It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Transforms/IPO/DeadArgumentElimination.cpp b/lib/Transforms/IPO/DeadArgumentElimination.cpp
new file mode 100644
index 0000000..943ea30
--- /dev/null
+++ b/lib/Transforms/IPO/DeadArgumentElimination.cpp
@@ -0,0 +1,703 @@
+//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass deletes dead arguments from internal functions.  Dead argument
+// elimination removes arguments which are directly dead, as well as arguments
+// only passed into function calls as dead arguments of other functions.  This
+// pass also deletes dead arguments in a similar way.
+//
+// This pass is often useful as a cleanup pass to run after aggressive
+// interprocedural passes, which add possibly-dead arguments.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "deadargelim"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constant.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Compiler.h"
+#include <set>
+using namespace llvm;
+
+STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
+STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
+
+namespace {
+  /// DAE - The dead argument elimination pass.
+  ///
+  class VISIBILITY_HIDDEN DAE : public ModulePass {
+    /// Liveness enum - During our initial pass over the program, we determine
+    /// that things are either definately alive, definately dead, or in need of
+    /// interprocedural analysis (MaybeLive).
+    ///
+    enum Liveness { Live, MaybeLive, Dead };
+
+    /// LiveArguments, MaybeLiveArguments, DeadArguments - These sets contain
+    /// all of the arguments in the program.  The Dead set contains arguments
+    /// which are completely dead (never used in the function).  The MaybeLive
+    /// set contains arguments which are only passed into other function calls,
+    /// thus may be live and may be dead.  The Live set contains arguments which
+    /// are known to be alive.
+    ///
+    std::set<Argument*> DeadArguments, MaybeLiveArguments, LiveArguments;
+
+    /// DeadRetVal, MaybeLiveRetVal, LifeRetVal - These sets contain all of the
+    /// functions in the program.  The Dead set contains functions whose return
+    /// value is known to be dead.  The MaybeLive set contains functions whose
+    /// return values are only used by return instructions, and the Live set
+    /// contains functions whose return values are used, functions that are
+    /// external, and functions that already return void.
+    ///
+    std::set<Function*> DeadRetVal, MaybeLiveRetVal, LiveRetVal;
+
+    /// InstructionsToInspect - As we mark arguments and return values
+    /// MaybeLive, we keep track of which instructions could make the values
+    /// live here.  Once the entire program has had the return value and
+    /// arguments analyzed, this set is scanned to promote the MaybeLive objects
+    /// to be Live if they really are used.
+    std::vector<Instruction*> InstructionsToInspect;
+
+    /// CallSites - Keep track of the call sites of functions that have
+    /// MaybeLive arguments or return values.
+    std::multimap<Function*, CallSite> CallSites;
+
+  public:
+    static char ID; // Pass identification, replacement for typeid
+    DAE() : ModulePass((intptr_t)&ID) {}
+    bool runOnModule(Module &M);
+
+    virtual bool ShouldHackArguments() const { return false; }
+
+  private:
+    Liveness getArgumentLiveness(const Argument &A);
+    bool isMaybeLiveArgumentNowLive(Argument *Arg);
+
+    bool DeleteDeadVarargs(Function &Fn);
+    void SurveyFunction(Function &Fn);
+
+    void MarkArgumentLive(Argument *Arg);
+    void MarkRetValLive(Function *F);
+    void MarkReturnInstArgumentLive(ReturnInst *RI);
+
+    void RemoveDeadArgumentsFromFunction(Function *F);
+  };
+  char DAE::ID = 0;
+  RegisterPass<DAE> X("deadargelim", "Dead Argument Elimination");
+
+  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
+  /// deletes arguments to functions which are external.  This is only for use
+  /// by bugpoint.
+  struct DAH : public DAE {
+    static char ID;
+    virtual bool ShouldHackArguments() const { return true; }
+  };
+  char DAH::ID = 0;
+  RegisterPass<DAH> Y("deadarghaX0r",
+                      "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
+}
+
+/// createDeadArgEliminationPass - This pass removes arguments from functions
+/// which are not used by the body of the function.
+///
+ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
+ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
+
+/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
+/// llvm.vastart is never called, the varargs list is dead for the function.
+bool DAE::DeleteDeadVarargs(Function &Fn) {
+  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
+  if (Fn.isDeclaration() || !Fn.hasInternalLinkage()) return false;
+  
+  // Ensure that the function is only directly called.
+  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
+    // If this use is anything other than a call site, give up.
+    CallSite CS = CallSite::get(*I);
+    Instruction *TheCall = CS.getInstruction();
+    if (!TheCall) return false;   // Not a direct call site?
+   
+    // The addr of this function is passed to the call.
+    if (I.getOperandNo() != 0) return false;
+  }
+  
+  // Okay, we know we can transform this function if safe.  Scan its body
+  // looking for calls to llvm.vastart.
+  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
+    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+        if (II->getIntrinsicID() == Intrinsic::vastart)
+          return false;
+      }
+    }
+  }
+  
+  // If we get here, there are no calls to llvm.vastart in the function body,
+  // remove the "..." and adjust all the calls.
+  
+  // Start by computing a new prototype for the function, which is the same as
+  // the old function, but has fewer arguments.
+  const FunctionType *FTy = Fn.getFunctionType();
+  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
+  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
+  unsigned NumArgs = Params.size();
+  
+  // Create the new function body and insert it into the module...
+  Function *NF = new Function(NFTy, Fn.getLinkage());
+  NF->setCallingConv(Fn.getCallingConv());
+  Fn.getParent()->getFunctionList().insert(&Fn, NF);
+  NF->takeName(&Fn);
+  
+  // Loop over all of the callers of the function, transforming the call sites
+  // to pass in a smaller number of arguments into the new function.
+  //
+  std::vector<Value*> Args;
+  while (!Fn.use_empty()) {
+    CallSite CS = CallSite::get(Fn.use_back());
+    Instruction *Call = CS.getInstruction();
+    
+    // Loop over the operands, dropping extraneous ones at the end of the list.
+    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
+    
+    Instruction *New;
+    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
+      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
+                           &Args[0], Args.size(), "", Call);
+      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
+    } else {
+      New = new CallInst(NF, &Args[0], Args.size(), "", Call);
+      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
+      if (cast<CallInst>(Call)->isTailCall())
+        cast<CallInst>(New)->setTailCall();
+    }
+    Args.clear();
+    
+    if (!Call->use_empty())
+      Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
+    
+    New->takeName(Call);
+    
+    // Finally, remove the old call from the program, reducing the use-count of
+    // F.
+    Call->getParent()->getInstList().erase(Call);
+  }
+  
+  // Since we have now created the new function, splice the body of the old
+  // function right into the new function, leaving the old rotting hulk of the
+  // function empty.
+  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
+  
+  // Loop over the argument list, transfering uses of the old arguments over to
+  // the new arguments, also transfering over the names as well.  While we're at
+  // it, remove the dead arguments from the DeadArguments list.
+  //
+  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
+       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
+    // Move the name and users over to the new version.
+    I->replaceAllUsesWith(I2);
+    I2->takeName(I);
+  }
+  
+  // Finally, nuke the old function.
+  Fn.eraseFromParent();
+  return true;
+}
+
+
+static inline bool CallPassesValueThoughVararg(Instruction *Call,
+                                               const Value *Arg) {
+  CallSite CS = CallSite::get(Call);
+  const Type *CalledValueTy = CS.getCalledValue()->getType();
+  const Type *FTy = cast<PointerType>(CalledValueTy)->getElementType();
+  unsigned NumFixedArgs = cast<FunctionType>(FTy)->getNumParams();
+  for (CallSite::arg_iterator AI = CS.arg_begin()+NumFixedArgs;
+       AI != CS.arg_end(); ++AI)
+    if (AI->get() == Arg)
+      return true;
+  return false;
+}
+
+// getArgumentLiveness - Inspect an argument, determining if is known Live
+// (used in a computation), MaybeLive (only passed as an argument to a call), or
+// Dead (not used).
+DAE::Liveness DAE::getArgumentLiveness(const Argument &A) {
+  const FunctionType *FTy = A.getParent()->getFunctionType();
+  
+  // If this is the return value of a struct function, it's not really dead.
+  if (FTy->isStructReturn() && &*A.getParent()->arg_begin() == &A)
+    return Live;
+  
+  if (A.use_empty())  // First check, directly dead?
+    return Dead;
+
+  // Scan through all of the uses, looking for non-argument passing uses.
+  for (Value::use_const_iterator I = A.use_begin(), E = A.use_end(); I!=E;++I) {
+    // Return instructions do not immediately effect liveness.
+    if (isa<ReturnInst>(*I))
+      continue;
+
+    CallSite CS = CallSite::get(const_cast<User*>(*I));
+    if (!CS.getInstruction()) {
+      // If its used by something that is not a call or invoke, it's alive!
+      return Live;
+    }
+    // If it's an indirect call, mark it alive...
+    Function *Callee = CS.getCalledFunction();
+    if (!Callee) return Live;
+
+    // Check to see if it's passed through a va_arg area: if so, we cannot
+    // remove it.
+    if (CallPassesValueThoughVararg(CS.getInstruction(), &A))
+      return Live;   // If passed through va_arg area, we cannot remove it
+  }
+
+  return MaybeLive;  // It must be used, but only as argument to a function
+}
+
+
+// SurveyFunction - This performs the initial survey of the specified function,
+// checking out whether or not it uses any of its incoming arguments or whether
+// any callers use the return value.  This fills in the
+// (Dead|MaybeLive|Live)(Arguments|RetVal) sets.
+//
+// We consider arguments of non-internal functions to be intrinsically alive as
+// well as arguments to functions which have their "address taken".
+//
+void DAE::SurveyFunction(Function &F) {
+  bool FunctionIntrinsicallyLive = false;
+  Liveness RetValLiveness = F.getReturnType() == Type::VoidTy ? Live : Dead;
+
+  if (!F.hasInternalLinkage() &&
+      (!ShouldHackArguments() || F.getIntrinsicID()))
+    FunctionIntrinsicallyLive = true;
+  else
+    for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
+      // If this use is anything other than a call site, the function is alive.
+      CallSite CS = CallSite::get(*I);
+      Instruction *TheCall = CS.getInstruction();
+      if (!TheCall) {   // Not a direct call site?
+        FunctionIntrinsicallyLive = true;
+        break;
+      }
+
+      // Check to see if the return value is used...
+      if (RetValLiveness != Live)
+        for (Value::use_iterator I = TheCall->use_begin(),
+               E = TheCall->use_end(); I != E; ++I)
+          if (isa<ReturnInst>(cast<Instruction>(*I))) {
+            RetValLiveness = MaybeLive;
+          } else if (isa<CallInst>(cast<Instruction>(*I)) ||
+                     isa<InvokeInst>(cast<Instruction>(*I))) {
+            if (CallPassesValueThoughVararg(cast<Instruction>(*I), TheCall) ||
+                !CallSite::get(cast<Instruction>(*I)).getCalledFunction()) {
+              RetValLiveness = Live;
+              break;
+            } else {
+              RetValLiveness = MaybeLive;
+            }
+          } else {
+            RetValLiveness = Live;
+            break;
+          }
+
+      // If the function is PASSED IN as an argument, its address has been taken
+      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+           AI != E; ++AI)
+        if (AI->get() == &F) {
+          FunctionIntrinsicallyLive = true;
+          break;
+        }
+      if (FunctionIntrinsicallyLive) break;
+    }
+
+  if (FunctionIntrinsicallyLive) {
+    DOUT << "  Intrinsically live fn: " << F.getName() << "\n";
+    for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
+         AI != E; ++AI)
+      LiveArguments.insert(AI);
+    LiveRetVal.insert(&F);
+    return;
+  }
+
+  switch (RetValLiveness) {
+  case Live:      LiveRetVal.insert(&F); break;
+  case MaybeLive: MaybeLiveRetVal.insert(&F); break;
+  case Dead:      DeadRetVal.insert(&F); break;
+  }
+
+  DOUT << "  Inspecting args for fn: " << F.getName() << "\n";
+
+  // If it is not intrinsically alive, we know that all users of the
+  // function are call sites.  Mark all of the arguments live which are
+  // directly used, and keep track of all of the call sites of this function
+  // if there are any arguments we assume that are dead.
+  //
+  bool AnyMaybeLiveArgs = false;
+  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
+       AI != E; ++AI)
+    switch (getArgumentLiveness(*AI)) {
+    case Live:
+      DOUT << "    Arg live by use: " << AI->getName() << "\n";
+      LiveArguments.insert(AI);
+      break;
+    case Dead:
+      DOUT << "    Arg definitely dead: " << AI->getName() <<"\n";
+      DeadArguments.insert(AI);
+      break;
+    case MaybeLive:
+      DOUT << "    Arg only passed to calls: " << AI->getName() << "\n";
+      AnyMaybeLiveArgs = true;
+      MaybeLiveArguments.insert(AI);
+      break;
+    }
+
+  // If there are any "MaybeLive" arguments, we need to check callees of
+  // this function when/if they become alive.  Record which functions are
+  // callees...
+  if (AnyMaybeLiveArgs || RetValLiveness == MaybeLive)
+    for (Value::use_iterator I = F.use_begin(), E = F.use_end();
+         I != E; ++I) {
+      if (AnyMaybeLiveArgs)
+        CallSites.insert(std::make_pair(&F, CallSite::get(*I)));
+
+      if (RetValLiveness == MaybeLive)
+        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+             UI != E; ++UI)
+          InstructionsToInspect.push_back(cast<Instruction>(*UI));
+    }
+}
+
+// isMaybeLiveArgumentNowLive - Check to see if Arg is alive.  At this point, we
+// know that the only uses of Arg are to be passed in as an argument to a
+// function call or return.  Check to see if the formal argument passed in is in
+// the LiveArguments set.  If so, return true.
+//
+bool DAE::isMaybeLiveArgumentNowLive(Argument *Arg) {
+  for (Value::use_iterator I = Arg->use_begin(), E = Arg->use_end(); I!=E; ++I){
+    if (isa<ReturnInst>(*I)) {
+      if (LiveRetVal.count(Arg->getParent())) return true;
+      continue;
+    }
+
+    CallSite CS = CallSite::get(*I);
+
+    // We know that this can only be used for direct calls...
+    Function *Callee = CS.getCalledFunction();
+
+    // Loop over all of the arguments (because Arg may be passed into the call
+    // multiple times) and check to see if any are now alive...
+    CallSite::arg_iterator CSAI = CS.arg_begin();
+    for (Function::arg_iterator AI = Callee->arg_begin(), E = Callee->arg_end();
+         AI != E; ++AI, ++CSAI)
+      // If this is the argument we are looking for, check to see if it's alive
+      if (*CSAI == Arg && LiveArguments.count(AI))
+        return true;
+  }
+  return false;
+}
+
+/// MarkArgumentLive - The MaybeLive argument 'Arg' is now known to be alive.
+/// Mark it live in the specified sets and recursively mark arguments in callers
+/// live that are needed to pass in a value.
+///
+void DAE::MarkArgumentLive(Argument *Arg) {
+  std::set<Argument*>::iterator It = MaybeLiveArguments.lower_bound(Arg);
+  if (It == MaybeLiveArguments.end() || *It != Arg) return;
+
+  DOUT << "  MaybeLive argument now live: " << Arg->getName() <<"\n";
+  MaybeLiveArguments.erase(It);
+  LiveArguments.insert(Arg);
+
+  // Loop over all of the call sites of the function, making any arguments
+  // passed in to provide a value for this argument live as necessary.
+  //
+  Function *Fn = Arg->getParent();
+  unsigned ArgNo = std::distance(Fn->arg_begin(), Function::arg_iterator(Arg));
+
+  std::multimap<Function*, CallSite>::iterator I = CallSites.lower_bound(Fn);
+  for (; I != CallSites.end() && I->first == Fn; ++I) {
+    CallSite CS = I->second;
+    Value *ArgVal = *(CS.arg_begin()+ArgNo);
+    if (Argument *ActualArg = dyn_cast<Argument>(ArgVal)) {
+      MarkArgumentLive(ActualArg);
+    } else {
+      // If the value passed in at this call site is a return value computed by
+      // some other call site, make sure to mark the return value at the other
+      // call site as being needed.
+      CallSite ArgCS = CallSite::get(ArgVal);
+      if (ArgCS.getInstruction())
+        if (Function *Fn = ArgCS.getCalledFunction())
+          MarkRetValLive(Fn);
+    }
+  }
+}
+
+/// MarkArgumentLive - The MaybeLive return value for the specified function is
+/// now known to be alive.  Propagate this fact to the return instructions which
+/// produce it.
+void DAE::MarkRetValLive(Function *F) {
+  assert(F && "Shame shame, we can't have null pointers here!");
+
+  // Check to see if we already knew it was live
+  std::set<Function*>::iterator I = MaybeLiveRetVal.lower_bound(F);
+  if (I == MaybeLiveRetVal.end() || *I != F) return;  // It's already alive!
+
+  DOUT << "  MaybeLive retval now live: " << F->getName() << "\n";
+
+  MaybeLiveRetVal.erase(I);
+  LiveRetVal.insert(F);        // It is now known to be live!
+
+  // Loop over all of the functions, noticing that the return value is now live.
+  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
+    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
+      MarkReturnInstArgumentLive(RI);
+}
+
+void DAE::MarkReturnInstArgumentLive(ReturnInst *RI) {
+  Value *Op = RI->getOperand(0);
+  if (Argument *A = dyn_cast<Argument>(Op)) {
+    MarkArgumentLive(A);
+  } else if (CallInst *CI = dyn_cast<CallInst>(Op)) {
+    if (Function *F = CI->getCalledFunction())
+      MarkRetValLive(F);
+  } else if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
+    if (Function *F = II->getCalledFunction())
+      MarkRetValLive(F);
+  }
+}
+
+// RemoveDeadArgumentsFromFunction - We know that F has dead arguments, as
+// specified by the DeadArguments list.  Transform the function and all of the
+// callees of the function to not have these arguments.
+//
+void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
+  // Start by computing a new prototype for the function, which is the same as
+  // the old function, but has fewer arguments.
+  const FunctionType *FTy = F->getFunctionType();
+  std::vector<const Type*> Params;
+
+  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
+    if (!DeadArguments.count(I))
+      Params.push_back(I->getType());
+
+  const Type *RetTy = FTy->getReturnType();
+  if (DeadRetVal.count(F)) {
+    RetTy = Type::VoidTy;
+    DeadRetVal.erase(F);
+  }
+
+  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
+  // have zero fixed arguments.
+  //
+  bool ExtraArgHack = false;
+  if (Params.empty() && FTy->isVarArg()) {
+    ExtraArgHack = true;
+    Params.push_back(Type::Int32Ty);
+  }
+
+  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
+
+  // Create the new function body and insert it into the module...
+  Function *NF = new Function(NFTy, F->getLinkage());
+  NF->setCallingConv(F->getCallingConv());
+  F->getParent()->getFunctionList().insert(F, NF);
+  NF->takeName(F);
+
+  // Loop over all of the callers of the function, transforming the call sites
+  // to pass in a smaller number of arguments into the new function.
+  //
+  std::vector<Value*> Args;
+  while (!F->use_empty()) {
+    CallSite CS = CallSite::get(F->use_back());
+    Instruction *Call = CS.getInstruction();
+
+    // Loop over the operands, deleting dead ones...
+    CallSite::arg_iterator AI = CS.arg_begin();
+    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
+         I != E; ++I, ++AI)
+      if (!DeadArguments.count(I))      // Remove operands for dead arguments
+        Args.push_back(*AI);
+
+    if (ExtraArgHack)
+      Args.push_back(UndefValue::get(Type::Int32Ty));
+
+    // Push any varargs arguments on the list
+    for (; AI != CS.arg_end(); ++AI)
+      Args.push_back(*AI);
+
+    Instruction *New;
+    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
+      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
+                           &Args[0], Args.size(), "", Call);
+      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
+    } else {
+      New = new CallInst(NF, &Args[0], Args.size(), "", Call);
+      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
+      if (cast<CallInst>(Call)->isTailCall())
+        cast<CallInst>(New)->setTailCall();
+    }
+    Args.clear();
+
+    if (!Call->use_empty()) {
+      if (New->getType() == Type::VoidTy)
+        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
+      else {
+        Call->replaceAllUsesWith(New);
+        New->takeName(Call);
+      }
+    }
+
+    // Finally, remove the old call from the program, reducing the use-count of
+    // F.
+    Call->getParent()->getInstList().erase(Call);
+  }
+
+  // Since we have now created the new function, splice the body of the old
+  // function right into the new function, leaving the old rotting hulk of the
+  // function empty.
+  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
+
+  // Loop over the argument list, transfering uses of the old arguments over to
+  // the new arguments, also transfering over the names as well.  While we're at
+  // it, remove the dead arguments from the DeadArguments list.
+  //
+  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
+         I2 = NF->arg_begin();
+       I != E; ++I)
+    if (!DeadArguments.count(I)) {
+      // If this is a live argument, move the name and users over to the new
+      // version.
+      I->replaceAllUsesWith(I2);
+      I2->takeName(I);
+      ++I2;
+    } else {
+      // If this argument is dead, replace any uses of it with null constants
+      // (these are guaranteed to only be operands to call instructions which
+      // will later be simplified).
+      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
+      DeadArguments.erase(I);
+    }
+
+  // If we change the return value of the function we must rewrite any return
+  // instructions.  Check this now.
+  if (F->getReturnType() != NF->getReturnType())
+    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
+      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
+        new ReturnInst(0, RI);
+        BB->getInstList().erase(RI);
+      }
+
+  // Now that the old function is dead, delete it.
+  F->getParent()->getFunctionList().erase(F);
+}
+
+bool DAE::runOnModule(Module &M) {
+  // First phase: loop through the module, determining which arguments are live.
+  // We assume all arguments are dead unless proven otherwise (allowing us to
+  // determine that dead arguments passed into recursive functions are dead).
+  //
+  DOUT << "DAE - Determining liveness\n";
+  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
+    Function &F = *I++;
+    if (F.getFunctionType()->isVarArg())
+      if (DeleteDeadVarargs(F))
+        continue;
+      
+    SurveyFunction(F);
+  }
+
+  // Loop over the instructions to inspect, propagating liveness among arguments
+  // and return values which are MaybeLive.
+
+  while (!InstructionsToInspect.empty()) {
+    Instruction *I = InstructionsToInspect.back();
+    InstructionsToInspect.pop_back();
+
+    if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) {
+      // For return instructions, we just have to check to see if the return
+      // value for the current function is known now to be alive.  If so, any
+      // arguments used by it are now alive, and any call instruction return
+      // value is alive as well.
+      if (LiveRetVal.count(RI->getParent()->getParent()))
+        MarkReturnInstArgumentLive(RI);
+
+    } else {
+      CallSite CS = CallSite::get(I);
+      assert(CS.getInstruction() && "Unknown instruction for the I2I list!");
+
+      Function *Callee = CS.getCalledFunction();
+
+      // If we found a call or invoke instruction on this list, that means that
+      // an argument of the function is a call instruction.  If the argument is
+      // live, then the return value of the called instruction is now live.
+      //
+      CallSite::arg_iterator AI = CS.arg_begin();  // ActualIterator
+      for (Function::arg_iterator FI = Callee->arg_begin(),
+             E = Callee->arg_end(); FI != E; ++AI, ++FI) {
+        // If this argument is another call...
+        CallSite ArgCS = CallSite::get(*AI);
+        if (ArgCS.getInstruction() && LiveArguments.count(FI))
+          if (Function *Callee = ArgCS.getCalledFunction())
+            MarkRetValLive(Callee);
+      }
+    }
+  }
+
+  // Now we loop over all of the MaybeLive arguments, promoting them to be live
+  // arguments if one of the calls that uses the arguments to the calls they are
+  // passed into requires them to be live.  Of course this could make other
+  // arguments live, so process callers recursively.
+  //
+  // Because elements can be removed from the MaybeLiveArguments set, copy it to
+  // a temporary vector.
+  //
+  std::vector<Argument*> TmpArgList(MaybeLiveArguments.begin(),
+                                    MaybeLiveArguments.end());
+  for (unsigned i = 0, e = TmpArgList.size(); i != e; ++i) {
+    Argument *MLA = TmpArgList[i];
+    if (MaybeLiveArguments.count(MLA) &&
+        isMaybeLiveArgumentNowLive(MLA))
+      MarkArgumentLive(MLA);
+  }
+
+  // Recover memory early...
+  CallSites.clear();
+
+  // At this point, we know that all arguments in DeadArguments and
+  // MaybeLiveArguments are dead.  If the two sets are empty, there is nothing
+  // to do.
+  if (MaybeLiveArguments.empty() && DeadArguments.empty() &&
+      MaybeLiveRetVal.empty() && DeadRetVal.empty())
+    return false;
+
+  // Otherwise, compact into one set, and start eliminating the arguments from
+  // the functions.
+  DeadArguments.insert(MaybeLiveArguments.begin(), MaybeLiveArguments.end());
+  MaybeLiveArguments.clear();
+  DeadRetVal.insert(MaybeLiveRetVal.begin(), MaybeLiveRetVal.end());
+  MaybeLiveRetVal.clear();
+
+  LiveArguments.clear();
+  LiveRetVal.clear();
+
+  NumArgumentsEliminated += DeadArguments.size();
+  NumRetValsEliminated   += DeadRetVal.size();
+  while (!DeadArguments.empty())
+    RemoveDeadArgumentsFromFunction((*DeadArguments.begin())->getParent());
+
+  while (!DeadRetVal.empty())
+    RemoveDeadArgumentsFromFunction(*DeadRetVal.begin());
+  return true;
+}