;
+    case CCValAssign::SExt:
+      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
+      break;
+    case CCValAssign::ZExt:
+      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
+      break;
+    case CCValAssign::AExt:
+      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
+      break;
+    }
+    
+    if (VA.isRegLoc()) {
+      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+    } else {
+      assert(VA.isMemLoc());
+      if (StackPtr.Val == 0)
+        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
+      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
+      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
+      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
+    }
+  }
+
+  // If the first argument is an sret pointer, remember it.
+  bool isSRet = NumOps &&
+    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
+     ISD::ParamFlags::StructReturn);
+  
+  if (!MemOpChains.empty())
+    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
+                        &MemOpChains[0], MemOpChains.size());
+
+  // Build a sequence of copy-to-reg nodes chained together with token chain
+  // and flag operands which copy the outgoing args into registers.
+  SDOperand InFlag;
+  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
+                             InFlag);
+    InFlag = Chain.getValue(1);
+  }
+
+  // ELF / PIC requires GOT in the EBX register before function calls via PLT
+  // GOT pointer.
+  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+      Subtarget->isPICStyleGOT()) {
+    Chain = DAG.getCopyToReg(Chain, X86::EBX,
+                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
+                             InFlag);
+    InFlag = Chain.getValue(1);
+  }
+  
+  // If the callee is a GlobalAddress node (quite common, every direct call is)
+  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+    // We should use extra load for direct calls to dllimported functions in
+    // non-JIT mode.
+    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
+                                        getTargetMachine(), true))
+      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
+  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
+    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
+
+  // Returns a chain & a flag for retval copy to use.
+  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+  SmallVector<SDOperand, 8> Ops;
+  Ops.push_back(Chain);
+  Ops.push_back(Callee);
+
+  // Add argument registers to the end of the list so that they are known live
+  // into the call.
+  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+                                  RegsToPass[i].second.getValueType()));
+
+  // Add an implicit use GOT pointer in EBX.
+  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+      Subtarget->isPICStyleGOT())
+    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
+  
+  if (InFlag.Val)
+    Ops.push_back(InFlag);
+
+  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
+                      NodeTys, &Ops[0], Ops.size());
+  InFlag = Chain.getValue(1);
+
+  // Create the CALLSEQ_END node.
+  unsigned NumBytesForCalleeToPush = 0;
+
+  if (CC == CallingConv::X86_StdCall) {
+    if (isVarArg)
+      NumBytesForCalleeToPush = isSRet ? 4 : 0;
+    else
+      NumBytesForCalleeToPush = NumBytes;
+  } else {
+    // If this is is a call to a struct-return function, the callee
+    // pops the hidden struct pointer, so we have to push it back.
+    // This is common for Darwin/X86, Linux & Mingw32 targets.
+    NumBytesForCalleeToPush = isSRet ? 4 : 0;
+  }
+  
+  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+  Ops.clear();
+  Ops.push_back(Chain);
+  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
+  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
+  Ops.push_back(InFlag);
+  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
+  InFlag = Chain.getValue(1);
+
+  // Handle result values, copying them out of physregs into vregs that we
+  // return.
+  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
+}
+
+
+//===----------------------------------------------------------------------===//
+//                   FastCall Calling Convention implementation
+//===----------------------------------------------------------------------===//
+//
+// The X86 'fastcall' calling convention passes up to two integer arguments in
+// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
+// and requires that the callee pop its arguments off the stack (allowing proper
+// tail calls), and has the same return value conventions as C calling convs.
+//
+// This calling convention always arranges for the callee pop value to be 8n+4
+// bytes, which is needed for tail recursion elimination and stack alignment
+// reasons.
+SDOperand
+X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
+  MachineFunction &MF = DAG.getMachineFunction();
+  MachineFrameInfo *MFI = MF.getFrameInfo();
+  SDOperand Root = Op.getOperand(0);
+  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
+
+  // Assign locations to all of the incoming arguments.
+  SmallVector<CCValAssign, 16> ArgLocs;
+  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
+                 getTargetMachine(), ArgLocs);
+  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
+  
+  SmallVector<SDOperand, 8> ArgValues;
+  unsigned LastVal = ~0U;
+  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+    CCValAssign &VA = ArgLocs[i];
+    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
+    // places.
+    assert(VA.getValNo() != LastVal &&
+           "Don't support value assigned to multiple locs yet");
+    LastVal = VA.getValNo();
+    
+    if (VA.isRegLoc()) {
+      MVT::ValueType RegVT = VA.getLocVT();
+      TargetRegisterClass *RC;
+      if (RegVT == MVT::i32)
+        RC = X86::GR32RegisterClass;
+      else {
+        assert(MVT::isVector(RegVT));
+        RC = X86::VR128RegisterClass;
+      }
+      
+      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
+      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
+      
+      // If this is an 8 or 16-bit value, it is really passed promoted to 32
+      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
+      // right size.
+      if (VA.getLocInfo() == CCValAssign::SExt)
+        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
+                               DAG.getValueType(VA.getValVT()));
+      else if (VA.getLocInfo() == CCValAssign::ZExt)
+        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
+                               DAG.getValueType(VA.getValVT()));
+      
+      if (VA.getLocInfo() != CCValAssign::Full)
+        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
+      
+      ArgValues.push_back(ArgValue);
+    } else {
+      assert(VA.isMemLoc());
+      
+      // Create the nodes corresponding to a load from this parameter slot.
+      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
+                                      VA.getLocMemOffset());
+      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
+      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
+    }
+  }
+  
+  ArgValues.push_back(Root);
+
+  unsigned StackSize = CCInfo.getNextStackOffset();
+
+  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
+    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
+    // arguments and the arguments after the retaddr has been pushed are aligned.
+    if ((StackSize & 7) == 0)
+      StackSize += 4;
+  }
+
+  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
+  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
+  ReturnAddrIndex = 0;             // No return address slot generated yet.
+  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
+  BytesCallerReserves = 0;
+
+  MF.getInfo<X86MachineFunctionInfo>()
+    ->setBytesToPopOnReturn(BytesToPopOnReturn);
+
+  // Return the new list of results.
+  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
+                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
+}
+
+SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
+                                               unsigned CC) {
+  SDOperand Chain     = Op.getOperand(0);
+  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
+  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
+  SDOperand Callee    = Op.getOperand(4);
+
+  // Analyze operands of the call, assigning locations to each operand.
+  SmallVector<CCValAssign, 16> ArgLocs;
+  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
+  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
+  
+  // Get a count of how many bytes are to be pushed on the stack.
+  unsigned NumBytes = CCInfo.getNextStackOffset();
+
+  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
+    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
+    // arguments and the arguments after the retaddr has been pushed are aligned.
+    if ((NumBytes & 7) == 0)
+      NumBytes += 4;
+  }
+
+  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
+  
+  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
+  SmallVector<SDOperand, 8> MemOpChains;
+  
+  SDOperand StackPtr;
+  
+  // Walk the register/memloc assignments, inserting copies/loads.
+  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+    CCValAssign &VA = ArgLocs[i];
+    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
+    
+    // Promote the value if needed.
+    switch (VA.getLocInfo()) {
+      default: assert(0 && "Unknown loc info!");
+      case CCValAssign::Full: break;
+      case CCValAssign::SExt:
+        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
+        break;
+      case CCValAssign::ZExt:
+        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
+        break;
+      case CCValAssign::AExt:
+        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
+        break;
+    }
+    
+    if (VA.isRegLoc()) {
+      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+    } else {
+      assert(VA.isMemLoc());
+      if (StackPtr.Val == 0)
+        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
+      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
+      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
+      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
+    }
+  }
+
+  if (!MemOpChains.empty())
+    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
+                        &MemOpChains[0], MemOpChains.size());
+
+  // Build a sequence of copy-to-reg nodes chained together with token chain
+  // and flag operands which copy the outgoing args into registers.
+  SDOperand InFlag;
+  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
+                             InFlag);
+    InFlag = Chain.getValue(1);
+  }
+
+  // If the callee is a GlobalAddress node (quite common, every direct call is)
+  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+    // We should use extra load for direct calls to dllimported functions in
+    // non-JIT mode.
+    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
+                                        getTargetMachine(), true))
+      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
+  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
+    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
+
+  // ELF / PIC requires GOT in the EBX register before function calls via PLT
+  // GOT pointer.
+  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+      Subtarget->isPICStyleGOT()) {
+    Chain = DAG.getCopyToReg(Chain, X86::EBX,
+                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
+                             InFlag);
+    InFlag = Chain.getValue(1);
+  }
+
+  // Returns a chain & a flag for retval copy to use.
+  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+  SmallVector<SDOperand, 8> Ops;
+  Ops.push_back(Chain);
+  Ops.push_back(Callee);
+
+  // Add argument registers to the end of the list so that they are known live
+  // into the call.
+  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+                                  RegsToPass[i].second.getValueType()));
+
+  // Add an implicit use GOT pointer in EBX.
+  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+      Subtarget->isPICStyleGOT())
+    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
+
+  if (InFlag.Val)
+    Ops.push_back(InFlag);
+
+  // FIXME: Do not generate X86ISD::TAILCALL for now.
+  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
+                      NodeTys, &Ops[0], Ops.size());
+  InFlag = Chain.getValue(1);
+
+  // Returns a flag for retval copy to use.
+  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+  Ops.clear();
+  Ops.push_back(Chain);
+  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
+  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
+  Ops.push_back(InFlag);
+  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
+  InFlag = Chain.getValue(1);
+
+  // Handle result values, copying them out of physregs into vregs that we
+  // return.
+  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
+}
+
+
+//===----------------------------------------------------------------------===//
+//                 X86-64 C Calling Convention implementation
+//===----------------------------------------------------------------------===//
+
+SDOperand
+X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
+  MachineFunction &MF = DAG.getMachineFunction();
+  MachineFrameInfo *MFI = MF.getFrameInfo();
+  SDOperand Root = Op.getOperand(0);
+  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
+
+  static const unsigned GPR64ArgRegs[] = {
+    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
+  };
+  static const unsigned XMMArgRegs[] = {
+    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+  };
+
+  
+  // Assign locations to all of the incoming arguments.
+  SmallVector<CCValAssign, 16> ArgLocs;
+  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
+                 getTargetMachine(), ArgLocs);
+  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
+  
+  SmallVector<SDOperand, 8> ArgValues;
+  unsigned LastVal = ~0U;
+  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+    CCValAssign &VA = ArgLocs[i];
+    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
+    // places.
+    assert(VA.getValNo() != LastVal &&
+           "Don't support value assigned to multiple locs yet");
+    LastVal = VA.getValNo();
+    
+    if (VA.isRegLoc()) {
+      MVT::ValueType RegVT = VA.getLocVT();
+      TargetRegisterClass *RC;
+      if (RegVT == MVT::i32)
+        RC = X86::GR32RegisterClass;
+      else if (RegVT == MVT::i64)
+        RC = X86::GR64RegisterClass;
+      else if (RegVT == MVT::f32)
+        RC = X86::FR32RegisterClass;
+      else if (RegVT == MVT::f64)
+        RC = X86::FR64RegisterClass;
+      else {
+        assert(MVT::isVector(RegVT));
+        if (MVT::getSizeInBits(RegVT) == 64) {
+          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
+          RegVT = MVT::i64;
+        } else
+          RC = X86::VR128RegisterClass;
+      }
+
+      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
+      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
+      
+      // If this is an 8 or 16-bit value, it is really passed promoted to 32
+      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
+      // right size.
+      if (VA.getLocInfo() == CCValAssign::SExt)
+        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
+                               DAG.getValueType(VA.getValVT()));
+      else if (VA.getLocInfo() == CCValAssign::ZExt)
+        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
+                               DAG.getValueType(VA.getValVT()));
+      
+      if (VA.getLocInfo() != CCValAssign::Full)
+        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
+      
+      // Handle MMX values passed in GPRs.
+      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
+          MVT::getSizeInBits(RegVT) == 64)
+        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
+      
+      ArgValues.push_back(ArgValue);
+    } else {
+      assert(VA.isMemLoc());
+    
+      // Create the nodes corresponding to a load from this parameter slot.
+      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
+                                      VA.getLocMemOffset());
+      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
+      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
+    }
+  }
+  
+  unsigned StackSize = CCInfo.getNextStackOffset();
+  
+  // If the function takes variable number of arguments, make a frame index for
+  // the start of the first vararg value... for expansion of llvm.va_start.
+  if (isVarArg) {
+    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
+    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
+    
+    // For X86-64, if there are vararg parameters that are passed via
+    // registers, then we must store them to their spots on the stack so they
+    // may be loaded by deferencing the result of va_next.
+    VarArgsGPOffset = NumIntRegs * 8;
+    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
+    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
+    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
+
+    // Store the integer parameter registers.
+    SmallVector<SDOperand, 8> MemOps;
+    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
+    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
+                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
+    for (; NumIntRegs != 6; ++NumIntRegs) {
+      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
+                                X86::GR64RegisterClass);
+      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
+      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
+      MemOps.push_back(Store);
+      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
+                        DAG.getConstant(8, getPointerTy()));
+    }
+
+    // Now store the XMM (fp + vector) parameter registers.
+    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
+                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
+    for (; NumXMMRegs != 8; ++NumXMMRegs) {
+      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
+                                X86::VR128RegisterClass);
+      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
+      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
+      MemOps.push_back(Store);
+      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
+                        DAG.getConstant(16, getPointerTy()));
+    }
+    if (!MemOps.empty())
+        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
+                           &MemOps[0], MemOps.size());
+  }
+
+  ArgValues.push_back(Root);
+
+  ReturnAddrIndex = 0;     // No return address slot generated yet.
+  BytesToPopOnReturn = 0;  // Callee pops nothing.
+  BytesCallerReserves = StackSize;
+
+  // Return the new list of results.
+  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
+                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
+}
+
+SDOperand
+X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
+                                        unsigned CC) {
+  SDOperand Chain     = Op.getOperand(0);
+  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
+  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
+  SDOperand Callee    = Op.getOperand(4);
+  
+  // Analyze operands of the call, assigning locations to each operand.
+  SmallVector<CCValAssign, 16> ArgLocs;
+  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
+  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
+    
+  // Get a count of how many bytes are to be pushed on the stack.
+  unsigned NumBytes = CCInfo.getNextStackOffset();
+  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
+
+  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
+  SmallVector<SDOperand, 8> MemOpChains;
+
+  SDOperand StackPtr;
+  
+  // Walk the register/memloc assignments, inserting copies/loads.
+  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+    CCValAssign &VA = ArgLocs[i];
+    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
+    
+    // Promote the value if needed.
+    switch (VA.getLocInfo()) {
+    default: assert(0 && "Unknown loc info!");
+    case CCValAssign::Full: break;
+    case CCValAssign::SExt:
+      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
+      break;
+    case CCValAssign::ZExt:
+      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
+      break;
+    case CCValAssign::AExt:
+      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
+      break;
+    }
+    
+    if (VA.isRegLoc()) {
+      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+    } else {
+      assert(VA.isMemLoc());
+      if (StackPtr.Val == 0)
+        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
+      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
+      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
+      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
+    }
+  }
+  
+  if (!MemOpChains.empty())
+    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
+                        &MemOpChains[0], MemOpChains.size());
+
+  // Build a sequence of copy-to-reg nodes chained together with token chain
+  // and flag operands which copy the outgoing args into registers.
+  SDOperand InFlag;
+  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
+                             InFlag);
+    InFlag = Chain.getValue(1);
+  }
+
+  if (isVarArg) {
+    // From AMD64 ABI document:
+    // For calls that may call functions that use varargs or stdargs
+    // (prototype-less calls or calls to functions containing ellipsis (...) in
+    // the declaration) %al is used as hidden argument to specify the number
+    // of SSE registers used. The contents of %al do not need to match exactly
+    // the number of registers, but must be an ubound on the number of SSE
+    // registers used and is in the range 0 - 8 inclusive.
+    
+    // Count the number of XMM registers allocated.
+    static const unsigned XMMArgRegs[] = {
+      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+    };
+    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
+    
+    Chain = DAG.getCopyToReg(Chain, X86::AL,
+                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
+    InFlag = Chain.getValue(1);
+  }
+
+  // If the callee is a GlobalAddress node (quite common, every direct call is)
+  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
+  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+    // We should use extra load for direct calls to dllimported functions in
+    // non-JIT mode.
+    if (getTargetMachine().getCodeModel() != CodeModel::Large
+        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
+                                           getTargetMachine(), true))
+      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
+  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
+    if (getTargetMachine().getCodeModel() != CodeModel::Large)
+      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
+
+  // Returns a chain & a flag for retval copy to use.
+  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+  SmallVector<SDOperand, 8> Ops;
+  Ops.push_back(Chain);
+  Ops.push_back(Callee);
+
+  // Add argument registers to the end of the list so that they are known live
+  // into the call.
+  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+                                  RegsToPass[i].second.getValueType()));
+
+  if (InFlag.Val)
+    Ops.push_back(InFlag);
+
+  // FIXME: Do not generate X86ISD::TAILCALL for now.
+  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
+                      NodeTys, &Ops[0], Ops.size());
+  InFlag = Chain.getValue(1);
+
+  // Returns a flag for retval copy to use.
+  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+  Ops.clear();
+  Ops.push_back(Chain);
+  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
+  Ops.push_back(DAG.getConstant(0, getPointerTy()));
+  Ops.push_back(InFlag);
+  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
+  InFlag = Chain.getValue(1);
+  
+  // Handle result values, copying them out of physregs into vregs that we
+  // return.
+  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
+}
+
+
+//===----------------------------------------------------------------------===//
+//                           Other Lowering Hooks
+//===----------------------------------------------------------------------===//
+
+
+SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
+  if (ReturnAddrIndex == 0) {
+    // Set up a frame object for the return address.
+    MachineFunction &MF = DAG.getMachineFunction();
+    if (Subtarget->is64Bit())
+      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
+    else
+      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
+  }
+
+  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
+}
+
+
+
+/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
+/// specific condition code. It returns a false if it cannot do a direct
+/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
+/// needed.
+static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
+                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
+                           SelectionDAG &DAG) {
+  X86CC = X86::COND_INVALID;
+  if (!isFP) {
+    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
+      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
+        // X > -1   -> X == 0, jump !sign.
+        RHS = DAG.getConstant(0, RHS.getValueType());
+        X86CC = X86::COND_NS;
+        return true;
+      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
+        // X < 0   -> X == 0, jump on sign.
+        X86CC = X86::COND_S;
+        return true;
+      }
+    }
+
+    switch (SetCCOpcode) {
+    default: break;
+    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
+    case ISD::SETGT:  X86CC = X86::COND_G;  break;
+    case ISD::SETGE:  X86CC = X86::COND_GE; break;
+    case ISD::SETLT:  X86CC = X86::COND_L;  break;
+    case ISD::SETLE:  X86CC = X86::COND_LE; break;
+    case ISD::SETNE:  X86CC = X86::COND_NE; break;
+    case ISD::SETULT: X86CC = X86::COND_B;  break;
+    case ISD::SETUGT: X86CC = X86::COND_A;  break;
+    case ISD::SETULE: X86CC = X86::COND_BE; break;
+    case ISD::SETUGE: X86CC = X86::COND_AE; break;
+    }
+  } else {
+    // On a floating point condition, the flags are set as follows:
+    // ZF  PF  CF   op
+    //  0 | 0 | 0 | X > Y
+    //  0 | 0 | 1 | X < Y
+    //  1 | 0 | 0 | X == Y
+    //  1 | 1 | 1 | unordered
+    bool Flip = false;
+    switch (SetCCOpcode) {
+    default: break;
+    case ISD::SETUEQ:
+    case ISD::SETEQ: X86CC = X86::COND_E;  break;
+    case ISD::SETOLT: Flip = true; // Fallthrough
+    case ISD::SETOGT:
+    case ISD::SETGT: X86CC = X86::COND_A;  break;
+    case ISD::SETOLE: Flip = true; // Fallthrough
+    case ISD::SETOGE:
+    case ISD::SETGE: X86CC = X86::COND_AE; break;
+    case ISD::SETUGT: Flip = true; // Fallthrough
+    case ISD::SETULT:
+    case ISD::SETLT: X86CC = X86::COND_B;  break;
+    case ISD::SETUGE: Flip = true; // Fallthrough
+    case ISD::SETULE:
+    case ISD::SETLE: X86CC = X86::COND_BE; break;
+    case ISD::SETONE:
+    case ISD::SETNE: X86CC = X86::COND_NE; break;
+    case ISD::SETUO: X86CC = X86::COND_P;  break;
+    case ISD::SETO:  X86CC = X86::COND_NP; break;
+    }
+    if (Flip)
+      std::swap(LHS, RHS);
+  }
+
+  return X86CC != X86::COND_INVALID;
+}
+
+/// hasFPCMov - is there a floating point cmov for the specific X86 condition
+/// code. Current x86 isa includes the following FP cmov instructions:
+/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
+static bool hasFPCMov(unsigned X86CC) {
+  switch (X86CC) {
+  default:
+    return false;
+  case X86::COND_B:
+  case X86::COND_BE:
+  case X86::COND_E:
+  case X86::COND_P:
+  case X86::COND_A:
+  case X86::COND_AE:
+  case X86::COND_NE:
+  case X86::COND_NP:
+    return true;
+  }
+}
+
+/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
+/// true if Op is undef or if its value falls within the specified range (L, H].
+static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
+  if (Op.getOpcode() == ISD::UNDEF)
+    return true;
+
+  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
+  return (Val >= Low && Val < Hi);
+}
+
+/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
+/// true if Op is undef or if its value equal to the specified value.
+static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
+  if (Op.getOpcode() == ISD::UNDEF)
+    return true;
+  return cast<ConstantSDNode>(Op)->getValue() == Val;
+}
+
+/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to PSHUFD.
+bool X86::isPSHUFDMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  if (N->getNumOperands() != 4)
+    return false;
+
+  // Check if the value doesn't reference the second vector.
+  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() == ISD::UNDEF) continue;
+    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
+    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
+      return false;
+  }
+
+  return true;
+}
+
+/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
+bool X86::isPSHUFHWMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  if (N->getNumOperands() != 8)
+    return false;
+
+  // Lower quadword copied in order.
+  for (unsigned i = 0; i != 4; ++i) {
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() == ISD::UNDEF) continue;
+    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
+    if (cast<ConstantSDNode>(Arg)->getValue() != i)
+      return false;
+  }
+
+  // Upper quadword shuffled.
+  for (unsigned i = 4; i != 8; ++i) {
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() == ISD::UNDEF) continue;
+    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
+    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
+    if (Val < 4 || Val > 7)
+      return false;
+  }
+
+  return true;
+}
+
+/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
+bool X86::isPSHUFLWMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  if (N->getNumOperands() != 8)
+    return false;
+
+  // Upper quadword copied in order.
+  for (unsigned i = 4; i != 8; ++i)
+    if (!isUndefOrEqual(N->getOperand(i), i))
+      return false;
+
+  // Lower quadword shuffled.
+  for (unsigned i = 0; i != 4; ++i)
+    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
+      return false;
+
+  return true;
+}
+
+/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to SHUFP*.
+static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
+  if (NumElems != 2 && NumElems != 4) return false;
+
+  unsigned Half = NumElems / 2;
+  for (unsigned i = 0; i < Half; ++i)
+    if (!isUndefOrInRange(Elems[i], 0, NumElems))
+      return false;
+  for (unsigned i = Half; i < NumElems; ++i)
+    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
+      return false;
+
+  return true;
+}
+
+bool X86::isSHUFPMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
+}
+
+/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
+/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
+/// half elements to come from vector 1 (which would equal the dest.) and
+/// the upper half to come from vector 2.
+static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
+  if (NumOps != 2 && NumOps != 4) return false;
+
+  unsigned Half = NumOps / 2;
+  for (unsigned i = 0; i < Half; ++i)
+    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
+      return false;
+  for (unsigned i = Half; i < NumOps; ++i)
+    if (!isUndefOrInRange(Ops[i], 0, NumOps))
+      return false;
+  return true;
+}
+
+static bool isCommutedSHUFP(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
+}
+
+/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
+bool X86::isMOVHLPSMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  if (N->getNumOperands() != 4)
+    return false;
+
+  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
+  return isUndefOrEqual(N->getOperand(0), 6) &&
+         isUndefOrEqual(N->getOperand(1), 7) &&
+         isUndefOrEqual(N->getOperand(2), 2) &&
+         isUndefOrEqual(N->getOperand(3), 3);
+}
+
+/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
+/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
+/// <2, 3, 2, 3>
+bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  if (N->getNumOperands() != 4)
+    return false;
+
+  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
+  return isUndefOrEqual(N->getOperand(0), 2) &&
+         isUndefOrEqual(N->getOperand(1), 3) &&
+         isUndefOrEqual(N->getOperand(2), 2) &&
+         isUndefOrEqual(N->getOperand(3), 3);
+}
+
+/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
+bool X86::isMOVLPMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  unsigned NumElems = N->getNumOperands();
+  if (NumElems != 2 && NumElems != 4)
+    return false;
+
+  for (unsigned i = 0; i < NumElems/2; ++i)
+    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
+      return false;
+
+  for (unsigned i = NumElems/2; i < NumElems; ++i)
+    if (!isUndefOrEqual(N->getOperand(i), i))
+      return false;
+
+  return true;
+}
+
+/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
+/// and MOVLHPS.
+bool X86::isMOVHPMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  unsigned NumElems = N->getNumOperands();
+  if (NumElems != 2 && NumElems != 4)
+    return false;
+
+  for (unsigned i = 0; i < NumElems/2; ++i)
+    if (!isUndefOrEqual(N->getOperand(i), i))
+      return false;
+
+  for (unsigned i = 0; i < NumElems/2; ++i) {
+    SDOperand Arg = N->getOperand(i + NumElems/2);
+    if (!isUndefOrEqual(Arg, i + NumElems))
+      return false;
+  }
+
+  return true;
+}
+
+/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to UNPCKL.
+bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
+                         bool V2IsSplat = false) {
+  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
+    return false;
+
+  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
+    SDOperand BitI  = Elts[i];
+    SDOperand BitI1 = Elts[i+1];
+    if (!isUndefOrEqual(BitI, j))
+      return false;
+    if (V2IsSplat) {
+      if (isUndefOrEqual(BitI1, NumElts))
+        return false;
+    } else {
+      if (!isUndefOrEqual(BitI1, j + NumElts))
+        return false;
+    }
+  }
+
+  return true;
+}
+
+bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
+}
+
+/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to UNPCKH.
+bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
+                         bool V2IsSplat = false) {
+  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
+    return false;
+
+  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
+    SDOperand BitI  = Elts[i];
+    SDOperand BitI1 = Elts[i+1];
+    if (!isUndefOrEqual(BitI, j + NumElts/2))
+      return false;
+    if (V2IsSplat) {
+      if (isUndefOrEqual(BitI1, NumElts))
+        return false;
+    } else {
+      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
+        return false;
+    }
+  }
+
+  return true;
+}
+
+bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
+}
+
+/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
+/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
+/// <0, 0, 1, 1>
+bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  unsigned NumElems = N->getNumOperands();
+  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
+    return false;
+
+  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
+    SDOperand BitI  = N->getOperand(i);
+    SDOperand BitI1 = N->getOperand(i+1);
+
+    if (!isUndefOrEqual(BitI, j))
+      return false;
+    if (!isUndefOrEqual(BitI1, j))
+      return false;
+  }
+
+  return true;
+}
+
+/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
+/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
+/// <2, 2, 3, 3>
+bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  unsigned NumElems = N->getNumOperands();
+  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
+    return false;
+
+  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
+    SDOperand BitI  = N->getOperand(i);
+    SDOperand BitI1 = N->getOperand(i + 1);
+
+    if (!isUndefOrEqual(BitI, j))
+      return false;
+    if (!isUndefOrEqual(BitI1, j))
+      return false;
+  }
+
+  return true;
+}
+
+/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVSS,
+/// MOVSD, and MOVD, i.e. setting the lowest element.
+static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
+  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
+    return false;
+
+  if (!isUndefOrEqual(Elts[0], NumElts))
+    return false;
+
+  for (unsigned i = 1; i < NumElts; ++i) {
+    if (!isUndefOrEqual(Elts[i], i))
+      return false;
+  }
+
+  return true;
+}
+
+bool X86::isMOVLMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
+}
+
+/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
+/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
+/// element of vector 2 and the other elements to come from vector 1 in order.
+static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
+                           bool V2IsSplat = false,
+                           bool V2IsUndef = false) {
+  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
+    return false;
+
+  if (!isUndefOrEqual(Ops[0], 0))
+    return false;
+
+  for (unsigned i = 1; i < NumOps; ++i) {
+    SDOperand Arg = Ops[i];
+    if (!(isUndefOrEqual(Arg, i+NumOps) ||
+          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
+          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
+      return false;
+  }
+
+  return true;
+}
+
+static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
+                           bool V2IsUndef = false) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
+                        V2IsSplat, V2IsUndef);
+}
+
+/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
+bool X86::isMOVSHDUPMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  if (N->getNumOperands() != 4)
+    return false;
+
+  // Expect 1, 1, 3, 3
+  for (unsigned i = 0; i < 2; ++i) {
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() == ISD::UNDEF) continue;
+    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
+    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
+    if (Val != 1) return false;
+  }
+
+  bool HasHi = false;
+  for (unsigned i = 2; i < 4; ++i) {
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() == ISD::UNDEF) continue;
+    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
+    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
+    if (Val != 3) return false;
+    HasHi = true;
+  }
+
+  // Don't use movshdup if it can be done with a shufps.
+  return HasHi;
+}
+
+/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
+bool X86::isMOVSLDUPMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  if (N->getNumOperands() != 4)
+    return false;
+
+  // Expect 0, 0, 2, 2
+  for (unsigned i = 0; i < 2; ++i) {
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() == ISD::UNDEF) continue;
+    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
+    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
+    if (Val != 0) return false;
+  }
+
+  bool HasHi = false;
+  for (unsigned i = 2; i < 4; ++i) {
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() == ISD::UNDEF) continue;
+    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
+    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
+    if (Val != 2) return false;
+    HasHi = true;
+  }
+
+  // Don't use movshdup if it can be done with a shufps.
+  return HasHi;
+}
+
+/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a identity operation on the LHS or RHS.
+static bool isIdentityMask(SDNode *N, bool RHS = false) {
+  unsigned NumElems = N->getNumOperands();
+  for (unsigned i = 0; i < NumElems; ++i)
+    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
+      return false;
+  return true;
+}
+
+/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
+/// a splat of a single element.
+static bool isSplatMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  // This is a splat operation if each element of the permute is the same, and
+  // if the value doesn't reference the second vector.
+  unsigned NumElems = N->getNumOperands();
+  SDOperand ElementBase;
+  unsigned i = 0;
+  for (; i != NumElems; ++i) {
+    SDOperand Elt = N->getOperand(i);
+    if (isa<ConstantSDNode>(Elt)) {
+      ElementBase = Elt;
+      break;
+    }
+  }
+
+  if (!ElementBase.Val)
+    return false;
+
+  for (; i != NumElems; ++i) {
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() == ISD::UNDEF) continue;
+    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
+    if (Arg != ElementBase) return false;
+  }
+
+  // Make sure it is a splat of the first vector operand.
+  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
+}
+
+/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
+/// a splat of a single element and it's a 2 or 4 element mask.
+bool X86::isSplatMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
+  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
+    return false;
+  return ::isSplatMask(N);
+}
+
+/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a splat of zero element.
+bool X86::isSplatLoMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
+    if (!isUndefOrEqual(N->getOperand(i), 0))
+      return false;
+  return true;
+}
+
+/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
+/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
+/// instructions.
+unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
+  unsigned NumOperands = N->getNumOperands();
+  unsigned Shift = (NumOperands == 4) ? 2 : 1;
+  unsigned Mask = 0;
+  for (unsigned i = 0; i < NumOperands; ++i) {
+    unsigned Val = 0;
+    SDOperand Arg = N->getOperand(NumOperands-i-1);
+    if (Arg.getOpcode() != ISD::UNDEF)
+      Val = cast<ConstantSDNode>(Arg)->getValue();
+    if (Val >= NumOperands) Val -= NumOperands;
+    Mask |= Val;
+    if (i != NumOperands - 1)
+      Mask <<= Shift;
+  }
+
+  return Mask;
+}
+
+/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
+/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
+/// instructions.
+unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
+  unsigned Mask = 0;
+  // 8 nodes, but we only care about the last 4.
+  for (unsigned i = 7; i >= 4; --i) {
+    unsigned Val = 0;
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() != ISD::UNDEF)
+      Val = cast<ConstantSDNode>(Arg)->getValue();
+    Mask |= (Val - 4);
+    if (i != 4)
+      Mask <<= 2;
+  }
+
+  return Mask;
+}
+
+/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
+/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
+/// instructions.
+unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
+  unsigned Mask = 0;
+  // 8 nodes, but we only care about the first 4.
+  for (int i = 3; i >= 0; --i) {
+    unsigned Val = 0;
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() != ISD::UNDEF)
+      Val = cast<ConstantSDNode>(Arg)->getValue();
+    Mask |= Val;
+    if (i != 0)
+      Mask <<= 2;
+  }
+
+  return Mask;
+}
+
+/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
+/// specifies a 8 element shuffle that can be broken into a pair of
+/// PSHUFHW and PSHUFLW.
+static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
+  assert(N->getOpcode() == ISD::BUILD_VECTOR);
+
+  if (N->getNumOperands() != 8)
+    return false;
+
+  // Lower quadword shuffled.
+  for (unsigned i = 0; i != 4; ++i) {
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() == ISD::UNDEF) continue;
+    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
+    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
+    if (Val > 4)
+      return false;
+  }
+
+  // Upper quadword shuffled.
+  for (unsigned i = 4; i != 8; ++i) {
+    SDOperand Arg = N->getOperand(i);
+    if (Arg.getOpcode() == ISD::UNDEF) continue;
+    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
+    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
+    if (Val < 4 || Val > 7)
+      return false;
+  }
+
+  return true;
+}
+
+/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
+/// values in ther permute mask.
+static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
+                                      SDOperand &V2, SDOperand &Mask,
+                                      SelectionDAG &DAG) {
+  MVT::ValueType VT = Op.getValueType();
+  MVT::ValueType MaskVT = Mask.getValueType();
+  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
+  unsigned NumElems = Mask.getNumOperands();
+  SmallVector<SDOperand, 8> MaskVec;
+
+  for (unsigned i = 0; i != NumElems; ++i) {
+    SDOperand Arg = Mask.getOperand(i);
+    if (Arg.getOpcode() == ISD::UNDEF) {
+      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
+      continue;
+    }
+    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
+    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
+    if (Val < NumElems)
+      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
+    else
+      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
+  }
+
+  std::swap(V1, V2);
+  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
+  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
+}
+
+/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
+/// match movhlps. The lower half elements should come from upper half of
+/// V1 (and in order), and the upper half elements should come from the upper
+/// half of V2 (and in order).
+static bool ShouldXformToMOVHLPS(SDNode *Mask) {
+  unsigned NumElems = Mask->getNumOperands();
+  if (NumElems != 4)
+    return false;
+  for (unsigned i = 0, e = 2; i != e; ++i)
+    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
+      return false;
+  for (unsigned i = 2; i != 4; ++i)
+    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
+      return false;
+  return true;
+}
+
+/// isScalarLoadToVector - Returns true if the node is a scalar load that
+/// is promoted to a vector.
+static inline bool isScalarLoadToVector(SDNode *N) {
+  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
+    N = N->getOperand(0).Val;
+    return ISD::isNON_EXTLoad(N);
+  }
+  return false;
+}
+
+/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
+/// match movlp{s|d}. The lower half elements should come from lower half of
+/// V1 (and in order), and the upper half elements should come from the upper
+/// half of V2 (and in order). And since V1 will become the source of the
+/// MOVLP, it must be either a vector load or a scalar load to vector.
+static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
+  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
+    return false;
+  // Is V2 is a vector load, don't do this transformation. We will try to use
+  // load folding shufps op.
+  if (ISD::isNON_EXTLoad(V2))
+    return false;
+
+  unsigned NumElems = Mask->getNumOperands();
+  if (NumElems != 2 && NumElems != 4)
+    return false;
+  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
+    if (!isUndefOrEqual(Mask->getOperand(i), i))
+      return false;
+  for (unsigned i = NumElems/2; i != NumElems; ++i)
+    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
+      return false;
+  return true;
+}
+
+/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
+/// all the same.
+static bool isSplatVector(SDNode *N) {
+  if (N->getOpcode() != ISD::BUILD_VECTOR)
+    return false;
+
+  SDOperand SplatValue = N->getOperand(0);
+  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
+    if (N->getOperand(i) != SplatValue)
+      return false;
+  return true;
+}
+
+/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
+/// to an undef.
+static bool isUndefShuffle(SDNode *N) {
+  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
+    return false;
+
+  SDOperand V1 = N->getOperand(0);
+  SDOperand V2 = N->getOperand(1);
+  SDOperand Mask = N->getOperand(2);
+  unsigned NumElems = Mask.getNumOperands();
+  for (unsigned i = 0; i != NumElems; ++i) {
+    SDOperand Arg = Mask.getOperand(i);
+    if (Arg.getOpcode() != ISD::UNDEF) {
+      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
+      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
+        return false;
+      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
+        return false;
+    }
+  }
+  return true;
+}
+
+/// isZeroNode - Returns true if Elt is a constant zero or a floating point
+/// constant +0.0.
+static inline bool isZeroNode(SDOperand Elt) {
+  return ((isa<ConstantSDNode>(Elt) &&
+           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
+          (isa<ConstantFPSDNode>(Elt) &&
+           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
+}
+
+/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
+/// to an zero vector.
+static bool isZeroShuffle(SDNode *N) {
+  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
+    return false;
+
+  SDOperand V1 = N->getOperand(0);
+  SDOperand V2 = N->getOperand(1);
+  SDOperand Mask = N->getOperand(2);
+  unsigned NumElems = Mask.getNumOperands();
+  for (unsigned i = 0; i != NumElems; ++i) {
+    SDOperand Arg = Mask.getOperand(i);
+    if (Arg.getOpcode() != ISD::UNDEF) {
+      unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
+      if (Idx < NumElems) {
+        unsigned Opc = V1.Val->getOpcode();
+        if (Opc == ISD::UNDEF)
+          continue;
+        if (Opc != ISD::BUILD_VECTOR ||
+            !isZeroNode(V1.Val->getOperand(Idx)))
+          return false;
+      } else if (Idx >= NumElems) {
+        unsigned Opc = V2.Val->getOpcode();
+        if (Opc == ISD::UNDEF)
+          continue;
+        if (Opc != ISD::BUILD_VECTOR ||
+            !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
+          return false;
+      }
+    }
+  }
+  return true;
+}
+
+/// getZeroVector - Returns a vector of specified type with all zero elements.
+///
+static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
+  assert(MVT::isVector(VT) && "Expected a vector type");
+  unsigned NumElems = MVT::getVectorNumElements(VT);
+  MVT::ValueType EVT = MVT::getVectorElementType(VT);
+  bool isFP = MVT::isFloatingPoint(EVT);
+  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
+  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
+  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
+}
+
+/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
+/// that point to V2 points to its first element.
+static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
+  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
+
+  bool Changed = false;
+  SmallVector<SDOperand, 8> MaskVec;
+  unsigned NumElems = Mask.getNumOperands();
+  for (unsigned i = 0; i != NumElems; ++i) {
+    SDOperand Arg = Mask.getOperand(i);
+    if (Arg.getOpcode() != ISD::UNDEF) {
+      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
+      if (Val > NumElems) {
+        Arg = DAG.getConstant(NumElems, Arg.getValueType());
+        Changed = true;
+      }
+    }
+    MaskVec.push_back(Arg);
+  }
+
+  if (Changed)
+    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
+                       &MaskVec[0], MaskVec.size());
+  return Mask;
+}
+
+/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
+/// operation of specified width.
+static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
+  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
+  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
+
+  SmallVector<SDOperand, 8> MaskVec;
+  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
+  for (unsigned i = 1; i != NumElems; ++i)
+    MaskVec.push_back(DAG.getConstant(i, BaseVT));
+  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
+}
+
+/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
+/// of specified width.
+static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
+  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
+  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
+  SmallVector<SDOperand, 8> MaskVec;
+  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
+    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
+    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
+  }
+  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
+}
+
+/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
+/// of specified width.
+static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
+  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
+  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
+  unsigned Half = NumElems/2;
+  SmallVector<SDOperand, 8> MaskVec;
+  for (unsigned i = 0; i != Half; ++i) {
+    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
+    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
+  }
+  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
+}
+
+/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
+///
+static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
+  SDOperand V1 = Op.getOperand(0);
+  SDOperand Mask = Op.getOperand(2);
+  MVT::ValueType VT = Op.getValueType();
+  unsigned NumElems = Mask.getNumOperands();
+  Mask = getUnpacklMask(NumElems, DAG);
+  while (NumElems != 4) {
+    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
+    NumElems >>= 1;
+  }
+  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
+
+  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
+  Mask = getZeroVector(MaskVT, DAG);
+  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
+                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
+  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
+}
+
+/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
+/// vector of zero or undef vector.
+static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
+                                             unsigned NumElems, unsigned Idx,
+                                             bool isZero, SelectionDAG &DAG) {
+  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
+  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
+  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
+  SDOperand Zero = DAG.getConstant(0, EVT);
+  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
+  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
+  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                               &MaskVec[0], MaskVec.size());
+  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
+}
+
+/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
+///
+static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
+                                       unsigned NumNonZero, unsigned NumZero,
+                                       SelectionDAG &DAG, TargetLowering &TLI) {
+  if (NumNonZero > 8)
+    return SDOperand();
+
+  SDOperand V(0, 0);
+  bool First = true;
+  for (unsigned i = 0; i < 16; ++i) {
+    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
+    if (ThisIsNonZero && First) {
+      if (NumZero)
+        V = getZeroVector(MVT::v8i16, DAG);
+      else
+        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
+      First = false;
+    }
+
+    if ((i & 1) != 0) {
+      SDOperand ThisElt(0, 0), LastElt(0, 0);
+      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
+      if (LastIsNonZero) {
+        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
+      }
+      if (ThisIsNonZero) {
+        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
+        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
+                              ThisElt, DAG.getConstant(8, MVT::i8));
+        if (LastIsNonZero)
+          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
+      } else
+        ThisElt = LastElt;
+
+      if (ThisElt.Val)
+        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
+                        DAG.getConstant(i/2, TLI.getPointerTy()));
+    }
+  }
+
+  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
+}
+
+/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
+///
+static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
+                                       unsigned NumNonZero, unsigned NumZero,
+                                       SelectionDAG &DAG, TargetLowering &TLI) {
+  if (NumNonZero > 4)
+    return SDOperand();
+
+  SDOperand V(0, 0);
+  bool First = true;
+  for (unsigned i = 0; i < 8; ++i) {
+    bool isNonZero = (NonZeros & (1 << i)) != 0;
+    if (isNonZero) {
+      if (First) {
+        if (NumZero)
+          V = getZeroVector(MVT::v8i16, DAG);
+        else
+          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
+        First = false;
+      }
+      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
+                      DAG.getConstant(i, TLI.getPointerTy()));
+    }
+  }
+
+  return V;
+}
+
+SDOperand
+X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
+  // All zero's are handled with pxor.
+  if (ISD::isBuildVectorAllZeros(Op.Val))
+    return Op;
+
+  // All one's are handled with pcmpeqd.
+  if (ISD::isBuildVectorAllOnes(Op.Val))
+    return Op;
+
+  MVT::ValueType VT = Op.getValueType();
+  MVT::ValueType EVT = MVT::getVectorElementType(VT);
+  unsigned EVTBits = MVT::getSizeInBits(EVT);
+
+  unsigned NumElems = Op.getNumOperands();
+  unsigned NumZero  = 0;
+  unsigned NumNonZero = 0;
+  unsigned NonZeros = 0;
+  std::set<SDOperand> Values;
+  for (unsigned i = 0; i < NumElems; ++i) {
+    SDOperand Elt = Op.getOperand(i);
+    if (Elt.getOpcode() != ISD::UNDEF) {
+      Values.insert(Elt);
+      if (isZeroNode(Elt))
+        NumZero++;
+      else {
+        NonZeros |= (1 << i);
+        NumNonZero++;
+      }
+    }
+  }
+
+  if (NumNonZero == 0) {
+    if (NumZero == 0)
+      // All undef vector. Return an UNDEF.
+      return DAG.getNode(ISD::UNDEF, VT);
+    else
+      // A mix of zero and undef. Return a zero vector.
+      return getZeroVector(VT, DAG);
+  }
+
+  // Splat is obviously ok. Let legalizer expand it to a shuffle.
+  if (Values.size() == 1)
+    return SDOperand();
+
+  // Special case for single non-zero element.
+  if (NumNonZero == 1) {
+    unsigned Idx = CountTrailingZeros_32(NonZeros);
+    SDOperand Item = Op.getOperand(Idx);
+    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
+    if (Idx == 0)
+      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
+      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
+                                         NumZero > 0, DAG);
+
+    if (EVTBits == 32) {
+      // Turn it into a shuffle of zero and zero-extended scalar to vector.
+      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
+                                         DAG);
+      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
+      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
+      SmallVector<SDOperand, 8> MaskVec;
+      for (unsigned i = 0; i < NumElems; i++)
+        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
+      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                                   &MaskVec[0], MaskVec.size());
+      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
+                         DAG.getNode(ISD::UNDEF, VT), Mask);
+    }
+  }
+
+  // Let legalizer expand 2-wide build_vectors.
+  if (EVTBits == 64)
+    return SDOperand();
+
+  // If element VT is < 32 bits, convert it to inserts into a zero vector.
+  if (EVTBits == 8 && NumElems == 16) {
+    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
+                                        *this);
+    if (V.Val) return V;
+  }
+
+  if (EVTBits == 16 && NumElems == 8) {
+    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
+                                        *this);
+    if (V.Val) return V;
+  }
+
+  // If element VT is == 32 bits, turn it into a number of shuffles.
+  SmallVector<SDOperand, 8> V;
+  V.resize(NumElems);
+  if (NumElems == 4 && NumZero > 0) {
+    for (unsigned i = 0; i < 4; ++i) {
+      bool isZero = !(NonZeros & (1 << i));
+      if (isZero)
+        V[i] = getZeroVector(VT, DAG);
+      else
+        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
+    }
+
+    for (unsigned i = 0; i < 2; ++i) {
+      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
+        default: break;
+        case 0:
+          V[i] = V[i*2];  // Must be a zero vector.
+          break;
+        case 1:
+          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
+                             getMOVLMask(NumElems, DAG));
+          break;
+        case 2:
+          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
+                             getMOVLMask(NumElems, DAG));
+          break;
+        case 3:
+          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
+                             getUnpacklMask(NumElems, DAG));
+          break;
+      }
+    }
+
+    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
+    // clears the upper bits.
+    // FIXME: we can do the same for v4f32 case when we know both parts of
+    // the lower half come from scalar_to_vector (loadf32). We should do
+    // that in post legalizer dag combiner with target specific hooks.
+    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
+      return V[0];
+    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
+    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
+    SmallVector<SDOperand, 8> MaskVec;
+    bool Reverse = (NonZeros & 0x3) == 2;
+    for (unsigned i = 0; i < 2; ++i)
+      if (Reverse)
+        MaskVec.push_back(DAG.getConstant(1-i, EVT));
+      else
+        MaskVec.push_back(DAG.getConstant(i, EVT));
+    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
+    for (unsigned i = 0; i < 2; ++i)
+      if (Reverse)
+        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
+      else
+        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
+    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                                     &MaskVec[0], MaskVec.size());
+    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
+  }
+
+  if (Values.size() > 2) {
+    // Expand into a number of unpckl*.
+    // e.g. for v4f32
+    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
+    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
+    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
+    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
+    for (unsigned i = 0; i < NumElems; ++i)
+      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
+    NumElems >>= 1;
+    while (NumElems != 0) {
+      for (unsigned i = 0; i < NumElems; ++i)
+        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
+                           UnpckMask);
+      NumElems >>= 1;
+    }
+    return V[0];
+  }
+
+  return SDOperand();
+}
+
+SDOperand
+X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
+  SDOperand V1 = Op.getOperand(0);
+  SDOperand V2 = Op.getOperand(1);
+  SDOperand PermMask = Op.getOperand(2);
+  MVT::ValueType VT = Op.getValueType();
+  unsigned NumElems = PermMask.getNumOperands();
+  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
+  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
+  bool V1IsSplat = false;
+  bool V2IsSplat = false;
+
+  if (isUndefShuffle(Op.Val))
+    return DAG.getNode(ISD::UNDEF, VT);
+
+  if (isZeroShuffle(Op.Val))
+    return getZeroVector(VT, DAG);
+
+  if (isIdentityMask(PermMask.Val))
+    return V1;
+  else if (isIdentityMask(PermMask.Val, true))
+    return V2;
+
+  if (isSplatMask(PermMask.Val)) {
+    if (NumElems <= 4) return Op;
+    // Promote it to a v4i32 splat.
+    return PromoteSplat(Op, DAG);
+  }
+
+  if (X86::isMOVLMask(PermMask.Val))
+    return (V1IsUndef) ? V2 : Op;
+
+  if (X86::isMOVSHDUPMask(PermMask.Val) ||
+      X86::isMOVSLDUPMask(PermMask.Val) ||
+      X86::isMOVHLPSMask(PermMask.Val) ||
+      X86::isMOVHPMask(PermMask.Val) ||
+      X86::isMOVLPMask(PermMask.Val))
+    return Op;
+
+  if (ShouldXformToMOVHLPS(PermMask.Val) ||
+      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
+    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
+
+  bool Commuted = false;
+  V1IsSplat = isSplatVector(V1.Val);
+  V2IsSplat = isSplatVector(V2.Val);
+  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
+    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
+    std::swap(V1IsSplat, V2IsSplat);
+    std::swap(V1IsUndef, V2IsUndef);
+    Commuted = true;
+  }
+
+  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
+    if (V2IsUndef) return V1;
+    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
+    if (V2IsSplat) {
+      // V2 is a splat, so the mask may be malformed. That is, it may point
+      // to any V2 element. The instruction selectior won't like this. Get
+      // a corrected mask and commute to form a proper MOVS{S|D}.
+      SDOperand NewMask = getMOVLMask(NumElems, DAG);
+      if (NewMask.Val != PermMask.Val)
+        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
+    }
+    return Op;
+  }
+
+  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
+      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
+      X86::isUNPCKLMask(PermMask.Val) ||
+      X86::isUNPCKHMask(PermMask.Val))
+    return Op;
+
+  if (V2IsSplat) {
+    // Normalize mask so all entries that point to V2 points to its first
+    // element then try to match unpck{h|l} again. If match, return a
+    // new vector_shuffle with the corrected mask.
+    SDOperand NewMask = NormalizeMask(PermMask, DAG);
+    if (NewMask.Val != PermMask.Val) {
+      if (X86::isUNPCKLMask(PermMask.Val, true)) {
+        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
+        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
+      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
+        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
+        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
+      }
+    }
+  }
+
+  // Normalize the node to match x86 shuffle ops if needed
+  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
+      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
+
+  if (Commuted) {
+    // Commute is back and try unpck* again.
+    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
+    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
+        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
+        X86::isUNPCKLMask(PermMask.Val) ||
+        X86::isUNPCKHMask(PermMask.Val))
+      return Op;
+  }
+
+  // If VT is integer, try PSHUF* first, then SHUFP*.
+  if (MVT::isInteger(VT)) {
+    if (X86::isPSHUFDMask(PermMask.Val) ||
+        X86::isPSHUFHWMask(PermMask.Val) ||
+        X86::isPSHUFLWMask(PermMask.Val)) {
+      if (V2.getOpcode() != ISD::UNDEF)
+        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
+                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
+      return Op;
+    }
+
+    if (X86::isSHUFPMask(PermMask.Val) &&
+        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
+      return Op;
+
+    // Handle v8i16 shuffle high / low shuffle node pair.
+    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
+      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
+      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
+      SmallVector<SDOperand, 8> MaskVec;
+      for (unsigned i = 0; i != 4; ++i)
+        MaskVec.push_back(PermMask.getOperand(i));
+      for (unsigned i = 4; i != 8; ++i)
+        MaskVec.push_back(DAG.getConstant(i, BaseVT));
+      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                                   &MaskVec[0], MaskVec.size());
+      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
+      MaskVec.clear();
+      for (unsigned i = 0; i != 4; ++i)
+        MaskVec.push_back(DAG.getConstant(i, BaseVT));
+      for (unsigned i = 4; i != 8; ++i)
+        MaskVec.push_back(PermMask.getOperand(i));
+      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
+      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
+    }
+  } else {
+    // Floating point cases in the other order.
+    if (X86::isSHUFPMask(PermMask.Val))
+      return Op;
+    if (X86::isPSHUFDMask(PermMask.Val) ||
+        X86::isPSHUFHWMask(PermMask.Val) ||
+        X86::isPSHUFLWMask(PermMask.Val)) {
+      if (V2.getOpcode() != ISD::UNDEF)
+        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
+                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
+      return Op;
+    }
+  }
+
+  if (NumElems == 4 && 
+      // Don't do this for MMX.
+      MVT::getSizeInBits(VT) != 64) {
+    MVT::ValueType MaskVT = PermMask.getValueType();
+    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
+    SmallVector<std::pair<int, int>, 8> Locs;
+    Locs.reserve(NumElems);
+    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
+    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
+    unsigned NumHi = 0;
+    unsigned NumLo = 0;
+    // If no more than two elements come from either vector. This can be
+    // implemented with two shuffles. First shuffle gather the elements.
+    // The second shuffle, which takes the first shuffle as both of its
+    // vector operands, put the elements into the right order.
+    for (unsigned i = 0; i != NumElems; ++i) {
+      SDOperand Elt = PermMask.getOperand(i);
+      if (Elt.getOpcode() == ISD::UNDEF) {
+        Locs[i] = std::make_pair(-1, -1);
+      } else {
+        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
+        if (Val < NumElems) {
+          Locs[i] = std::make_pair(0, NumLo);
+          Mask1[NumLo] = Elt;
+          NumLo++;
+        } else {
+          Locs[i] = std::make_pair(1, NumHi);
+          if (2+NumHi < NumElems)
+            Mask1[2+NumHi] = Elt;
+          NumHi++;
+        }
+      }
+    }
+    if (NumLo <= 2 && NumHi <= 2) {
+      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
+                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                                   &Mask1[0], Mask1.size()));
+      for (unsigned i = 0; i != NumElems; ++i) {
+        if (Locs[i].first == -1)
+          continue;
+        else {
+          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
+          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
+          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
+        }
+      }
+
+      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
+                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                                     &Mask2[0], Mask2.size()));
+    }
+
+    // Break it into (shuffle shuffle_hi, shuffle_lo).
+    Locs.clear();
+    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
+    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
+    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
+    unsigned MaskIdx = 0;
+    unsigned LoIdx = 0;
+    unsigned HiIdx = NumElems/2;
+    for (unsigned i = 0; i != NumElems; ++i) {
+      if (i == NumElems/2) {
+        MaskPtr = &HiMask;
+        MaskIdx = 1;
+        LoIdx = 0;
+        HiIdx = NumElems/2;
+      }
+      SDOperand Elt = PermMask.getOperand(i);
+      if (Elt.getOpcode() == ISD::UNDEF) {
+        Locs[i] = std::make_pair(-1, -1);
+      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
+        Locs[i] = std::make_pair(MaskIdx, LoIdx);
+        (*MaskPtr)[LoIdx] = Elt;
+        LoIdx++;
+      } else {
+        Locs[i] = std::make_pair(MaskIdx, HiIdx);
+        (*MaskPtr)[HiIdx] = Elt;
+        HiIdx++;
+      }
+    }
+
+    SDOperand LoShuffle =
+      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
+                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                              &LoMask[0], LoMask.size()));
+    SDOperand HiShuffle =
+      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
+                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                              &HiMask[0], HiMask.size()));
+    SmallVector<SDOperand, 8> MaskOps;
+    for (unsigned i = 0; i != NumElems; ++i) {
+      if (Locs[i].first == -1) {
+        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
+      } else {
+        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
+        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
+      }
+    }
+    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
+                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                                   &MaskOps[0], MaskOps.size()));
+  }
+
+  return SDOperand();
+}
+
+SDOperand
+X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
+  if (!isa<ConstantSDNode>(Op.getOperand(1)))
+    return SDOperand();
+
+  MVT::ValueType VT = Op.getValueType();
+  // TODO: handle v16i8.
+  if (MVT::getSizeInBits(VT) == 16) {
+    // Transform it so it match pextrw which produces a 32-bit result.
+    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
+    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
+                                    Op.getOperand(0), Op.getOperand(1));
+    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
+                                    DAG.getValueType(VT));
+    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
+  } else if (MVT::getSizeInBits(VT) == 32) {
+    SDOperand Vec = Op.getOperand(0);
+    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
+    if (Idx == 0)
+      return Op;
+    // SHUFPS the element to the lowest double word, then movss.
+    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
+    SmallVector<SDOperand, 8> IdxVec;
+    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
+    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
+    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
+    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
+    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                                 &IdxVec[0], IdxVec.size());
+    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
+                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
+    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
+                       DAG.getConstant(0, getPointerTy()));
+  } else if (MVT::getSizeInBits(VT) == 64) {
+    SDOperand Vec = Op.getOperand(0);
+    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
+    if (Idx == 0)
+      return Op;
+
+    // UNPCKHPD the element to the lowest double word, then movsd.
+    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
+    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
+    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
+    SmallVector<SDOperand, 8> IdxVec;
+    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
+    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
+    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                                 &IdxVec[0], IdxVec.size());
+    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
+                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
+    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
+                       DAG.getConstant(0, getPointerTy()));
+  }
+
+  return SDOperand();
+}
+
+SDOperand
+X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
+  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
+  // as its second argument.
+  MVT::ValueType VT = Op.getValueType();
+  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
+  SDOperand N0 = Op.getOperand(0);
+  SDOperand N1 = Op.getOperand(1);
+  SDOperand N2 = Op.getOperand(2);
+  if (MVT::getSizeInBits(BaseVT) == 16) {
+    if (N1.getValueType() != MVT::i32)
+      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
+    if (N2.getValueType() != MVT::i32)
+      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
+    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
+  } else if (MVT::getSizeInBits(BaseVT) == 32) {
+    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
+    if (Idx == 0) {
+      // Use a movss.
+      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
+      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
+      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
+      SmallVector<SDOperand, 8> MaskVec;
+      MaskVec.push_back(DAG.getConstant(4, BaseVT));
+      for (unsigned i = 1; i <= 3; ++i)
+        MaskVec.push_back(DAG.getConstant(i, BaseVT));
+      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
+                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
+                                     &MaskVec[0], MaskVec.size()));
+    } else {
+      // Use two pinsrw instructions to insert a 32 bit value.
+      Idx <<= 1;
+      if (MVT::isFloatingPoint(N1.getValueType())) {
+        if (ISD::isNON_EXTLoad(N1.Val)) {
+          // Just load directly from f32mem to GR32.
+          LoadSDNode *LD = cast<LoadSDNode>(N1);
+          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
+                           LD->getSrcValue(), LD->getSrcValueOffset());
+        } else {
+          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
+          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
+          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
+                           DAG.getConstant(0, getPointerTy()));
+        }
+      }
+      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
+      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
+                       DAG.getConstant(Idx, getPointerTy()));
+      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
+      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
+                       DAG.getConstant(Idx+1, getPointerTy()));
+      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
+    }
+  }
+
+  return SDOperand();
+}
+
+SDOperand
+X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
+  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
+  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
+}
+
+// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
+// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
+// one of the above mentioned nodes. It has to be wrapped because otherwise
+// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
+// be used to form addressing mode. These wrapped nodes will be selected
+// into MOV32ri.
+SDOperand
+X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
+  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
+                                               getPointerTy(),
+                                               CP->getAlignment());
+  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
+  // With PIC, the address is actually $g + Offset.
+  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+      !Subtarget->isPICStyleRIPRel()) {
+    Result = DAG.getNode(ISD::ADD, getPointerTy(),
+                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
+                         Result);
+  }
+
+  return Result;
+}
+
+SDOperand
+X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
+  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
+  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
+  // With PIC, the address is actually $g + Offset.
+  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+      !Subtarget->isPICStyleRIPRel()) {
+    Result = DAG.getNode(ISD::ADD, getPointerTy(),
+                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
+                         Result);
+  }
+  
+  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
+  // load the value at address GV, not the value of GV itself. This means that
+  // the GlobalAddress must be in the base or index register of the address, not
+  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
+  // The same applies for external symbols during PIC codegen
+  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
+    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
+
+  return Result;
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model
+static SDOperand
+LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+                              const MVT::ValueType PtrVT) {
+  SDOperand InFlag;
+  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
+                                     DAG.getNode(X86ISD::GlobalBaseReg,
+                                                 PtrVT), InFlag);
+  InFlag = Chain.getValue(1);
+
+  // emit leal symbol@TLSGD(,%ebx,1), %eax
+  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
+  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
+                                             GA->getValueType(0),
+                                             GA->getOffset());
+  SDOperand Ops[] = { Chain,  TGA, InFlag };
+  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
+  InFlag = Result.getValue(2);
+  Chain = Result.getValue(1);
+
+  // call ___tls_get_addr. This function receives its argument in
+  // the register EAX.
+  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
+  InFlag = Chain.getValue(1);
+
+  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+  SDOperand Ops1[] = { Chain,
+                      DAG.getTargetExternalSymbol("___tls_get_addr",
+                                                  PtrVT),
+                      DAG.getRegister(X86::EAX, PtrVT),
+                      DAG.getRegister(X86::EBX, PtrVT),
+                      InFlag };
+  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
+  InFlag = Chain.getValue(1);
+
+  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
+}
+
+// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
+// "local exec" model.
+static SDOperand
+LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+                         const MVT::ValueType PtrVT) {
+  // Get the Thread Pointer
+  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
+  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
+  // exec)
+  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
+                                             GA->getValueType(0),
+                                             GA->getOffset());
+  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
+
+  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
+    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
+
+  // The address of the thread local variable is the add of the thread
+  // pointer with the offset of the variable.
+  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
+}
+
+SDOperand
+X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
+  // TODO: implement the "local dynamic" model
+  // TODO: implement the "initial exec"model for pic executables
+  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
+         "TLS not implemented for non-ELF and 64-bit targets");
+  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
+  // otherwise use the "Local Exec"TLS Model
+  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
+    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
+  else
+    return LowerToTLSExecModel(GA, DAG, getPointerTy());
+}
+
+SDOperand
+X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
+  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
+  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
+  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
+  // With PIC, the address is actually $g + Offset.
+  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+      !Subtarget->isPICStyleRIPRel()) {
+    Result = DAG.getNode(ISD::ADD, getPointerTy(),
+                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
+                         Result);
+  }
+
+  return Result;
+}
+
+SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
+  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
+  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
+  // With PIC, the address is actually $g + Offset.
+  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+      !Subtarget->isPICStyleRIPRel()) {
+    Result = DAG.getNode(ISD::ADD, getPointerTy(),
+                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
+                         Result);
+  }
+
+  return Result;
+}
+
+SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
+    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
+           "Not an i64 shift!");
+    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
+    SDOperand ShOpLo = Op.getOperand(0);
+    SDOperand ShOpHi = Op.getOperand(1);
+    SDOperand ShAmt  = Op.getOperand(2);
+    SDOperand Tmp1 = isSRA ?
+      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
+      DAG.getConstant(0, MVT::i32);
+
+    SDOperand Tmp2, Tmp3;
+    if (Op.getOpcode() == ISD::SHL_PARTS) {
+      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
+      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
+    } else {
+      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
+      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
+    }
+
+    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
+    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
+                                    DAG.getConstant(32, MVT::i8));
+    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
+    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
+
+    SDOperand Hi, Lo;
+    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+
+    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
+    SmallVector<SDOperand, 4> Ops;
+    if (Op.getOpcode() == ISD::SHL_PARTS) {
+      Ops.push_back(Tmp2);
+      Ops.push_back(Tmp3);
+      Ops.push_back(CC);
+      Ops.push_back(InFlag);
+      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
+      InFlag = Hi.getValue(1);
+
+      Ops.clear();
+      Ops.push_back(Tmp3);
+      Ops.push_back(Tmp1);
+      Ops.push_back(CC);
+      Ops.push_back(InFlag);
+      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
+    } else {
+      Ops.push_back(Tmp2);
+      Ops.push_back(Tmp3);
+      Ops.push_back(CC);
+      Ops.push_back(InFlag);
+      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
+      InFlag = Lo.getValue(1);
+
+      Ops.clear();
+      Ops.push_back(Tmp3);
+      Ops.push_back(Tmp1);
+      Ops.push_back(CC);
+      Ops.push_back(InFlag);
+      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
+    }
+
+    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
+    Ops.clear();
+    Ops.push_back(Lo);
+    Ops.push_back(Hi);
+    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
+}
+
+SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
+  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
+         Op.getOperand(0).getValueType() >= MVT::i16 &&
+         "Unknown SINT_TO_FP to lower!");
+
+  SDOperand Result;
+  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
+  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
+  MachineFunction &MF = DAG.getMachineFunction();
+  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
+  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
+                                 StackSlot, NULL, 0);
+
+  // Build the FILD
+  SDVTList Tys;
+  if (X86ScalarSSE)
+    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
+  else
+    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
+  SmallVector<SDOperand, 8> Ops;
+  Ops.push_back(Chain);
+  Ops.push_back(StackSlot);
+  Ops.push_back(DAG.getValueType(SrcVT));
+  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
+                       Tys, &Ops[0], Ops.size());
+
+  if (X86ScalarSSE) {
+    Chain = Result.getValue(1);
+    SDOperand InFlag = Result.getValue(2);
+
+    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
+    // shouldn't be necessary except that RFP cannot be live across
+    // multiple blocks. When stackifier is fixed, they can be uncoupled.
+    MachineFunction &MF = DAG.getMachineFunction();
+    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
+    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+    Tys = DAG.getVTList(MVT::Other);
+    SmallVector<SDOperand, 8> Ops;
+    Ops.push_back(Chain);
+    Ops.push_back(Result);
+    Ops.push_back(StackSlot);
+    Ops.push_back(DAG.getValueType(Op.getValueType()));
+    Ops.push_back(InFlag);
+    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
+    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
+  }
+
+  return Result;
+}
+
+SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
+  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
+         "Unknown FP_TO_SINT to lower!");
+  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
+  // stack slot.
+  MachineFunction &MF = DAG.getMachineFunction();
+  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
+  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
+  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+
+  unsigned Opc;
+  switch (Op.getValueType()) {
+    default: assert(0 && "Invalid FP_TO_SINT to lower!");
+    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
+    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
+    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
+  }
+
+  SDOperand Chain = DAG.getEntryNode();
+  SDOperand Value = Op.getOperand(0);
+  if (X86ScalarSSE) {
+    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
+    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
+    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
+    SDOperand Ops[] = {
+      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
+    };
+    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
+    Chain = Value.getValue(1);
+    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
+    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+  }
+
+  // Build the FP_TO_INT*_IN_MEM
+  SDOperand Ops[] = { Chain, Value, StackSlot };
+  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
+
+  // Load the result.
+  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
+}
+
+SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
+  MVT::ValueType VT = Op.getValueType();
+  MVT::ValueType EltVT = VT;
+  if (MVT::isVector(VT))
+    EltVT = MVT::getVectorElementType(VT);
+  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
+  std::vector<Constant*> CV;
+  if (EltVT == MVT::f64) {
+    Constant *C = ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)));
+    CV.push_back(C);
+    CV.push_back(C);
+  } else {
+    Constant *C = ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)));
+    CV.push_back(C);
+    CV.push_back(C);
+    CV.push_back(C);
+    CV.push_back(C);
+  }
+  Constant *CS = ConstantStruct::get(CV);
+  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
+  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
+  SmallVector<SDOperand, 3> Ops;
+  Ops.push_back(DAG.getEntryNode());
+  Ops.push_back(CPIdx);
+  Ops.push_back(DAG.getSrcValue(NULL));
+  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
+  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
+}
+
+SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
+  MVT::ValueType VT = Op.getValueType();
+  MVT::ValueType EltVT = VT;
+  if (MVT::isVector(VT))
+    EltVT = MVT::getVectorElementType(VT);
+  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
+  std::vector<Constant*> CV;
+  if (EltVT == MVT::f64) {
+    Constant *C = ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63));
+    CV.push_back(C);
+    CV.push_back(C);
+  } else {
+    Constant *C = ConstantFP::get(OpNTy, BitsToFloat(1U << 31));
+    CV.push_back(C);
+    CV.push_back(C);
+    CV.push_back(C);
+    CV.push_back(C);
+  }
+  Constant *CS = ConstantStruct::get(CV);
+  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
+  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
+  SmallVector<SDOperand, 3> Ops;
+  Ops.push_back(DAG.getEntryNode());
+  Ops.push_back(CPIdx);
+  Ops.push_back(DAG.getSrcValue(NULL));
+  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
+  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
+}
+
+SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
+  SDOperand Op0 = Op.getOperand(0);
+  SDOperand Op1 = Op.getOperand(1);
+  MVT::ValueType VT = Op.getValueType();
+  MVT::ValueType SrcVT = Op1.getValueType();
+  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
+
+  // If second operand is smaller, extend it first.
+  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
+    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
+    SrcVT = VT;
+  }
+
+  // First get the sign bit of second operand.
+  std::vector<Constant*> CV;
+  if (SrcVT == MVT::f64) {
+    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
+    CV.push_back(ConstantFP::get(SrcTy, 0.0));
+  } else {
+    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
+    CV.push_back(ConstantFP::get(SrcTy, 0.0));
+    CV.push_back(ConstantFP::get(SrcTy, 0.0));
+    CV.push_back(ConstantFP::get(SrcTy, 0.0));
+  }
+  Constant *CS = ConstantStruct::get(CV);
+  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
+  SDVTList Tys = DAG.getVTList(SrcVT, MVT::Other);
+  SmallVector<SDOperand, 3> Ops;
+  Ops.push_back(DAG.getEntryNode());
+  Ops.push_back(CPIdx);
+  Ops.push_back(DAG.getSrcValue(NULL));
+  SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
+  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
+
+  // Shift sign bit right or left if the two operands have different types.
+  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
+    // Op0 is MVT::f32, Op1 is MVT::f64.
+    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
+    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
+                          DAG.getConstant(32, MVT::i32));
+    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
+    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
+                          DAG.getConstant(0, getPointerTy()));
+  }
+
+  // Clear first operand sign bit.
+  CV.clear();
+  if (VT == MVT::f64) {
+    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
+    CV.push_back(ConstantFP::get(SrcTy, 0.0));
+  } else {
+    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
+    CV.push_back(ConstantFP::get(SrcTy, 0.0));
+    CV.push_back(ConstantFP::get(SrcTy, 0.0));
+    CV.push_back(ConstantFP::get(SrcTy, 0.0));
+  }
+  CS = ConstantStruct::get(CV);
+  CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
+  Tys = DAG.getVTList(VT, MVT::Other);
+  Ops.clear();
+  Ops.push_back(DAG.getEntryNode());
+  Ops.push_back(CPIdx);
+  Ops.push_back(DAG.getSrcValue(NULL));
+  SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
+  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
+
+  // Or the value with the sign bit.
+  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
+}
+
+SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
+                                        SDOperand Chain) {
+  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
+  SDOperand Cond;
+  SDOperand Op0 = Op.getOperand(0);
+  SDOperand Op1 = Op.getOperand(1);
+  SDOperand CC = Op.getOperand(2);
+  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
+  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
+  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
+  unsigned X86CC;
+
+  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
+                     Op0, Op1, DAG)) {
+    SDOperand Ops1[] = { Chain, Op0, Op1 };
+    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
+    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
+    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
+  }
+
+  assert(isFP && "Illegal integer SetCC!");
+
+  SDOperand COps[] = { Chain, Op0, Op1 };
+  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
+
+  switch (SetCCOpcode) {
+  default: assert(false && "Illegal floating point SetCC!");
+  case ISD::SETOEQ: {  // !PF & ZF
+    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
+    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
+    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
+                         Tmp1.getValue(1) };
+    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
+    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
+  }
+  case ISD::SETUNE: {  // PF | !ZF
+    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
+    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
+    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
+                         Tmp1.getValue(1) };
+    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
+    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
+  }
+  }
+}
+
+SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
+  bool addTest = true;
+  SDOperand Chain = DAG.getEntryNode();
+  SDOperand Cond  = Op.getOperand(0);
+  SDOperand CC;
+  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
+
+  if (Cond.getOpcode() == ISD::SETCC)
+    Cond = LowerSETCC(Cond, DAG, Chain);
+
+  if (Cond.getOpcode() == X86ISD::SETCC) {
+    CC = Cond.getOperand(0);
+
+    // If condition flag is set by a X86ISD::CMP, then make a copy of it
+    // (since flag operand cannot be shared). Use it as the condition setting
+    // operand in place of the X86ISD::SETCC.
+    // If the X86ISD::SETCC has more than one use, then perhaps it's better
+    // to use a test instead of duplicating the X86ISD::CMP (for register
+    // pressure reason)?
+    SDOperand Cmp = Cond.getOperand(1);
+    unsigned Opc = Cmp.getOpcode();
+    bool IllegalFPCMov = !X86ScalarSSE &&
+      MVT::isFloatingPoint(Op.getValueType()) &&
+      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
+    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
+        !IllegalFPCMov) {
+      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
+      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
+      addTest = false;
+    }
+  }
+
+  if (addTest) {
+    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
+    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
+  }
+
+  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
+  SmallVector<SDOperand, 4> Ops;
+  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
+  // condition is true.
+  Ops.push_back(Op.getOperand(2));
+  Ops.push_back(Op.getOperand(1));
+  Ops.push_back(CC);
+  Ops.push_back(Cond.getValue(1));
+  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
+}
+
+SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
+  bool addTest = true;
+  SDOperand Chain = Op.getOperand(0);
+  SDOperand Cond  = Op.getOperand(1);
+  SDOperand Dest  = Op.getOperand(2);
+  SDOperand CC;
+  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
+
+  if (Cond.getOpcode() == ISD::SETCC)
+    Cond = LowerSETCC(Cond, DAG, Chain);
+
+  if (Cond.getOpcode() == X86ISD::SETCC) {
+    CC = Cond.getOperand(0);
+
+    // If condition flag is set by a X86ISD::CMP, then make a copy of it
+    // (since flag operand cannot be shared). Use it as the condition setting
+    // operand in place of the X86ISD::SETCC.
+    // If the X86ISD::SETCC has more than one use, then perhaps it's better
+    // to use a test instead of duplicating the X86ISD::CMP (for register
+    // pressure reason)?
+    SDOperand Cmp = Cond.getOperand(1);
+    unsigned Opc = Cmp.getOpcode();
+    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
+      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
+      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
+      addTest = false;
+    }
+  }
+
+  if (addTest) {
+    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
+    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
+  }
+  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
+                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
+}
+
+SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
+  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
+
+  if (Subtarget->is64Bit())
+    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
+  else
+    switch (CallingConv) {
+    default:
+      assert(0 && "Unsupported calling convention");
+    case CallingConv::Fast:
+      // TODO: Implement fastcc
+      // Falls through
+    case CallingConv::C:
+    case CallingConv::X86_StdCall:
+      return LowerCCCCallTo(Op, DAG, CallingConv);
+    case CallingConv::X86_FastCall:
+      return LowerFastCCCallTo(Op, DAG, CallingConv);
+    }
+}
+
+
+// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
+// Calls to _alloca is needed to probe the stack when allocating more than 4k
+// bytes in one go. Touching the stack at 4K increments is necessary to ensure
+// that the guard pages used by the OS virtual memory manager are allocated in
+// correct sequence.
+SDOperand
+X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
+                                           SelectionDAG &DAG) {
+  assert(Subtarget->isTargetCygMing() &&
+         "This should be used only on Cygwin/Mingw targets");
+  
+  // Get the inputs.
+  SDOperand Chain = Op.getOperand(0);
+  SDOperand Size  = Op.getOperand(1);
+  // FIXME: Ensure alignment here
+
+  SDOperand Flag;
+  
+  MVT::ValueType IntPtr = getPointerTy();
+  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
+
+  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
+  Flag = Chain.getValue(1);
+
+  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+  SDOperand Ops[] = { Chain,
+                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
+                      DAG.getRegister(X86::EAX, IntPtr),
+                      Flag };
+  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
+  Flag = Chain.getValue(1);
+
+  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
+  
+  std::vector<MVT::ValueType> Tys;
+  Tys.push_back(SPTy);
+  Tys.push_back(MVT::Other);
+  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
+  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
+}
+
+SDOperand
+X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
+  MachineFunction &MF = DAG.getMachineFunction();
+  const Function* Fn = MF.getFunction();
+  if (Fn->hasExternalLinkage() &&
+      Subtarget->isTargetCygMing() &&
+      Fn->getName() == "main")
+    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
+
+  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
+  if (Subtarget->is64Bit())
+    return LowerX86_64CCCArguments(Op, DAG);
+  else
+    switch(CC) {
+    default:
+      assert(0 && "Unsupported calling convention");
+    case CallingConv::Fast:
+      // TODO: implement fastcc.
+      
+      // Falls through
+    case CallingConv::C:
+      return LowerCCCArguments(Op, DAG);
+    case CallingConv::X86_StdCall:
+      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
+      return LowerCCCArguments(Op, DAG, true);
+    case CallingConv::X86_FastCall:
+      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
+      return LowerFastCCArguments(Op, DAG);
+    }
+}
+
+SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
+  SDOperand InFlag(0, 0);
+  SDOperand Chain = Op.getOperand(0);
+  unsigned Align =
+    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
+  if (Align == 0) Align = 1;
+
+  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
+  // If not DWORD aligned, call memset if size is less than the threshold.
+  // It knows how to align to the right boundary first.
+  if ((Align & 3) != 0 ||
+      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
+    MVT::ValueType IntPtr = getPointerTy();
+    const Type *IntPtrTy = getTargetData()->getIntPtrType();
+    TargetLowering::ArgListTy Args; 
+    TargetLowering::ArgListEntry Entry;
+    Entry.Node = Op.getOperand(1);
+    Entry.Ty = IntPtrTy;
+    Args.push_back(Entry);
+    // Extend the unsigned i8 argument to be an int value for the call.
+    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
+    Entry.Ty = IntPtrTy;
+    Args.push_back(Entry);
+    Entry.Node = Op.getOperand(3);
+    Args.push_back(Entry);
+    std::pair<SDOperand,SDOperand> CallResult =
+      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
+                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
+    return CallResult.second;
+  }
+
+  MVT::ValueType AVT;
+  SDOperand Count;
+  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+  unsigned BytesLeft = 0;
+  bool TwoRepStos = false;
+  if (ValC) {
+    unsigned ValReg;
+    uint64_t Val = ValC->getValue() & 255;
+
+    // If the value is a constant, then we can potentially use larger sets.
+    switch (Align & 3) {
+      case 2:   // WORD aligned
+        AVT = MVT::i16;
+        ValReg = X86::AX;
+        Val = (Val << 8) | Val;
+        break;
+      case 0:  // DWORD aligned
+        AVT = MVT::i32;
+        ValReg = X86::EAX;
+        Val = (Val << 8)  | Val;
+        Val = (Val << 16) | Val;
+        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
+          AVT = MVT::i64;
+          ValReg = X86::RAX;
+          Val = (Val << 32) | Val;
+        }
+        break;
+      default:  // Byte aligned
+        AVT = MVT::i8;
+        ValReg = X86::AL;
+        Count = Op.getOperand(3);
+        break;
+    }
+
+    if (AVT > MVT::i8) {
+      if (I) {
+        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
+        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
+        BytesLeft = I->getValue() % UBytes;
+      } else {
+        assert(AVT >= MVT::i32 &&
+               "Do not use rep;stos if not at least DWORD aligned");
+        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
+                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
+        TwoRepStos = true;
+      }
+    }
+
+    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
+                              InFlag);
+    InFlag = Chain.getValue(1);
+  } else {
+    AVT = MVT::i8;
+    Count  = Op.getOperand(3);
+    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
+    InFlag = Chain.getValue(1);
+  }
+
+  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
+                            Count, InFlag);
+  InFlag = Chain.getValue(1);
+  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
+                            Op.getOperand(1), InFlag);
+  InFlag = Chain.getValue(1);
+
+  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
+  SmallVector<SDOperand, 8> Ops;
+  Ops.push_back(Chain);
+  Ops.push_back(DAG.getValueType(AVT));
+  Ops.push_back(InFlag);
+  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
+
+  if (TwoRepStos) {
+    InFlag = Chain.getValue(1);
+    Count = Op.getOperand(3);
+    MVT::ValueType CVT = Count.getValueType();
+    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
+                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
+    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
+                              Left, InFlag);
+    InFlag = Chain.getValue(1);
+    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
+    Ops.clear();
+    Ops.push_back(Chain);
+    Ops.push_back(DAG.getValueType(MVT::i8));
+    Ops.push_back(InFlag);
+    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
+  } else if (BytesLeft) {
+    // Issue stores for the last 1 - 7 bytes.
+    SDOperand Value;
+    unsigned Val = ValC->getValue() & 255;
+    unsigned Offset = I->getValue() - BytesLeft;
+    SDOperand DstAddr = Op.getOperand(1);
+    MVT::ValueType AddrVT = DstAddr.getValueType();
+    if (BytesLeft >= 4) {
+      Val = (Val << 8)  | Val;
+      Val = (Val << 16) | Val;
+      Value = DAG.getConstant(Val, MVT::i32);
+      Chain = DAG.getStore(Chain, Value,
+                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
+                                       DAG.getConstant(Offset, AddrVT)),
+                           NULL, 0);
+      BytesLeft -= 4;
+      Offset += 4;
+    }
+    if (BytesLeft >= 2) {
+      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
+      Chain = DAG.getStore(Chain, Value,
+                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
+                                       DAG.getConstant(Offset, AddrVT)),
+                           NULL, 0);
+      BytesLeft -= 2;
+      Offset += 2;
+    }
+    if (BytesLeft == 1) {
+      Value = DAG.getConstant(Val, MVT::i8);
+      Chain = DAG.getStore(Chain, Value,
+                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
+                                       DAG.getConstant(Offset, AddrVT)),
+                           NULL, 0);
+    }
+  }
+
+  return Chain;
+}
+
+SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
+  SDOperand Chain = Op.getOperand(0);
+  unsigned Align =
+    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
+  if (Align == 0) Align = 1;
+
+  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
+  // If not DWORD aligned, call memcpy if size is less than the threshold.
+  // It knows how to align to the right boundary first.
+  if ((Align & 3) != 0 ||
+      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
+    MVT::ValueType IntPtr = getPointerTy();
+    TargetLowering::ArgListTy Args;
+    TargetLowering::ArgListEntry Entry;
+    Entry.Ty = getTargetData()->getIntPtrType();
+    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
+    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
+    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
+    std::pair<SDOperand,SDOperand> CallResult =
+      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
+                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
+    return CallResult.second;
+  }
+
+  MVT::ValueType AVT;
+  SDOperand Count;
+  unsigned BytesLeft = 0;
+  bool TwoRepMovs = false;
+  switch (Align & 3) {
+    case 2:   // WORD aligned
+      AVT = MVT::i16;
+      break;
+    case 0:  // DWORD aligned
+      AVT = MVT::i32;
+      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
+        AVT = MVT::i64;
+      break;
+    default:  // Byte aligned
+      AVT = MVT::i8;
+      Count = Op.getOperand(3);
+      break;
+  }
+
+  if (AVT > MVT::i8) {
+    if (I) {
+      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
+      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
+      BytesLeft = I->getValue() % UBytes;
+    } else {
+      assert(AVT >= MVT::i32 &&
+             "Do not use rep;movs if not at least DWORD aligned");
+      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
+                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
+      TwoRepMovs = true;
+    }
+  }
+
+  SDOperand InFlag(0, 0);
+  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
+                            Count, InFlag);
+  InFlag = Chain.getValue(1);
+  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
+                            Op.getOperand(1), InFlag);
+  InFlag = Chain.getValue(1);
+  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
+                            Op.getOperand(2), InFlag);
+  InFlag = Chain.getValue(1);
+
+  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
+  SmallVector<SDOperand, 8> Ops;
+  Ops.push_back(Chain);
+  Ops.push_back(DAG.getValueType(AVT));
+  Ops.push_back(InFlag);
+  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
+
+  if (TwoRepMovs) {
+    InFlag = Chain.getValue(1);
+    Count = Op.getOperand(3);
+    MVT::ValueType CVT = Count.getValueType();
+    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
+                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
+    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
+                              Left, InFlag);
+    InFlag = Chain.getValue(1);
+    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
+    Ops.clear();
+    Ops.push_back(Chain);
+    Ops.push_back(DAG.getValueType(MVT::i8));
+    Ops.push_back(InFlag);
+    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
+  } else if (BytesLeft) {
+    // Issue loads and stores for the last 1 - 7 bytes.
+    unsigned Offset = I->getValue() - BytesLeft;
+    SDOperand DstAddr = Op.getOperand(1);
+    MVT::ValueType DstVT = DstAddr.getValueType();
+    SDOperand SrcAddr = Op.getOperand(2);
+    MVT::ValueType SrcVT = SrcAddr.getValueType();
+    SDOperand Value;
+    if (BytesLeft >= 4) {
+      Value = DAG.getLoad(MVT::i32, Chain,
+                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
+                                      DAG.getConstant(Offset, SrcVT)),
+                          NULL, 0);
+      Chain = Value.getValue(1);
+      Chain = DAG.getStore(Chain, Value,
+                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
+                                       DAG.getConstant(Offset, DstVT)),
+                           NULL, 0);
+      BytesLeft -= 4;
+      Offset += 4;
+    }
+    if (BytesLeft >= 2) {
+      Value = DAG.getLoad(MVT::i16, Chain,
+                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
+                                      DAG.getConstant(Offset, SrcVT)),
+                          NULL, 0);
+      Chain = Value.getValue(1);
+      Chain = DAG.getStore(Chain, Value,
+                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
+                                       DAG.getConstant(Offset, DstVT)),
+                           NULL, 0);
+      BytesLeft -= 2;
+      Offset += 2;
+    }
+
+    if (BytesLeft == 1) {
+      Value = DAG.getLoad(MVT::i8, Chain,
+                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
+                                      DAG.getConstant(Offset, SrcVT)),
+                          NULL, 0);
+      Chain = Value.getValue(1);
+      Chain = DAG.getStore(Chain, Value,
+                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
+                                       DAG.getConstant(Offset, DstVT)),
+                           NULL, 0);
+    }
+  }
+
+  return Chain;
+}
+
+SDOperand
+X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
+  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
+  SDOperand TheOp = Op.getOperand(0);
+  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
+  if (Subtarget->is64Bit()) {
+    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
+    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
+                                         MVT::i64, Copy1.getValue(2));
+    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
+                                DAG.getConstant(32, MVT::i8));
+    SDOperand Ops[] = {
+      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
+    };
+    
+    Tys = DAG.getVTList(MVT::i64, MVT::Other);
+    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
+  }
+  
+  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
+  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
+                                       MVT::i32, Copy1.getValue(2));
+  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
+  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
+  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
+}
+
+SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
+  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
+
+  if (!Subtarget->is64Bit()) {
+    // vastart just stores the address of the VarArgsFrameIndex slot into the
+    // memory location argument.
+    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
+    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
+                        SV->getOffset());
+  }
+
+  // __va_list_tag:
+  //   gp_offset         (0 - 6 * 8)
+  //   fp_offset         (48 - 48 + 8 * 16)
+  //   overflow_arg_area (point to parameters coming in memory).
+  //   reg_save_area
+  SmallVector<SDOperand, 8> MemOps;
+  SDOperand FIN = Op.getOperand(1);
+  // Store gp_offset
+  SDOperand Store = DAG.getStore(Op.getOperand(0),
+                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
+                                 FIN, SV->getValue(), SV->getOffset());
+  MemOps.push_back(Store);
+
+  // Store fp_offset
+  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
+                    DAG.getConstant(4, getPointerTy()));
+  Store = DAG.getStore(Op.getOperand(0),
+                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
+                       FIN, SV->getValue(), SV->getOffset());
+  MemOps.push_back(Store);
+
+  // Store ptr to overflow_arg_area
+  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
+                    DAG.getConstant(4, getPointerTy()));
+  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
+  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
+                       SV->getOffset());
+  MemOps.push_back(Store);
+
+  // Store ptr to reg_save_area.
+  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
+                    DAG.getConstant(8, getPointerTy()));
+  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
+  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
+                       SV->getOffset());
+  MemOps.push_back(Store);
+  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
+}
+
+SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
+  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
+  SDOperand Chain = Op.getOperand(0);
+  SDOperand DstPtr = Op.getOperand(1);
+  SDOperand SrcPtr = Op.getOperand(2);
+  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
+  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
+
+  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
+                       SrcSV->getValue(), SrcSV->getOffset());
+  Chain = SrcPtr.getValue(1);
+  for (unsigned i = 0; i < 3; ++i) {
+    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
+                                SrcSV->getValue(), SrcSV->getOffset());
+    Chain = Val.getValue(1);
+    Chain = DAG.getStore(Chain, Val, DstPtr,
+                         DstSV->getValue(), DstSV->getOffset());
+    if (i == 2)
+      break;
+    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr, 
+                         DAG.getConstant(8, getPointerTy()));
+    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr, 
+                         DAG.getConstant(8, getPointerTy()));
+  }
+  return Chain;
+}
+
+SDOperand
+X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
+  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
+  switch (IntNo) {
+  default: return SDOperand();    // Don't custom lower most intrinsics.
+    // Comparison intrinsics.
+  case Intrinsic::x86_sse_comieq_ss:
+  case Intrinsic::x86_sse_comilt_ss:
+  case Intrinsic::x86_sse_comile_ss:
+  case Intrinsic::x86_sse_comigt_ss:
+  case Intrinsic::x86_sse_comige_ss:
+  case Intrinsic::x86_sse_comineq_ss:
+  case Intrinsic::x86_sse_ucomieq_ss:
+  case Intrinsic::x86_sse_ucomilt_ss:
+  case Intrinsic::x86_sse_ucomile_ss:
+  case Intrinsic::x86_sse_ucomigt_ss:
+  case Intrinsic::x86_sse_ucomige_ss:
+  case Intrinsic::x86_sse_ucomineq_ss:
+  case Intrinsic::x86_sse2_comieq_sd:
+  case Intrinsic::x86_sse2_comilt_sd:
+  case Intrinsic::x86_sse2_comile_sd:
+  case Intrinsic::x86_sse2_comigt_sd:
+  case Intrinsic::x86_sse2_comige_sd:
+  case Intrinsic::x86_sse2_comineq_sd:
+  case Intrinsic::x86_sse2_ucomieq_sd:
+  case Intrinsic::x86_sse2_ucomilt_sd:
+  case Intrinsic::x86_sse2_ucomile_sd:
+  case Intrinsic::x86_sse2_ucomigt_sd:
+  case Intrinsic::x86_sse2_ucomige_sd:
+  case Intrinsic::x86_sse2_ucomineq_sd: {
+    unsigned Opc = 0;
+    ISD::CondCode CC = ISD::SETCC_INVALID;
+    switch (IntNo) {
+    default: break;
+    case Intrinsic::x86_sse_comieq_ss:
+    case Intrinsic::x86_sse2_comieq_sd:
+      Opc = X86ISD::COMI;
+      CC = ISD::SETEQ;
+      break;
+    case Intrinsic::x86_sse_comilt_ss:
+    case Intrinsic::x86_sse2_comilt_sd:
+      Opc = X86ISD::COMI;
+      CC = ISD::SETLT;
+      break;
+    case Intrinsic::x86_sse_comile_ss:
+    case Intrinsic::x86_sse2_comile_sd:
+      Opc = X86ISD::COMI;
+      CC = ISD::SETLE;
+      break;
+    case Intrinsic::x86_sse_comigt_ss:
+    case Intrinsic::x86_sse2_comigt_sd:
+      Opc = X86ISD::COMI;
+      CC = ISD::SETGT;
+      break;
+    case Intrinsic::x86_sse_comige_ss:
+    case Intrinsic::x86_sse2_comige_sd:
+      Opc = X86ISD::COMI;
+      CC = ISD::SETGE;
+      break;
+    case Intrinsic::x86_sse_comineq_ss:
+    case Intrinsic::x86_sse2_comineq_sd:
+      Opc = X86ISD::COMI;
+      CC = ISD::SETNE;
+      break;
+    case Intrinsic::x86_sse_ucomieq_ss:
+    case Intrinsic::x86_sse2_ucomieq_sd:
+      Opc = X86ISD::UCOMI;
+      CC = ISD::SETEQ;
+      break;
+    case Intrinsic::x86_sse_ucomilt_ss:
+    case Intrinsic::x86_sse2_ucomilt_sd:
+      Opc = X86ISD::UCOMI;
+      CC = ISD::SETLT;
+      break;
+    case Intrinsic::x86_sse_ucomile_ss:
+    case Intrinsic::x86_sse2_ucomile_sd:
+      Opc = X86ISD::UCOMI;
+      CC = ISD::SETLE;
+      break;
+    case Intrinsic::x86_sse_ucomigt_ss:
+    case Intrinsic::x86_sse2_ucomigt_sd:
+      Opc = X86ISD::UCOMI;
+      CC = ISD::SETGT;
+      break;
+    case Intrinsic::x86_sse_ucomige_ss:
+    case Intrinsic::x86_sse2_ucomige_sd:
+      Opc = X86ISD::UCOMI;
+      CC = ISD::SETGE;
+      break;
+    case Intrinsic::x86_sse_ucomineq_ss:
+    case Intrinsic::x86_sse2_ucomineq_sd:
+      Opc = X86ISD::UCOMI;
+      CC = ISD::SETNE;
+      break;
+    }
+
+    unsigned X86CC;
+    SDOperand LHS = Op.getOperand(1);
+    SDOperand RHS = Op.getOperand(2);
+    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
+
+    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
+    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
+    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
+    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
+    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
+    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
+    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
+  }
+  }
+}
+
+SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
+  // Depths > 0 not supported yet!
+  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
+    return SDOperand();
+  
+  // Just load the return address
+  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
+  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
+}
+
+SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
+  // Depths > 0 not supported yet!
+  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
+    return SDOperand();
+    
+  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
+  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, 
+                     DAG.getConstant(4, getPointerTy()));
+}
+
+SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
+                                                       SelectionDAG &DAG) {
+  // Is not yet supported on x86-64
+  if (Subtarget->is64Bit())
+    return SDOperand();
+  
+  return DAG.getConstant(8, getPointerTy());
+}
+
+SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
+{
+  assert(!Subtarget->is64Bit() &&
+         "Lowering of eh_return builtin is not supported yet on x86-64");
+    
+  MachineFunction &MF = DAG.getMachineFunction();
+  SDOperand Chain     = Op.getOperand(0);
+  SDOperand Offset    = Op.getOperand(1);
+  SDOperand Handler   = Op.getOperand(2);
+
+  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
+                                    getPointerTy());
+
+  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
+                                    DAG.getConstant(-4UL, getPointerTy()));
+  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
+  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
+  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
+  MF.addLiveOut(X86::ECX);
+
+  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
+                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
+}
+
+/// LowerOperation - Provide custom lowering hooks for some operations.
+///
+SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
+  switch (Op.getOpcode()) {
+  default: assert(0 && "Should not custom lower this!");
+  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
+  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
+  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
+  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
+  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
+  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
+  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
+  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
+  case ISD::SHL_PARTS:
+  case ISD::SRA_PARTS:
+  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
+  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
+  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
+  case ISD::FABS:               return LowerFABS(Op, DAG);
+  case ISD::FNEG:               return LowerFNEG(Op, DAG);
+  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
+  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
+  case ISD::SELECT:             return LowerSELECT(Op, DAG);
+  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
+  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
+  case ISD::CALL:               return LowerCALL(Op, DAG);
+  case ISD::RET:                return LowerRET(Op, DAG);
+  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
+  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
+  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
+  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
+  case ISD::VASTART:            return LowerVASTART(Op, DAG);
+  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
+  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
+  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
+  case ISD::FRAME_TO_ARGS_OFFSET:
+                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
+  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
+  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
+  }
+  return SDOperand();
+}
+
+const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
+  switch (Opcode) {
+  default: return NULL;
+  case X86ISD::SHLD:               return "X86ISD::SHLD";
+  case X86ISD::SHRD:               return "X86ISD::SHRD";
+  case X86ISD::FAND:               return "X86ISD::FAND";
+  case X86ISD::FOR:                return "X86ISD::FOR";
+  case X86ISD::FXOR:               return "X86ISD::FXOR";
+  case X86ISD::FSRL:               return "X86ISD::FSRL";
+  case X86ISD::FILD:               return "X86ISD::FILD";
+  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
+  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
+  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
+  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
+  case X86ISD::FLD:                return "X86ISD::FLD";
+  case X86ISD::FST:                return "X86ISD::FST";
+  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
+  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
+  case X86ISD::CALL:               return "X86ISD::CALL";
+  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
+  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
+  case X86ISD::CMP:                return "X86ISD::CMP";
+  case X86ISD::COMI:               return "X86ISD::COMI";
+  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
+  case X86ISD::SETCC:              return "X86ISD::SETCC";
+  case X86ISD::CMOV:               return "X86ISD::CMOV";
+  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
+  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
+  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
+  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
+  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
+  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
+  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
+  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
+  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
+  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
+  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
+  case X86ISD::FMAX:               return "X86ISD::FMAX";
+  case X86ISD::FMIN:               return "X86ISD::FMIN";
+  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
+  case X86ISD::FRCP:               return "X86ISD::FRCP";
+  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
+  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
+  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
+  }
+}
+
+// isLegalAddressingMode - Return true if the addressing mode represented
+// by AM is legal for this target, for a load/store of the specified type.
+bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, 
+                                              const Type *Ty) const {
+  // X86 supports extremely general addressing modes.
+  
+  // X86 allows a sign-extended 32-bit immediate field as a displacement.
+  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
+    return false;
+  
+  if (AM.BaseGV) {
+    // X86-64 only supports addr of globals in small code model.
+    if (Subtarget->is64Bit() &&
+        getTargetMachine().getCodeModel() != CodeModel::Small)
+      return false;
+    
+    // We can only fold this if we don't need a load either.
+    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
+      return false;
+  }
+  
+  switch (AM.Scale) {
+  case 0:
+  case 1:
+  case 2:
+  case 4:
+  case 8:
+    // These scales always work.
+    break;
+  case 3:
+  case 5:
+  case 9:
+    // These scales are formed with basereg+scalereg.  Only accept if there is
+    // no basereg yet.
+    if (AM.HasBaseReg)
+      return false;
+    break;
+  default:  // Other stuff never works.
+    return false;
+  }
+  
+  return true;
+}
+
+
+/// isShuffleMaskLegal - Targets can use this to indicate that they only
+/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
+/// are assumed to be legal.
+bool
+X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
+  // Only do shuffles on 128-bit vector types for now.
+  if (MVT::getSizeInBits(VT) == 64) return false;
+  return (Mask.Val->getNumOperands() <= 4 ||
+          isIdentityMask(Mask.Val) ||
+          isIdentityMask(Mask.Val, true) ||
+          isSplatMask(Mask.Val)  ||
+          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
+          X86::isUNPCKLMask(Mask.Val) ||
+          X86::isUNPCKHMask(Mask.Val) ||
+          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
+          X86::isUNPCKH_v_undef_Mask(Mask.Val));
+}
+
+bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
+                                               MVT::ValueType EVT,
+                                               SelectionDAG &DAG) const {
+  unsigned NumElts = BVOps.size();
+  // Only do shuffles on 128-bit vector types for now.
+  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
+  if (NumElts == 2) return true;
+  if (NumElts == 4) {
+    return (isMOVLMask(&BVOps[0], 4)  ||
+            isCommutedMOVL(&BVOps[0], 4, true) ||
+            isSHUFPMask(&BVOps[0], 4) || 
+            isCommutedSHUFP(&BVOps[0], 4));
+  }
+  return false;
+}
+
+//===----------------------------------------------------------------------===//
+//                           X86 Scheduler Hooks
+//===----------------------------------------------------------------------===//
+
+MachineBasicBlock *
+X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
+                                           MachineBasicBlock *BB) {
+  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+  switch (MI->getOpcode()) {
+  default: assert(false && "Unexpected instr type to insert");
+  case X86::CMOV_FR32:
+  case X86::CMOV_FR64:
+  case X86::CMOV_V4F32:
+  case X86::CMOV_V2F64:
+  case X86::CMOV_V2I64: {
+    // To "insert" a SELECT_CC instruction, we actually have to insert the
+    // diamond control-flow pattern.  The incoming instruction knows the
+    // destination vreg to set, the condition code register to branch on, the
+    // true/false values to select between, and a branch opcode to use.
+    const BasicBlock *LLVM_BB = BB->getBasicBlock();
+    ilist<MachineBasicBlock>::iterator It = BB;
+    ++It;
+
+    //  thisMBB:
+    //  ...
+    //   TrueVal = ...
+    //   cmpTY ccX, r1, r2
+    //   bCC copy1MBB
+    //   fallthrough --> copy0MBB
+    MachineBasicBlock *thisMBB = BB;
+    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
+    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
+    unsigned Opc =
+      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
+    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
+    MachineFunction *F = BB->getParent();
+    F->getBasicBlockList().insert(It, copy0MBB);
+    F->getBasicBlockList().insert(It, sinkMBB);
+    // Update machine-CFG edges by first adding all successors of the current
+    // block to the new block which will contain the Phi node for the select.
+    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
+        e = BB->succ_end(); i != e; ++i)
+      sinkMBB->addSuccessor(*i);
+    // Next, remove all successors of the current block, and add the true
+    // and fallthrough blocks as its successors.
+    while(!BB->succ_empty())
+      BB->removeSuccessor(BB->succ_begin());
+    BB->addSuccessor(copy0MBB);
+    BB->addSuccessor(sinkMBB);
+
+    //  copy0MBB:
+    //   %FalseValue = ...
+    //   # fallthrough to sinkMBB
+    BB = copy0MBB;
+
+    // Update machine-CFG edges
+    BB->addSuccessor(sinkMBB);
+
+    //  sinkMBB:
+    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+    //  ...
+    BB = sinkMBB;
+    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
+      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
+      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+    delete MI;   // The pseudo instruction is gone now.
+    return BB;
+  }
+
+  case X86::FP32_TO_INT16_IN_MEM:
+  case X86::FP32_TO_INT32_IN_MEM:
+  case X86::FP32_TO_INT64_IN_MEM:
+  case X86::FP64_TO_INT16_IN_MEM:
+  case X86::FP64_TO_INT32_IN_MEM:
+  case X86::FP64_TO_INT64_IN_MEM: {
+    // Change the floating point control register to use "round towards zero"
+    // mode when truncating to an integer value.
+    MachineFunction *F = BB->getParent();
+    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
+    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
+
+    // Load the old value of the high byte of the control word...
+    unsigned OldCW =
+      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
+    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
+
+    // Set the high part to be round to zero...
+    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
+      .addImm(0xC7F);
+
+    // Reload the modified control word now...
+    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
+
+    // Restore the memory image of control word to original value
+    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
+      .addReg(OldCW);
+
+    // Get the X86 opcode to use.
+    unsigned Opc;
+    switch (MI->getOpcode()) {
+    default: assert(0 && "illegal opcode!");
+    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
+    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
+    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
+    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
+    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
+    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
+    }
+
+    X86AddressMode AM;
+    MachineOperand &Op = MI->getOperand(0);
+    if (Op.isRegister()) {
+      AM.BaseType = X86AddressMode::RegBase;
+      AM.Base.Reg = Op.getReg();
+    } else {
+      AM.BaseType = X86AddressMode::FrameIndexBase;
+      AM.Base.FrameIndex = Op.getFrameIndex();
+    }
+    Op = MI->getOperand(1);
+    if (Op.isImmediate())
+      AM.Scale = Op.getImm();
+    Op = MI->getOperand(2);
+    if (Op.isImmediate())
+      AM.IndexReg = Op.getImm();
+    Op = MI->getOperand(3);
+    if (Op.isGlobalAddress()) {
+      AM.GV = Op.getGlobal();
+    } else {
+      AM.Disp = Op.getImm();
+    }
+    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
+                      .addReg(MI->getOperand(4).getReg());
+
+    // Reload the original control word now.
+    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
+
+    delete MI;   // The pseudo instruction is gone now.
+    return BB;
+  }
+  }
+}
+
+//===----------------------------------------------------------------------===//
+//                           X86 Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
+                                                       uint64_t Mask,
+                                                       uint64_t &KnownZero,
+                                                       uint64_t &KnownOne,
+                                                       const SelectionDAG &DAG,
+                                                       unsigned Depth) const {
+  unsigned Opc = Op.getOpcode();
+  assert((Opc >= ISD::BUILTIN_OP_END ||
+          Opc == ISD::INTRINSIC_WO_CHAIN ||
+          Opc == ISD::INTRINSIC_W_CHAIN ||
+          Opc == ISD::INTRINSIC_VOID) &&
+         "Should use MaskedValueIsZero if you don't know whether Op"
+         " is a target node!");
+
+  KnownZero = KnownOne = 0;   // Don't know anything.
+  switch (Opc) {
+  default: break;
+  case X86ISD::SETCC:
+    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
+    break;
+  }
+}
+
+/// getShuffleScalarElt - Returns the scalar element that will make up the ith
+/// element of the result of the vector shuffle.
+static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
+  MVT::ValueType VT = N->getValueType(0);
+  SDOperand PermMask = N->getOperand(2);
+  unsigned NumElems = PermMask.getNumOperands();
+  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
+  i %= NumElems;
+  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+    return (i == 0)
+      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
+  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
+    SDOperand Idx = PermMask.getOperand(i);
+    if (Idx.getOpcode() == ISD::UNDEF)
+      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
+    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
+  }
+  return SDOperand();
+}
+
+/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
+/// node is a GlobalAddress + an offset.
+static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
+  unsigned Opc = N->getOpcode();
+  if (Opc == X86ISD::Wrapper) {
+    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
+      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
+      return true;
+    }
+  } else if (Opc == ISD::ADD) {
+    SDOperand N1 = N->getOperand(0);
+    SDOperand N2 = N->getOperand(1);
+    if (isGAPlusOffset(N1.Val, GA, Offset)) {
+      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
+      if (V) {
+        Offset += V->getSignExtended();
+        return true;
+      }
+    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
+      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
+      if (V) {
+        Offset += V->getSignExtended();
+        return true;
+      }
+    }
+  }
+  return false;
+}
+
+/// isConsecutiveLoad - Returns true if N is loading from an address of Base
+/// + Dist * Size.
+static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
+                              MachineFrameInfo *MFI) {
+  if (N->getOperand(0).Val != Base->getOperand(0).Val)
+    return false;
+
+  SDOperand Loc = N->getOperand(1);
+  SDOperand BaseLoc = Base->getOperand(1);
+  if (Loc.getOpcode() == ISD::FrameIndex) {
+    if (BaseLoc.getOpcode() != ISD::FrameIndex)
+      return false;
+    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
+    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
+    int FS  = MFI->getObjectSize(FI);
+    int BFS = MFI->getObjectSize(BFI);
+    if (FS != BFS || FS != Size) return false;
+    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
+  } else {
+    GlobalValue *GV1 = NULL;
+    GlobalValue *GV2 = NULL;
+    int64_t Offset1 = 0;
+    int64_t Offset2 = 0;
+    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
+    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
+    if (isGA1 && isGA2 && GV1 == GV2)
+      return Offset1 == (Offset2 + Dist*Size);
+  }
+
+  return false;
+}
+
+static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
+                              const X86Subtarget *Subtarget) {
+  GlobalValue *GV;
+  int64_t Offset;
+  if (isGAPlusOffset(Base, GV, Offset))
+    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
+  else {
+    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
+    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
+    if (BFI < 0)
+      // Fixed objects do not specify alignment, however the offsets are known.
+      return ((Subtarget->getStackAlignment() % 16) == 0 &&
+              (MFI->getObjectOffset(BFI) % 16) == 0);
+    else
+      return MFI->getObjectAlignment(BFI) >= 16;
+  }
+  return false;
+}
+
+
+/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
+/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
+/// if the load addresses are consecutive, non-overlapping, and in the right
+/// order.
+static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
+                                       const X86Subtarget *Subtarget) {
+  MachineFunction &MF = DAG.getMachineFunction();
+  MachineFrameInfo *MFI = MF.getFrameInfo();
+  MVT::ValueType VT = N->getValueType(0);
+  MVT::ValueType EVT = MVT::getVectorElementType(VT);
+  SDOperand PermMask = N->getOperand(2);
+  int NumElems = (int)PermMask.getNumOperands();
+  SDNode *Base = NULL;
+  for (int i = 0; i < NumElems; ++i) {
+    SDOperand Idx = PermMask.getOperand(i);
+    if (Idx.getOpcode() == ISD::UNDEF) {
+      if (!Base) return SDOperand();
+    } else {
+      SDOperand Arg =
+        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
+      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
+        return SDOperand();
+      if (!Base)
+        Base = Arg.Val;
+      else if (!isConsecutiveLoad(Arg.Val, Base,
+                                  i, MVT::getSizeInBits(EVT)/8,MFI))
+        return SDOperand();
+    }
+  }
+
+  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
+  if (isAlign16) {
+    LoadSDNode *LD = cast<LoadSDNode>(Base);
+    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
+                       LD->getSrcValueOffset());
+  } else {
+    // Just use movups, it's shorter.
+    SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
+    SmallVector<SDOperand, 3> Ops;
+    Ops.push_back(Base->getOperand(0));
+    Ops.push_back(Base->getOperand(1));
+    Ops.push_back(Base->getOperand(2));
+    return DAG.getNode(ISD::BIT_CONVERT, VT,
+                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
+  }
+}
+
+/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
+static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
+                                      const X86Subtarget *Subtarget) {
+  SDOperand Cond = N->getOperand(0);
+
+  // If we have SSE[12] support, try to form min/max nodes.
+  if (Subtarget->hasSSE2() &&
+      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
+    if (Cond.getOpcode() == ISD::SETCC) {
+      // Get the LHS/RHS of the select.
+      SDOperand LHS = N->getOperand(1);
+      SDOperand RHS = N->getOperand(2);
+      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+
+      unsigned Opcode = 0;
+      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
+        switch (CC) {
+        default: break;
+        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
+        case ISD::SETULE:
+        case ISD::SETLE:
+          if (!UnsafeFPMath) break;
+          // FALL THROUGH.
+        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
+        case ISD::SETLT:
+          Opcode = X86ISD::FMIN;
+          break;
+
+        case ISD::SETOGT: // (X > Y) ? X : Y -> max
+        case ISD::SETUGT:
+        case ISD::SETGT:
+          if (!UnsafeFPMath) break;
+          // FALL THROUGH.
+        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
+        case ISD::SETGE:
+          Opcode = X86ISD::FMAX;
+          break;
+        }
+      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
+        switch (CC) {
+        default: break;
+        case ISD::SETOGT: // (X > Y) ? Y : X -> min
+        case ISD::SETUGT:
+        case ISD::SETGT:
+          if (!UnsafeFPMath) break;
+          // FALL THROUGH.
+        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
+        case ISD::SETGE:
+          Opcode = X86ISD::FMIN;
+          break;
+
+        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
+        case ISD::SETULE:
+        case ISD::SETLE:
+          if (!UnsafeFPMath) break;
+          // FALL THROUGH.
+        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
+        case ISD::SETLT:
+          Opcode = X86ISD::FMAX;
+          break;
+        }
+      }
+
+      if (Opcode)
+        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
+    }
+
+  }
+
+  return SDOperand();
+}
+
+
+SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
+                                               DAGCombinerInfo &DCI) const {
+  SelectionDAG &DAG = DCI.DAG;
+  switch (N->getOpcode()) {
+  default: break;
+  case ISD::VECTOR_SHUFFLE:
+    return PerformShuffleCombine(N, DAG, Subtarget);
+  case ISD::SELECT:
+    return PerformSELECTCombine(N, DAG, Subtarget);
+  }
+
+  return SDOperand();
+}
+
+//===----------------------------------------------------------------------===//
+//                           X86 Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+X86TargetLowering::ConstraintType
+X86TargetLowering::getConstraintType(const std::string &Constraint) const {
+  if (Constraint.size() == 1) {
+    switch (Constraint[0]) {
+    case 'A':
+    case 'r':
+    case 'R':
+    case 'l':
+    case 'q':
+    case 'Q':
+    case 'x':
+    case 'Y':
+      return C_RegisterClass;
+    default:
+      break;
+    }
+  }
+  return TargetLowering::getConstraintType(Constraint);
+}
+
+/// isOperandValidForConstraint - Return the specified operand (possibly
+/// modified) if the specified SDOperand is valid for the specified target
+/// constraint letter, otherwise return null.
+SDOperand X86TargetLowering::
+isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
+  switch (Constraint) {
+  default: break;
+  case 'I':
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+      if (C->getValue() <= 31)
+        return DAG.getTargetConstant(C->getValue(), Op.getValueType());
+    }
+    return SDOperand(0,0);
+  case 'N':
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+      if (C->getValue() <= 255)
+        return DAG.getTargetConstant(C->getValue(), Op.getValueType());
+    }
+    return SDOperand(0,0);
+  case 'i': {
+    // Literal immediates are always ok.
+    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op))
+      return DAG.getTargetConstant(CST->getValue(), Op.getValueType());
+
+    // If we are in non-pic codegen mode, we allow the address of a global (with
+    // an optional displacement) to be used with 'i'.
+    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
+    int64_t Offset = 0;
+    
+    // Match either (GA) or (GA+C)
+    if (GA) {
+      Offset = GA->getOffset();
+    } else if (Op.getOpcode() == ISD::ADD) {
+      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
+      if (C && GA) {
+        Offset = GA->getOffset()+C->getValue();
+      } else {
+        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
+        if (C && GA)
+          Offset = GA->getOffset()+C->getValue();
+        else
+          C = 0, GA = 0;
+      }
+    }
+    
+    if (GA) {
+      // If addressing this global requires a load (e.g. in PIC mode), we can't
+      // match.
+      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
+                                         false))
+        return SDOperand(0, 0);
+
+      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
+                                      Offset);
+      return Op;
+    }
+
+    // Otherwise, not valid for this mode.
+    return SDOperand(0, 0);
+  }
+  }
+  return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
+}
+
+std::vector<unsigned> X86TargetLowering::
+getRegClassForInlineAsmConstraint(const std::string &Constraint,
+                                  MVT::ValueType VT) const {
+  if (Constraint.size() == 1) {
+    // FIXME: not handling fp-stack yet!
+    switch (Constraint[0]) {      // GCC X86 Constraint Letters
+    default: break;  // Unknown constraint letter
+    case 'A':   // EAX/EDX
+      if (VT == MVT::i32 || VT == MVT::i64)
+        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
+      break;
+    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
+    case 'Q':   // Q_REGS
+      if (VT == MVT::i32)
+        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
+      else if (VT == MVT::i16)
+        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
+      else if (VT == MVT::i8)
+        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
+        break;
+    }
+  }
+
+  return std::vector<unsigned>();
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+                                                MVT::ValueType VT) const {
+  // First, see if this is a constraint that directly corresponds to an LLVM
+  // register class.
+  if (Constraint.size() == 1) {
+    // GCC Constraint Letters
+    switch (Constraint[0]) {
+    default: break;
+    case 'r':   // GENERAL_REGS
+    case 'R':   // LEGACY_REGS
+    case 'l':   // INDEX_REGS
+      if (VT == MVT::i64 && Subtarget->is64Bit())
+        return std::make_pair(0U, X86::GR64RegisterClass);
+      if (VT == MVT::i32)
+        return std::make_pair(0U, X86::GR32RegisterClass);
+      else if (VT == MVT::i16)
+        return std::make_pair(0U, X86::GR16RegisterClass);
+      else if (VT == MVT::i8)
+        return std::make_pair(0U, X86::GR8RegisterClass);
+      break;
+    case 'y':   // MMX_REGS if MMX allowed.
+      if (!Subtarget->hasMMX()) break;
+      return std::make_pair(0U, X86::VR64RegisterClass);
+      break;
+    case 'Y':   // SSE_REGS if SSE2 allowed
+      if (!Subtarget->hasSSE2()) break;
+      // FALL THROUGH.
+    case 'x':   // SSE_REGS if SSE1 allowed
+      if (!Subtarget->hasSSE1()) break;
+      
+      switch (VT) {
+      default: break;
+      // Scalar SSE types.
+      case MVT::f32:
+      case MVT::i32:
+        return std::make_pair(0U, X86::FR32RegisterClass);
+      case MVT::f64:
+      case MVT::i64:
+        return std::make_pair(0U, X86::FR64RegisterClass);
+      // Vector types.
+      case MVT::v16i8:
+      case MVT::v8i16:
+      case MVT::v4i32:
+      case MVT::v2i64:
+      case MVT::v4f32:
+      case MVT::v2f64:
+        return std::make_pair(0U, X86::VR128RegisterClass);
+      }
+      break;
+    }
+  }
+  
+  // Use the default implementation in TargetLowering to convert the register
+  // constraint into a member of a register class.
+  std::pair<unsigned, const TargetRegisterClass*> Res;
+  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+
+  // Not found as a standard register?
+  if (Res.second == 0) {
+    // GCC calls "st(0)" just plain "st".
+    if (StringsEqualNoCase("{st}", Constraint)) {
+      Res.first = X86::ST0;
+      Res.second = X86::RSTRegisterClass;
+    }
+
+    return Res;
+  }
+
+  // Otherwise, check to see if this is a register class of the wrong value
+  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
+  // turn into {ax},{dx}.
+  if (Res.second->hasType(VT))
+    return Res;   // Correct type already, nothing to do.
+
+  // All of the single-register GCC register classes map their values onto
+  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
+  // really want an 8-bit or 32-bit register, map to the appropriate register
+  // class and return the appropriate register.
+  if (Res.second != X86::GR16RegisterClass)
+    return Res;
+
+  if (VT == MVT::i8) {
+    unsigned DestReg = 0;
+    switch (Res.first) {
+    default: break;
+    case X86::AX: DestReg = X86::AL; break;
+    case X86::DX: DestReg = X86::DL; break;
+    case X86::CX: DestReg = X86::CL; break;
+    case X86::BX: DestReg = X86::BL; break;
+    }
+    if (DestReg) {
+      Res.first = DestReg;
+      Res.second = Res.second = X86::GR8RegisterClass;
+    }
+  } else if (VT == MVT::i32) {
+    unsigned DestReg = 0;
+    switch (Res.first) {
+    default: break;
+    case X86::AX: DestReg = X86::EAX; break;
+    case X86::DX: DestReg = X86::EDX; break;
+    case X86::CX: DestReg = X86::ECX; break;
+    case X86::BX: DestReg = X86::EBX; break;
+    case X86::SI: DestReg = X86::ESI; break;
+    case X86::DI: DestReg = X86::EDI; break;
+    case X86::BP: DestReg = X86::EBP; break;
+    case X86::SP: DestReg = X86::ESP; break;
+    }
+    if (DestReg) {
+      Res.first = DestReg;
+      Res.second = Res.second = X86::GR32RegisterClass;
+    }
+  } else if (VT == MVT::i64) {
+    unsigned DestReg = 0;
+    switch (Res.first) {
+    default: break;
+    case X86::AX: DestReg = X86::RAX; break;
+    case X86::DX: DestReg = X86::RDX; break;
+    case X86::CX: DestReg = X86::RCX; break;
+    case X86::BX: DestReg = X86::RBX; break;
+    case X86::SI: DestReg = X86::RSI; break;
+    case X86::DI: DestReg = X86::RDI; break;
+    case X86::BP: DestReg = X86::RBP; break;
+    case X86::SP: DestReg = X86::RSP; break;
+    }
+    if (DestReg) {
+      Res.first = DestReg;
+      Res.second = Res.second = X86::GR64RegisterClass;
+    }
+  }
+
+  return Res;
+}