It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Transforms/IPO/GlobalOpt.cpp b/lib/Transforms/IPO/GlobalOpt.cpp
new file mode 100644
index 0000000..520af87
--- /dev/null
+++ b/lib/Transforms/IPO/GlobalOpt.cpp
@@ -0,0 +1,1988 @@
+//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass transforms simple global variables that never have their address
+// taken.  If obviously true, it marks read/write globals as constant, deletes
+// variables only stored to, etc.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "globalopt"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include <algorithm>
+#include <set>
+using namespace llvm;
+
+STATISTIC(NumMarked    , "Number of globals marked constant");
+STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
+STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
+STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
+STATISTIC(NumDeleted   , "Number of globals deleted");
+STATISTIC(NumFnDeleted , "Number of functions deleted");
+STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
+STATISTIC(NumLocalized , "Number of globals localized");
+STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
+STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
+STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
+
+namespace {
+  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addRequired<TargetData>();
+    }
+    static char ID; // Pass identification, replacement for typeid
+    GlobalOpt() : ModulePass((intptr_t)&ID) {}
+
+    bool runOnModule(Module &M);
+
+  private:
+    GlobalVariable *FindGlobalCtors(Module &M);
+    bool OptimizeFunctions(Module &M);
+    bool OptimizeGlobalVars(Module &M);
+    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
+    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
+  };
+
+  char GlobalOpt::ID = 0;
+  RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
+}
+
+ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
+
+/// GlobalStatus - As we analyze each global, keep track of some information
+/// about it.  If we find out that the address of the global is taken, none of
+/// this info will be accurate.
+struct VISIBILITY_HIDDEN GlobalStatus {
+  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
+  /// loaded it can be deleted.
+  bool isLoaded;
+
+  /// StoredType - Keep track of what stores to the global look like.
+  ///
+  enum StoredType {
+    /// NotStored - There is no store to this global.  It can thus be marked
+    /// constant.
+    NotStored,
+
+    /// isInitializerStored - This global is stored to, but the only thing
+    /// stored is the constant it was initialized with.  This is only tracked
+    /// for scalar globals.
+    isInitializerStored,
+
+    /// isStoredOnce - This global is stored to, but only its initializer and
+    /// one other value is ever stored to it.  If this global isStoredOnce, we
+    /// track the value stored to it in StoredOnceValue below.  This is only
+    /// tracked for scalar globals.
+    isStoredOnce,
+
+    /// isStored - This global is stored to by multiple values or something else
+    /// that we cannot track.
+    isStored
+  } StoredType;
+
+  /// StoredOnceValue - If only one value (besides the initializer constant) is
+  /// ever stored to this global, keep track of what value it is.
+  Value *StoredOnceValue;
+
+  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
+  /// null/false.  When the first accessing function is noticed, it is recorded.
+  /// When a second different accessing function is noticed,
+  /// HasMultipleAccessingFunctions is set to true.
+  Function *AccessingFunction;
+  bool HasMultipleAccessingFunctions;
+
+  /// HasNonInstructionUser - Set to true if this global has a user that is not
+  /// an instruction (e.g. a constant expr or GV initializer).
+  bool HasNonInstructionUser;
+
+  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
+  bool HasPHIUser;
+  
+  /// isNotSuitableForSRA - Keep track of whether any SRA preventing users of
+  /// the global exist.  Such users include GEP instruction with variable
+  /// indexes, and non-gep/load/store users like constant expr casts.
+  bool isNotSuitableForSRA;
+
+  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
+                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
+                   HasNonInstructionUser(false), HasPHIUser(false),
+                   isNotSuitableForSRA(false) {}
+};
+
+
+
+/// ConstantIsDead - Return true if the specified constant is (transitively)
+/// dead.  The constant may be used by other constants (e.g. constant arrays and
+/// constant exprs) as long as they are dead, but it cannot be used by anything
+/// else.
+static bool ConstantIsDead(Constant *C) {
+  if (isa<GlobalValue>(C)) return false;
+
+  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
+    if (Constant *CU = dyn_cast<Constant>(*UI)) {
+      if (!ConstantIsDead(CU)) return false;
+    } else
+      return false;
+  return true;
+}
+
+
+/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
+/// structure.  If the global has its address taken, return true to indicate we
+/// can't do anything with it.
+///
+static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
+                          std::set<PHINode*> &PHIUsers) {
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
+    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
+      GS.HasNonInstructionUser = true;
+
+      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
+      if (CE->getOpcode() != Instruction::GetElementPtr)
+        GS.isNotSuitableForSRA = true;
+      else if (!GS.isNotSuitableForSRA) {
+        // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
+        // don't like < 3 operand CE's, and we don't like non-constant integer
+        // indices.
+        if (CE->getNumOperands() < 3 || !CE->getOperand(1)->isNullValue())
+          GS.isNotSuitableForSRA = true;
+        else {
+          for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
+            if (!isa<ConstantInt>(CE->getOperand(i))) {
+              GS.isNotSuitableForSRA = true;
+              break;
+            }
+        }
+      }
+
+    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
+      if (!GS.HasMultipleAccessingFunctions) {
+        Function *F = I->getParent()->getParent();
+        if (GS.AccessingFunction == 0)
+          GS.AccessingFunction = F;
+        else if (GS.AccessingFunction != F)
+          GS.HasMultipleAccessingFunctions = true;
+      }
+      if (isa<LoadInst>(I)) {
+        GS.isLoaded = true;
+      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+        // Don't allow a store OF the address, only stores TO the address.
+        if (SI->getOperand(0) == V) return true;
+
+        // If this is a direct store to the global (i.e., the global is a scalar
+        // value, not an aggregate), keep more specific information about
+        // stores.
+        if (GS.StoredType != GlobalStatus::isStored)
+          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
+            Value *StoredVal = SI->getOperand(0);
+            if (StoredVal == GV->getInitializer()) {
+              if (GS.StoredType < GlobalStatus::isInitializerStored)
+                GS.StoredType = GlobalStatus::isInitializerStored;
+            } else if (isa<LoadInst>(StoredVal) &&
+                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
+              // G = G
+              if (GS.StoredType < GlobalStatus::isInitializerStored)
+                GS.StoredType = GlobalStatus::isInitializerStored;
+            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
+              GS.StoredType = GlobalStatus::isStoredOnce;
+              GS.StoredOnceValue = StoredVal;
+            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
+                       GS.StoredOnceValue == StoredVal) {
+              // noop.
+            } else {
+              GS.StoredType = GlobalStatus::isStored;
+            }
+          } else {
+            GS.StoredType = GlobalStatus::isStored;
+          }
+      } else if (isa<GetElementPtrInst>(I)) {
+        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
+
+        // If the first two indices are constants, this can be SRA'd.
+        if (isa<GlobalVariable>(I->getOperand(0))) {
+          if (I->getNumOperands() < 3 || !isa<Constant>(I->getOperand(1)) ||
+              !cast<Constant>(I->getOperand(1))->isNullValue() ||
+              !isa<ConstantInt>(I->getOperand(2)))
+            GS.isNotSuitableForSRA = true;
+        } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I->getOperand(0))){
+          if (CE->getOpcode() != Instruction::GetElementPtr ||
+              CE->getNumOperands() < 3 || I->getNumOperands() < 2 ||
+              !isa<Constant>(I->getOperand(0)) ||
+              !cast<Constant>(I->getOperand(0))->isNullValue())
+            GS.isNotSuitableForSRA = true;
+        } else {
+          GS.isNotSuitableForSRA = true;
+        }
+      } else if (isa<SelectInst>(I)) {
+        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
+        GS.isNotSuitableForSRA = true;
+      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
+        // PHI nodes we can check just like select or GEP instructions, but we
+        // have to be careful about infinite recursion.
+        if (PHIUsers.insert(PN).second)  // Not already visited.
+          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
+        GS.isNotSuitableForSRA = true;
+        GS.HasPHIUser = true;
+      } else if (isa<CmpInst>(I)) {
+        GS.isNotSuitableForSRA = true;
+      } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
+        if (I->getOperand(1) == V)
+          GS.StoredType = GlobalStatus::isStored;
+        if (I->getOperand(2) == V)
+          GS.isLoaded = true;
+        GS.isNotSuitableForSRA = true;
+      } else if (isa<MemSetInst>(I)) {
+        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
+        GS.StoredType = GlobalStatus::isStored;
+        GS.isNotSuitableForSRA = true;
+      } else {
+        return true;  // Any other non-load instruction might take address!
+      }
+    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
+      GS.HasNonInstructionUser = true;
+      // We might have a dead and dangling constant hanging off of here.
+      if (!ConstantIsDead(C))
+        return true;
+    } else {
+      GS.HasNonInstructionUser = true;
+      // Otherwise must be some other user.
+      return true;
+    }
+
+  return false;
+}
+
+static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
+  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
+  if (!CI) return 0;
+  unsigned IdxV = CI->getZExtValue();
+
+  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
+    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
+  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
+    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
+  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
+    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
+  } else if (isa<ConstantAggregateZero>(Agg)) {
+    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
+      if (IdxV < STy->getNumElements())
+        return Constant::getNullValue(STy->getElementType(IdxV));
+    } else if (const SequentialType *STy =
+               dyn_cast<SequentialType>(Agg->getType())) {
+      return Constant::getNullValue(STy->getElementType());
+    }
+  } else if (isa<UndefValue>(Agg)) {
+    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
+      if (IdxV < STy->getNumElements())
+        return UndefValue::get(STy->getElementType(IdxV));
+    } else if (const SequentialType *STy =
+               dyn_cast<SequentialType>(Agg->getType())) {
+      return UndefValue::get(STy->getElementType());
+    }
+  }
+  return 0;
+}
+
+
+/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
+/// users of the global, cleaning up the obvious ones.  This is largely just a
+/// quick scan over the use list to clean up the easy and obvious cruft.  This
+/// returns true if it made a change.
+static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
+  bool Changed = false;
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
+    User *U = *UI++;
+
+    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+      if (Init) {
+        // Replace the load with the initializer.
+        LI->replaceAllUsesWith(Init);
+        LI->eraseFromParent();
+        Changed = true;
+      }
+    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+      // Store must be unreachable or storing Init into the global.
+      SI->eraseFromParent();
+      Changed = true;
+    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
+      if (CE->getOpcode() == Instruction::GetElementPtr) {
+        Constant *SubInit = 0;
+        if (Init)
+          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
+        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
+      } else if (CE->getOpcode() == Instruction::BitCast && 
+                 isa<PointerType>(CE->getType())) {
+        // Pointer cast, delete any stores and memsets to the global.
+        Changed |= CleanupConstantGlobalUsers(CE, 0);
+      }
+
+      if (CE->use_empty()) {
+        CE->destroyConstant();
+        Changed = true;
+      }
+    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
+      Constant *SubInit = 0;
+      ConstantExpr *CE = 
+        dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
+      if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
+        SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
+      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
+
+      if (GEP->use_empty()) {
+        GEP->eraseFromParent();
+        Changed = true;
+      }
+    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
+      if (MI->getRawDest() == V) {
+        MI->eraseFromParent();
+        Changed = true;
+      }
+
+    } else if (Constant *C = dyn_cast<Constant>(U)) {
+      // If we have a chain of dead constantexprs or other things dangling from
+      // us, and if they are all dead, nuke them without remorse.
+      if (ConstantIsDead(C)) {
+        C->destroyConstant();
+        // This could have invalidated UI, start over from scratch.
+        CleanupConstantGlobalUsers(V, Init);
+        return true;
+      }
+    }
+  }
+  return Changed;
+}
+
+/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
+/// variable.  This opens the door for other optimizations by exposing the
+/// behavior of the program in a more fine-grained way.  We have determined that
+/// this transformation is safe already.  We return the first global variable we
+/// insert so that the caller can reprocess it.
+static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
+  assert(GV->hasInternalLinkage() && !GV->isConstant());
+  Constant *Init = GV->getInitializer();
+  const Type *Ty = Init->getType();
+
+  std::vector<GlobalVariable*> NewGlobals;
+  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
+
+  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+    NewGlobals.reserve(STy->getNumElements());
+    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+      Constant *In = getAggregateConstantElement(Init,
+                                            ConstantInt::get(Type::Int32Ty, i));
+      assert(In && "Couldn't get element of initializer?");
+      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
+                                               GlobalVariable::InternalLinkage,
+                                               In, GV->getName()+"."+utostr(i),
+                                               (Module *)NULL,
+                                               GV->isThreadLocal());
+      Globals.insert(GV, NGV);
+      NewGlobals.push_back(NGV);
+    }
+  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
+    unsigned NumElements = 0;
+    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
+      NumElements = ATy->getNumElements();
+    else if (const VectorType *PTy = dyn_cast<VectorType>(STy))
+      NumElements = PTy->getNumElements();
+    else
+      assert(0 && "Unknown aggregate sequential type!");
+
+    if (NumElements > 16 && GV->hasNUsesOrMore(16))
+      return 0; // It's not worth it.
+    NewGlobals.reserve(NumElements);
+    for (unsigned i = 0, e = NumElements; i != e; ++i) {
+      Constant *In = getAggregateConstantElement(Init,
+                                            ConstantInt::get(Type::Int32Ty, i));
+      assert(In && "Couldn't get element of initializer?");
+
+      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
+                                               GlobalVariable::InternalLinkage,
+                                               In, GV->getName()+"."+utostr(i),
+                                               (Module *)NULL,
+                                               GV->isThreadLocal());
+      Globals.insert(GV, NGV);
+      NewGlobals.push_back(NGV);
+    }
+  }
+
+  if (NewGlobals.empty())
+    return 0;
+
+  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
+
+  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
+
+  // Loop over all of the uses of the global, replacing the constantexpr geps,
+  // with smaller constantexpr geps or direct references.
+  while (!GV->use_empty()) {
+    User *GEP = GV->use_back();
+    assert(((isa<ConstantExpr>(GEP) &&
+             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
+            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
+
+    // Ignore the 1th operand, which has to be zero or else the program is quite
+    // broken (undefined).  Get the 2nd operand, which is the structure or array
+    // index.
+    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
+    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
+
+    Value *NewPtr = NewGlobals[Val];
+
+    // Form a shorter GEP if needed.
+    if (GEP->getNumOperands() > 3)
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
+        SmallVector<Constant*, 8> Idxs;
+        Idxs.push_back(NullInt);
+        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
+          Idxs.push_back(CE->getOperand(i));
+        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
+                                                &Idxs[0], Idxs.size());
+      } else {
+        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
+        SmallVector<Value*, 8> Idxs;
+        Idxs.push_back(NullInt);
+        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
+          Idxs.push_back(GEPI->getOperand(i));
+        NewPtr = new GetElementPtrInst(NewPtr, &Idxs[0], Idxs.size(),
+                                       GEPI->getName()+"."+utostr(Val), GEPI);
+      }
+    GEP->replaceAllUsesWith(NewPtr);
+
+    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
+      GEPI->eraseFromParent();
+    else
+      cast<ConstantExpr>(GEP)->destroyConstant();
+  }
+
+  // Delete the old global, now that it is dead.
+  Globals.erase(GV);
+  ++NumSRA;
+
+  // Loop over the new globals array deleting any globals that are obviously
+  // dead.  This can arise due to scalarization of a structure or an array that
+  // has elements that are dead.
+  unsigned FirstGlobal = 0;
+  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
+    if (NewGlobals[i]->use_empty()) {
+      Globals.erase(NewGlobals[i]);
+      if (FirstGlobal == i) ++FirstGlobal;
+    }
+
+  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
+}
+
+/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
+/// value will trap if the value is dynamically null.
+static bool AllUsesOfValueWillTrapIfNull(Value *V) {
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
+    if (isa<LoadInst>(*UI)) {
+      // Will trap.
+    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
+      if (SI->getOperand(0) == V) {
+        //cerr << "NONTRAPPING USE: " << **UI;
+        return false;  // Storing the value.
+      }
+    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
+      if (CI->getOperand(0) != V) {
+        //cerr << "NONTRAPPING USE: " << **UI;
+        return false;  // Not calling the ptr
+      }
+    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
+      if (II->getOperand(0) != V) {
+        //cerr << "NONTRAPPING USE: " << **UI;
+        return false;  // Not calling the ptr
+      }
+    } else if (CastInst *CI = dyn_cast<CastInst>(*UI)) {
+      if (!AllUsesOfValueWillTrapIfNull(CI)) return false;
+    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
+      if (!AllUsesOfValueWillTrapIfNull(GEPI)) return false;
+    } else if (isa<ICmpInst>(*UI) &&
+               isa<ConstantPointerNull>(UI->getOperand(1))) {
+      // Ignore setcc X, null
+    } else {
+      //cerr << "NONTRAPPING USE: " << **UI;
+      return false;
+    }
+  return true;
+}
+
+/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
+/// from GV will trap if the loaded value is null.  Note that this also permits
+/// comparisons of the loaded value against null, as a special case.
+static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
+  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
+    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
+      if (!AllUsesOfValueWillTrapIfNull(LI))
+        return false;
+    } else if (isa<StoreInst>(*UI)) {
+      // Ignore stores to the global.
+    } else {
+      // We don't know or understand this user, bail out.
+      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
+      return false;
+    }
+
+  return true;
+}
+
+static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
+  bool Changed = false;
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
+    Instruction *I = cast<Instruction>(*UI++);
+    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+      LI->setOperand(0, NewV);
+      Changed = true;
+    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+      if (SI->getOperand(1) == V) {
+        SI->setOperand(1, NewV);
+        Changed = true;
+      }
+    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
+      if (I->getOperand(0) == V) {
+        // Calling through the pointer!  Turn into a direct call, but be careful
+        // that the pointer is not also being passed as an argument.
+        I->setOperand(0, NewV);
+        Changed = true;
+        bool PassedAsArg = false;
+        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
+          if (I->getOperand(i) == V) {
+            PassedAsArg = true;
+            I->setOperand(i, NewV);
+          }
+
+        if (PassedAsArg) {
+          // Being passed as an argument also.  Be careful to not invalidate UI!
+          UI = V->use_begin();
+        }
+      }
+    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
+      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
+                                ConstantExpr::getCast(CI->getOpcode(),
+                                                      NewV, CI->getType()));
+      if (CI->use_empty()) {
+        Changed = true;
+        CI->eraseFromParent();
+      }
+    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
+      // Should handle GEP here.
+      SmallVector<Constant*, 8> Idxs;
+      Idxs.reserve(GEPI->getNumOperands()-1);
+      for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
+        if (Constant *C = dyn_cast<Constant>(GEPI->getOperand(i)))
+          Idxs.push_back(C);
+        else
+          break;
+      if (Idxs.size() == GEPI->getNumOperands()-1)
+        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
+                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
+                                                               Idxs.size()));
+      if (GEPI->use_empty()) {
+        Changed = true;
+        GEPI->eraseFromParent();
+      }
+    }
+  }
+
+  return Changed;
+}
+
+
+/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
+/// value stored into it.  If there are uses of the loaded value that would trap
+/// if the loaded value is dynamically null, then we know that they cannot be
+/// reachable with a null optimize away the load.
+static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
+  std::vector<LoadInst*> Loads;
+  bool Changed = false;
+
+  // Replace all uses of loads with uses of uses of the stored value.
+  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
+       GUI != E; ++GUI)
+    if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
+      Loads.push_back(LI);
+      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
+    } else {
+      // If we get here we could have stores, selects, or phi nodes whose values
+      // are loaded.
+      assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
+              isa<SelectInst>(*GUI)) &&
+             "Only expect load and stores!");
+    }
+
+  if (Changed) {
+    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
+    ++NumGlobUses;
+  }
+
+  // Delete all of the loads we can, keeping track of whether we nuked them all!
+  bool AllLoadsGone = true;
+  while (!Loads.empty()) {
+    LoadInst *L = Loads.back();
+    if (L->use_empty()) {
+      L->eraseFromParent();
+      Changed = true;
+    } else {
+      AllLoadsGone = false;
+    }
+    Loads.pop_back();
+  }
+
+  // If we nuked all of the loads, then none of the stores are needed either,
+  // nor is the global.
+  if (AllLoadsGone) {
+    DOUT << "  *** GLOBAL NOW DEAD!\n";
+    CleanupConstantGlobalUsers(GV, 0);
+    if (GV->use_empty()) {
+      GV->eraseFromParent();
+      ++NumDeleted;
+    }
+    Changed = true;
+  }
+  return Changed;
+}
+
+/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
+/// instructions that are foldable.
+static void ConstantPropUsersOf(Value *V) {
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
+    if (Instruction *I = dyn_cast<Instruction>(*UI++))
+      if (Constant *NewC = ConstantFoldInstruction(I)) {
+        I->replaceAllUsesWith(NewC);
+
+        // Advance UI to the next non-I use to avoid invalidating it!
+        // Instructions could multiply use V.
+        while (UI != E && *UI == I)
+          ++UI;
+        I->eraseFromParent();
+      }
+}
+
+/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
+/// variable, and transforms the program as if it always contained the result of
+/// the specified malloc.  Because it is always the result of the specified
+/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
+/// malloc into a global, and any loads of GV as uses of the new global.
+static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
+                                                     MallocInst *MI) {
+  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
+  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
+
+  if (NElements->getZExtValue() != 1) {
+    // If we have an array allocation, transform it to a single element
+    // allocation to make the code below simpler.
+    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
+                                 NElements->getZExtValue());
+    MallocInst *NewMI =
+      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
+                     MI->getAlignment(), MI->getName(), MI);
+    Value* Indices[2];
+    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
+    Value *NewGEP = new GetElementPtrInst(NewMI, Indices, 2,
+                                          NewMI->getName()+".el0", MI);
+    MI->replaceAllUsesWith(NewGEP);
+    MI->eraseFromParent();
+    MI = NewMI;
+  }
+
+  // Create the new global variable.  The contents of the malloc'd memory is
+  // undefined, so initialize with an undef value.
+  Constant *Init = UndefValue::get(MI->getAllocatedType());
+  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
+                                             GlobalValue::InternalLinkage, Init,
+                                             GV->getName()+".body",
+                                             (Module *)NULL,
+                                             GV->isThreadLocal());
+  GV->getParent()->getGlobalList().insert(GV, NewGV);
+
+  // Anything that used the malloc now uses the global directly.
+  MI->replaceAllUsesWith(NewGV);
+
+  Constant *RepValue = NewGV;
+  if (NewGV->getType() != GV->getType()->getElementType())
+    RepValue = ConstantExpr::getBitCast(RepValue, 
+                                        GV->getType()->getElementType());
+
+  // If there is a comparison against null, we will insert a global bool to
+  // keep track of whether the global was initialized yet or not.
+  GlobalVariable *InitBool =
+    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
+                       ConstantInt::getFalse(), GV->getName()+".init",
+                       (Module *)NULL, GV->isThreadLocal());
+  bool InitBoolUsed = false;
+
+  // Loop over all uses of GV, processing them in turn.
+  std::vector<StoreInst*> Stores;
+  while (!GV->use_empty())
+    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
+      while (!LI->use_empty()) {
+        Use &LoadUse = LI->use_begin().getUse();
+        if (!isa<ICmpInst>(LoadUse.getUser()))
+          LoadUse = RepValue;
+        else {
+          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
+          // Replace the cmp X, 0 with a use of the bool value.
+          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
+          InitBoolUsed = true;
+          switch (CI->getPredicate()) {
+          default: assert(0 && "Unknown ICmp Predicate!");
+          case ICmpInst::ICMP_ULT:
+          case ICmpInst::ICMP_SLT:
+            LV = ConstantInt::getFalse();   // X < null -> always false
+            break;
+          case ICmpInst::ICMP_ULE:
+          case ICmpInst::ICMP_SLE:
+          case ICmpInst::ICMP_EQ:
+            LV = BinaryOperator::createNot(LV, "notinit", CI);
+            break;
+          case ICmpInst::ICMP_NE:
+          case ICmpInst::ICMP_UGE:
+          case ICmpInst::ICMP_SGE:
+          case ICmpInst::ICMP_UGT:
+          case ICmpInst::ICMP_SGT:
+            break;  // no change.
+          }
+          CI->replaceAllUsesWith(LV);
+          CI->eraseFromParent();
+        }
+      }
+      LI->eraseFromParent();
+    } else {
+      StoreInst *SI = cast<StoreInst>(GV->use_back());
+      // The global is initialized when the store to it occurs.
+      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
+      SI->eraseFromParent();
+    }
+
+  // If the initialization boolean was used, insert it, otherwise delete it.
+  if (!InitBoolUsed) {
+    while (!InitBool->use_empty())  // Delete initializations
+      cast<Instruction>(InitBool->use_back())->eraseFromParent();
+    delete InitBool;
+  } else
+    GV->getParent()->getGlobalList().insert(GV, InitBool);
+
+
+  // Now the GV is dead, nuke it and the malloc.
+  GV->eraseFromParent();
+  MI->eraseFromParent();
+
+  // To further other optimizations, loop over all users of NewGV and try to
+  // constant prop them.  This will promote GEP instructions with constant
+  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
+  ConstantPropUsersOf(NewGV);
+  if (RepValue != NewGV)
+    ConstantPropUsersOf(RepValue);
+
+  return NewGV;
+}
+
+/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
+/// to make sure that there are no complex uses of V.  We permit simple things
+/// like dereferencing the pointer, but not storing through the address, unless
+/// it is to the specified global.
+static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
+                                                      GlobalVariable *GV) {
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI)
+    if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
+      // Fine, ignore.
+    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
+      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
+        return false;  // Storing the pointer itself... bad.
+      // Otherwise, storing through it, or storing into GV... fine.
+    } else if (isa<GetElementPtrInst>(*UI) || isa<SelectInst>(*UI)) {
+      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),GV))
+        return false;
+    } else {
+      return false;
+    }
+  return true;
+}
+
+/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
+/// somewhere.  Transform all uses of the allocation into loads from the
+/// global and uses of the resultant pointer.  Further, delete the store into
+/// GV.  This assumes that these value pass the 
+/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
+static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 
+                                          GlobalVariable *GV) {
+  while (!Alloc->use_empty()) {
+    Instruction *U = Alloc->use_back();
+    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+      // If this is the store of the allocation into the global, remove it.
+      if (SI->getOperand(1) == GV) {
+        SI->eraseFromParent();
+        continue;
+      }
+    }
+    
+    // Insert a load from the global, and use it instead of the malloc.
+    Value *NL = new LoadInst(GV, GV->getName()+".val", U);
+    U->replaceUsesOfWith(Alloc, NL);
+  }
+}
+
+/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
+/// GV are simple enough to perform HeapSRA, return true.
+static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV) {
+  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E; 
+       ++UI)
+    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
+      // We permit two users of the load: setcc comparing against the null
+      // pointer, and a getelementptr of a specific form.
+      for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); UI != E; 
+           ++UI) {
+        // Comparison against null is ok.
+        if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
+          if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
+            return false;
+          continue;
+        }
+        
+        // getelementptr is also ok, but only a simple form.
+        GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI);
+        if (!GEPI) return false;
+        
+        // Must index into the array and into the struct.
+        if (GEPI->getNumOperands() < 3)
+          return false;
+        
+        // Otherwise the GEP is ok.
+        continue;
+      }
+    }
+  return true;
+}
+
+/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
+/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
+/// use FieldGlobals instead.  All uses of loaded values satisfy
+/// GlobalLoadUsesSimpleEnoughForHeapSRA.
+static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Ptr, 
+                             const std::vector<GlobalVariable*> &FieldGlobals) {
+  std::vector<Value *> InsertedLoadsForPtr;
+  //InsertedLoadsForPtr.resize(FieldGlobals.size());
+  while (!Ptr->use_empty()) {
+    Instruction *User = Ptr->use_back();
+    
+    // If this is a comparison against null, handle it.
+    if (ICmpInst *SCI = dyn_cast<ICmpInst>(User)) {
+      assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
+      // If we have a setcc of the loaded pointer, we can use a setcc of any
+      // field.
+      Value *NPtr;
+      if (InsertedLoadsForPtr.empty()) {
+        NPtr = new LoadInst(FieldGlobals[0], Ptr->getName()+".f0", Ptr);
+        InsertedLoadsForPtr.push_back(Ptr);
+      } else {
+        NPtr = InsertedLoadsForPtr.back();
+      }
+      
+      Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
+                                Constant::getNullValue(NPtr->getType()),
+                                SCI->getName(), SCI);
+      SCI->replaceAllUsesWith(New);
+      SCI->eraseFromParent();
+      continue;
+    }
+    
+    // Otherwise, this should be: 'getelementptr Ptr, Idx, uint FieldNo ...'
+    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
+    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
+           && "Unexpected GEPI!");
+    
+    // Load the pointer for this field.
+    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
+    if (InsertedLoadsForPtr.size() <= FieldNo)
+      InsertedLoadsForPtr.resize(FieldNo+1);
+    if (InsertedLoadsForPtr[FieldNo] == 0)
+      InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
+                                                  Ptr->getName()+".f" + 
+                                                  utostr(FieldNo), Ptr);
+    Value *NewPtr = InsertedLoadsForPtr[FieldNo];
+
+    // Create the new GEP idx vector.
+    SmallVector<Value*, 8> GEPIdx;
+    GEPIdx.push_back(GEPI->getOperand(1));
+    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
+
+    Value *NGEPI = new GetElementPtrInst(NewPtr, &GEPIdx[0], GEPIdx.size(),
+                                         GEPI->getName(), GEPI);
+    GEPI->replaceAllUsesWith(NGEPI);
+    GEPI->eraseFromParent();
+  }
+}
+
+/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
+/// it up into multiple allocations of arrays of the fields.
+static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
+  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
+  const StructType *STy = cast<StructType>(MI->getAllocatedType());
+
+  // There is guaranteed to be at least one use of the malloc (storing
+  // it into GV).  If there are other uses, change them to be uses of
+  // the global to simplify later code.  This also deletes the store
+  // into GV.
+  ReplaceUsesOfMallocWithGlobal(MI, GV);
+  
+  // Okay, at this point, there are no users of the malloc.  Insert N
+  // new mallocs at the same place as MI, and N globals.
+  std::vector<GlobalVariable*> FieldGlobals;
+  std::vector<MallocInst*> FieldMallocs;
+  
+  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
+    const Type *FieldTy = STy->getElementType(FieldNo);
+    const Type *PFieldTy = PointerType::get(FieldTy);
+    
+    GlobalVariable *NGV =
+      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
+                         Constant::getNullValue(PFieldTy),
+                         GV->getName() + ".f" + utostr(FieldNo), GV,
+                         GV->isThreadLocal());
+    FieldGlobals.push_back(NGV);
+    
+    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
+                                     MI->getName() + ".f" + utostr(FieldNo),MI);
+    FieldMallocs.push_back(NMI);
+    new StoreInst(NMI, NGV, MI);
+  }
+  
+  // The tricky aspect of this transformation is handling the case when malloc
+  // fails.  In the original code, malloc failing would set the result pointer
+  // of malloc to null.  In this case, some mallocs could succeed and others
+  // could fail.  As such, we emit code that looks like this:
+  //    F0 = malloc(field0)
+  //    F1 = malloc(field1)
+  //    F2 = malloc(field2)
+  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
+  //      if (F0) { free(F0); F0 = 0; }
+  //      if (F1) { free(F1); F1 = 0; }
+  //      if (F2) { free(F2); F2 = 0; }
+  //    }
+  Value *RunningOr = 0;
+  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
+    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
+                             Constant::getNullValue(FieldMallocs[i]->getType()),
+                                  "isnull", MI);
+    if (!RunningOr)
+      RunningOr = Cond;   // First seteq
+    else
+      RunningOr = BinaryOperator::createOr(RunningOr, Cond, "tmp", MI);
+  }
+
+  // Split the basic block at the old malloc.
+  BasicBlock *OrigBB = MI->getParent();
+  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
+  
+  // Create the block to check the first condition.  Put all these blocks at the
+  // end of the function as they are unlikely to be executed.
+  BasicBlock *NullPtrBlock = new BasicBlock("malloc_ret_null",
+                                            OrigBB->getParent());
+  
+  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
+  // branch on RunningOr.
+  OrigBB->getTerminator()->eraseFromParent();
+  new BranchInst(NullPtrBlock, ContBB, RunningOr, OrigBB);
+  
+  // Within the NullPtrBlock, we need to emit a comparison and branch for each
+  // pointer, because some may be null while others are not.
+  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
+    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
+    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal, 
+                              Constant::getNullValue(GVVal->getType()),
+                              "tmp", NullPtrBlock);
+    BasicBlock *FreeBlock = new BasicBlock("free_it", OrigBB->getParent());
+    BasicBlock *NextBlock = new BasicBlock("next", OrigBB->getParent());
+    new BranchInst(FreeBlock, NextBlock, Cmp, NullPtrBlock);
+
+    // Fill in FreeBlock.
+    new FreeInst(GVVal, FreeBlock);
+    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
+                  FreeBlock);
+    new BranchInst(NextBlock, FreeBlock);
+    
+    NullPtrBlock = NextBlock;
+  }
+  
+  new BranchInst(ContBB, NullPtrBlock);
+  
+  
+  // MI is no longer needed, remove it.
+  MI->eraseFromParent();
+
+  
+  // Okay, the malloc site is completely handled.  All of the uses of GV are now
+  // loads, and all uses of those loads are simple.  Rewrite them to use loads
+  // of the per-field globals instead.
+  while (!GV->use_empty()) {
+    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
+      RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
+      LI->eraseFromParent();
+    } else {
+      // Must be a store of null.
+      StoreInst *SI = cast<StoreInst>(GV->use_back());
+      assert(isa<Constant>(SI->getOperand(0)) &&
+             cast<Constant>(SI->getOperand(0))->isNullValue() &&
+             "Unexpected heap-sra user!");
+      
+      // Insert a store of null into each global.
+      for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
+        Constant *Null = 
+          Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
+        new StoreInst(Null, FieldGlobals[i], SI);
+      }
+      // Erase the original store.
+      SI->eraseFromParent();
+    }
+  }
+
+  // The old global is now dead, remove it.
+  GV->eraseFromParent();
+
+  ++NumHeapSRA;
+  return FieldGlobals[0];
+}
+
+
+// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
+// that only one value (besides its initializer) is ever stored to the global.
+static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
+                                     Module::global_iterator &GVI,
+                                     TargetData &TD) {
+  if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
+    StoredOnceVal = CI->getOperand(0);
+  else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
+    // "getelementptr Ptr, 0, 0, 0" is really just a cast.
+    bool IsJustACast = true;
+    for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
+      if (!isa<Constant>(GEPI->getOperand(i)) ||
+          !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
+        IsJustACast = false;
+        break;
+      }
+    if (IsJustACast)
+      StoredOnceVal = GEPI->getOperand(0);
+  }
+
+  // If we are dealing with a pointer global that is initialized to null and
+  // only has one (non-null) value stored into it, then we can optimize any
+  // users of the loaded value (often calls and loads) that would trap if the
+  // value was null.
+  if (isa<PointerType>(GV->getInitializer()->getType()) &&
+      GV->getInitializer()->isNullValue()) {
+    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
+      if (GV->getInitializer()->getType() != SOVC->getType())
+        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
+
+      // Optimize away any trapping uses of the loaded value.
+      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
+        return true;
+    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
+      // If this is a malloc of an abstract type, don't touch it.
+      if (!MI->getAllocatedType()->isSized())
+        return false;
+      
+      // We can't optimize this global unless all uses of it are *known* to be
+      // of the malloc value, not of the null initializer value (consider a use
+      // that compares the global's value against zero to see if the malloc has
+      // been reached).  To do this, we check to see if all uses of the global
+      // would trap if the global were null: this proves that they must all
+      // happen after the malloc.
+      if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
+        return false;
+
+      // We can't optimize this if the malloc itself is used in a complex way,
+      // for example, being stored into multiple globals.  This allows the
+      // malloc to be stored into the specified global, loaded setcc'd, and
+      // GEP'd.  These are all things we could transform to using the global
+      // for.
+      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV))
+        return false;
+
+      
+      // If we have a global that is only initialized with a fixed size malloc,
+      // transform the program to use global memory instead of malloc'd memory.
+      // This eliminates dynamic allocation, avoids an indirection accessing the
+      // data, and exposes the resultant global to further GlobalOpt.
+      if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
+        // Restrict this transformation to only working on small allocations
+        // (2048 bytes currently), as we don't want to introduce a 16M global or
+        // something.
+        if (NElements->getZExtValue()*
+                     TD.getTypeSize(MI->getAllocatedType()) < 2048) {
+          GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
+          return true;
+        }
+      }
+
+      // If the allocation is an array of structures, consider transforming this
+      // into multiple malloc'd arrays, one for each field.  This is basically
+      // SRoA for malloc'd memory.
+      if (const StructType *AllocTy = 
+                  dyn_cast<StructType>(MI->getAllocatedType())) {
+        // This the structure has an unreasonable number of fields, leave it
+        // alone.
+        if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
+            GlobalLoadUsesSimpleEnoughForHeapSRA(GV)) {
+          GVI = PerformHeapAllocSRoA(GV, MI);
+          return true;
+        }
+      }
+    }
+  }
+
+  return false;
+}
+
+/// ShrinkGlobalToBoolean - At this point, we have learned that the only two
+/// values ever stored into GV are its initializer and OtherVal.
+static void ShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
+  // Create the new global, initializing it to false.
+  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
+         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
+                                             GV->getName()+".b",
+                                             (Module *)NULL,
+                                             GV->isThreadLocal());
+  GV->getParent()->getGlobalList().insert(GV, NewGV);
+
+  Constant *InitVal = GV->getInitializer();
+  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
+
+  // If initialized to zero and storing one into the global, we can use a cast
+  // instead of a select to synthesize the desired value.
+  bool IsOneZero = false;
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
+    IsOneZero = InitVal->isNullValue() && CI->isOne();
+
+  while (!GV->use_empty()) {
+    Instruction *UI = cast<Instruction>(GV->use_back());
+    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
+      // Change the store into a boolean store.
+      bool StoringOther = SI->getOperand(0) == OtherVal;
+      // Only do this if we weren't storing a loaded value.
+      Value *StoreVal;
+      if (StoringOther || SI->getOperand(0) == InitVal)
+        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
+      else {
+        // Otherwise, we are storing a previously loaded copy.  To do this,
+        // change the copy from copying the original value to just copying the
+        // bool.
+        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
+
+        // If we're already replaced the input, StoredVal will be a cast or
+        // select instruction.  If not, it will be a load of the original
+        // global.
+        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
+          assert(LI->getOperand(0) == GV && "Not a copy!");
+          // Insert a new load, to preserve the saved value.
+          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
+        } else {
+          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
+                 "This is not a form that we understand!");
+          StoreVal = StoredVal->getOperand(0);
+          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
+        }
+      }
+      new StoreInst(StoreVal, NewGV, SI);
+    } else if (!UI->use_empty()) {
+      // Change the load into a load of bool then a select.
+      LoadInst *LI = cast<LoadInst>(UI);
+      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
+      Value *NSI;
+      if (IsOneZero)
+        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
+      else
+        NSI = new SelectInst(NLI, OtherVal, InitVal, "", LI);
+      NSI->takeName(LI);
+      LI->replaceAllUsesWith(NSI);
+    }
+    UI->eraseFromParent();
+  }
+
+  GV->eraseFromParent();
+}
+
+
+/// ProcessInternalGlobal - Analyze the specified global variable and optimize
+/// it if possible.  If we make a change, return true.
+bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
+                                      Module::global_iterator &GVI) {
+  std::set<PHINode*> PHIUsers;
+  GlobalStatus GS;
+  GV->removeDeadConstantUsers();
+
+  if (GV->use_empty()) {
+    DOUT << "GLOBAL DEAD: " << *GV;
+    GV->eraseFromParent();
+    ++NumDeleted;
+    return true;
+  }
+
+  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
+#if 0
+    cerr << "Global: " << *GV;
+    cerr << "  isLoaded = " << GS.isLoaded << "\n";
+    cerr << "  StoredType = ";
+    switch (GS.StoredType) {
+    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
+    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
+    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
+    case GlobalStatus::isStored: cerr << "stored\n"; break;
+    }
+    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
+      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
+    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
+      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
+                << "\n";
+    cerr << "  HasMultipleAccessingFunctions =  "
+              << GS.HasMultipleAccessingFunctions << "\n";
+    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
+    cerr << "  isNotSuitableForSRA = " << GS.isNotSuitableForSRA << "\n";
+    cerr << "\n";
+#endif
+    
+    // If this is a first class global and has only one accessing function
+    // and this function is main (which we know is not recursive we can make
+    // this global a local variable) we replace the global with a local alloca
+    // in this function.
+    //
+    // NOTE: It doesn't make sense to promote non first class types since we
+    // are just replacing static memory to stack memory.
+    if (!GS.HasMultipleAccessingFunctions &&
+        GS.AccessingFunction && !GS.HasNonInstructionUser &&
+        GV->getType()->getElementType()->isFirstClassType() &&
+        GS.AccessingFunction->getName() == "main" &&
+        GS.AccessingFunction->hasExternalLinkage()) {
+      DOUT << "LOCALIZING GLOBAL: " << *GV;
+      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
+      const Type* ElemTy = GV->getType()->getElementType();
+      // FIXME: Pass Global's alignment when globals have alignment
+      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
+      if (!isa<UndefValue>(GV->getInitializer()))
+        new StoreInst(GV->getInitializer(), Alloca, FirstI);
+
+      GV->replaceAllUsesWith(Alloca);
+      GV->eraseFromParent();
+      ++NumLocalized;
+      return true;
+    }
+    
+    // If the global is never loaded (but may be stored to), it is dead.
+    // Delete it now.
+    if (!GS.isLoaded) {
+      DOUT << "GLOBAL NEVER LOADED: " << *GV;
+
+      // Delete any stores we can find to the global.  We may not be able to
+      // make it completely dead though.
+      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
+
+      // If the global is dead now, delete it.
+      if (GV->use_empty()) {
+        GV->eraseFromParent();
+        ++NumDeleted;
+        Changed = true;
+      }
+      return Changed;
+
+    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
+      DOUT << "MARKING CONSTANT: " << *GV;
+      GV->setConstant(true);
+
+      // Clean up any obviously simplifiable users now.
+      CleanupConstantGlobalUsers(GV, GV->getInitializer());
+
+      // If the global is dead now, just nuke it.
+      if (GV->use_empty()) {
+        DOUT << "   *** Marking constant allowed us to simplify "
+             << "all users and delete global!\n";
+        GV->eraseFromParent();
+        ++NumDeleted;
+      }
+
+      ++NumMarked;
+      return true;
+    } else if (!GS.isNotSuitableForSRA &&
+               !GV->getInitializer()->getType()->isFirstClassType()) {
+      if (GlobalVariable *FirstNewGV = SRAGlobal(GV)) {
+        GVI = FirstNewGV;  // Don't skip the newly produced globals!
+        return true;
+      }
+    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
+      // If the initial value for the global was an undef value, and if only
+      // one other value was stored into it, we can just change the
+      // initializer to be an undef value, then delete all stores to the
+      // global.  This allows us to mark it constant.
+      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
+        if (isa<UndefValue>(GV->getInitializer())) {
+          // Change the initial value here.
+          GV->setInitializer(SOVConstant);
+
+          // Clean up any obviously simplifiable users now.
+          CleanupConstantGlobalUsers(GV, GV->getInitializer());
+
+          if (GV->use_empty()) {
+            DOUT << "   *** Substituting initializer allowed us to "
+                 << "simplify all users and delete global!\n";
+            GV->eraseFromParent();
+            ++NumDeleted;
+          } else {
+            GVI = GV;
+          }
+          ++NumSubstitute;
+          return true;
+        }
+
+      // Try to optimize globals based on the knowledge that only one value
+      // (besides its initializer) is ever stored to the global.
+      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
+                                   getAnalysis<TargetData>()))
+        return true;
+
+      // Otherwise, if the global was not a boolean, we can shrink it to be a
+      // boolean.
+      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
+        if (GV->getType()->getElementType() != Type::Int1Ty &&
+            !GV->getType()->getElementType()->isFloatingPoint() &&
+            !isa<VectorType>(GV->getType()->getElementType()) &&
+            !GS.HasPHIUser && !GS.isNotSuitableForSRA) {
+          DOUT << "   *** SHRINKING TO BOOL: " << *GV;
+          ShrinkGlobalToBoolean(GV, SOVConstant);
+          ++NumShrunkToBool;
+          return true;
+        }
+    }
+  }
+  return false;
+}
+
+/// OnlyCalledDirectly - Return true if the specified function is only called
+/// directly.  In other words, its address is never taken.
+static bool OnlyCalledDirectly(Function *F) {
+  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
+    Instruction *User = dyn_cast<Instruction>(*UI);
+    if (!User) return false;
+    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
+
+    // See if the function address is passed as an argument.
+    for (unsigned i = 1, e = User->getNumOperands(); i != e; ++i)
+      if (User->getOperand(i) == F) return false;
+  }
+  return true;
+}
+
+/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
+/// function, changing them to FastCC.
+static void ChangeCalleesToFastCall(Function *F) {
+  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
+    Instruction *User = cast<Instruction>(*UI);
+    if (CallInst *CI = dyn_cast<CallInst>(User))
+      CI->setCallingConv(CallingConv::Fast);
+    else
+      cast<InvokeInst>(User)->setCallingConv(CallingConv::Fast);
+  }
+}
+
+bool GlobalOpt::OptimizeFunctions(Module &M) {
+  bool Changed = false;
+  // Optimize functions.
+  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
+    Function *F = FI++;
+    F->removeDeadConstantUsers();
+    if (F->use_empty() && (F->hasInternalLinkage() ||
+                           F->hasLinkOnceLinkage())) {
+      M.getFunctionList().erase(F);
+      Changed = true;
+      ++NumFnDeleted;
+    } else if (F->hasInternalLinkage() &&
+               F->getCallingConv() == CallingConv::C &&  !F->isVarArg() &&
+               OnlyCalledDirectly(F)) {
+      // If this function has C calling conventions, is not a varargs
+      // function, and is only called directly, promote it to use the Fast
+      // calling convention.
+      F->setCallingConv(CallingConv::Fast);
+      ChangeCalleesToFastCall(F);
+      ++NumFastCallFns;
+      Changed = true;
+    }
+  }
+  return Changed;
+}
+
+bool GlobalOpt::OptimizeGlobalVars(Module &M) {
+  bool Changed = false;
+  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
+       GVI != E; ) {
+    GlobalVariable *GV = GVI++;
+    if (!GV->isConstant() && GV->hasInternalLinkage() &&
+        GV->hasInitializer())
+      Changed |= ProcessInternalGlobal(GV, GVI);
+  }
+  return Changed;
+}
+
+/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
+/// initializers have an init priority of 65535.
+GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
+  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
+       I != E; ++I)
+    if (I->getName() == "llvm.global_ctors") {
+      // Found it, verify it's an array of { int, void()* }.
+      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
+      if (!ATy) return 0;
+      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
+      if (!STy || STy->getNumElements() != 2 ||
+          STy->getElementType(0) != Type::Int32Ty) return 0;
+      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
+      if (!PFTy) return 0;
+      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
+      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
+          FTy->getNumParams() != 0)
+        return 0;
+      
+      // Verify that the initializer is simple enough for us to handle.
+      if (!I->hasInitializer()) return 0;
+      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
+      if (!CA) return 0;
+      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
+        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(CA->getOperand(i))) {
+          if (isa<ConstantPointerNull>(CS->getOperand(1)))
+            continue;
+
+          // Must have a function or null ptr.
+          if (!isa<Function>(CS->getOperand(1)))
+            return 0;
+          
+          // Init priority must be standard.
+          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
+          if (!CI || CI->getZExtValue() != 65535)
+            return 0;
+        } else {
+          return 0;
+        }
+      
+      return I;
+    }
+  return 0;
+}
+
+/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
+/// return a list of the functions and null terminator as a vector.
+static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
+  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
+  std::vector<Function*> Result;
+  Result.reserve(CA->getNumOperands());
+  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
+    ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(i));
+    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
+  }
+  return Result;
+}
+
+/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
+/// specified array, returning the new global to use.
+static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, 
+                                          const std::vector<Function*> &Ctors) {
+  // If we made a change, reassemble the initializer list.
+  std::vector<Constant*> CSVals;
+  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
+  CSVals.push_back(0);
+  
+  // Create the new init list.
+  std::vector<Constant*> CAList;
+  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
+    if (Ctors[i]) {
+      CSVals[1] = Ctors[i];
+    } else {
+      const Type *FTy = FunctionType::get(Type::VoidTy,
+                                          std::vector<const Type*>(), false);
+      const PointerType *PFTy = PointerType::get(FTy);
+      CSVals[1] = Constant::getNullValue(PFTy);
+      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
+    }
+    CAList.push_back(ConstantStruct::get(CSVals));
+  }
+  
+  // Create the array initializer.
+  const Type *StructTy =
+    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
+  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
+                                    CAList);
+  
+  // If we didn't change the number of elements, don't create a new GV.
+  if (CA->getType() == GCL->getInitializer()->getType()) {
+    GCL->setInitializer(CA);
+    return GCL;
+  }
+  
+  // Create the new global and insert it next to the existing list.
+  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
+                                           GCL->getLinkage(), CA, "",
+                                           (Module *)NULL,
+                                           GCL->isThreadLocal());
+  GCL->getParent()->getGlobalList().insert(GCL, NGV);
+  NGV->takeName(GCL);
+  
+  // Nuke the old list, replacing any uses with the new one.
+  if (!GCL->use_empty()) {
+    Constant *V = NGV;
+    if (V->getType() != GCL->getType())
+      V = ConstantExpr::getBitCast(V, GCL->getType());
+    GCL->replaceAllUsesWith(V);
+  }
+  GCL->eraseFromParent();
+  
+  if (Ctors.size())
+    return NGV;
+  else
+    return 0;
+}
+
+
+static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
+                        Value *V) {
+  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
+  Constant *R = ComputedValues[V];
+  assert(R && "Reference to an uncomputed value!");
+  return R;
+}
+
+/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
+/// enough for us to understand.  In particular, if it is a cast of something,
+/// we punt.  We basically just support direct accesses to globals and GEP's of
+/// globals.  This should be kept up to date with CommitValueTo.
+static bool isSimpleEnoughPointerToCommit(Constant *C) {
+  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
+    if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
+      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
+    return !GV->isDeclaration();  // reject external globals.
+  }
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
+    // Handle a constantexpr gep.
+    if (CE->getOpcode() == Instruction::GetElementPtr &&
+        isa<GlobalVariable>(CE->getOperand(0))) {
+      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
+      if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
+        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
+      return GV->hasInitializer() &&
+             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
+    }
+  return false;
+}
+
+/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
+/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
+/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
+static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
+                                   ConstantExpr *Addr, unsigned OpNo) {
+  // Base case of the recursion.
+  if (OpNo == Addr->getNumOperands()) {
+    assert(Val->getType() == Init->getType() && "Type mismatch!");
+    return Val;
+  }
+  
+  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
+    std::vector<Constant*> Elts;
+
+    // Break up the constant into its elements.
+    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
+      for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
+        Elts.push_back(CS->getOperand(i));
+    } else if (isa<ConstantAggregateZero>(Init)) {
+      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
+    } else if (isa<UndefValue>(Init)) {
+      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+        Elts.push_back(UndefValue::get(STy->getElementType(i)));
+    } else {
+      assert(0 && "This code is out of sync with "
+             " ConstantFoldLoadThroughGEPConstantExpr");
+    }
+    
+    // Replace the element that we are supposed to.
+    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
+    unsigned Idx = CU->getZExtValue();
+    assert(Idx < STy->getNumElements() && "Struct index out of range!");
+    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
+    
+    // Return the modified struct.
+    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
+  } else {
+    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
+    const ArrayType *ATy = cast<ArrayType>(Init->getType());
+
+    // Break up the array into elements.
+    std::vector<Constant*> Elts;
+    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
+      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
+        Elts.push_back(CA->getOperand(i));
+    } else if (isa<ConstantAggregateZero>(Init)) {
+      Constant *Elt = Constant::getNullValue(ATy->getElementType());
+      Elts.assign(ATy->getNumElements(), Elt);
+    } else if (isa<UndefValue>(Init)) {
+      Constant *Elt = UndefValue::get(ATy->getElementType());
+      Elts.assign(ATy->getNumElements(), Elt);
+    } else {
+      assert(0 && "This code is out of sync with "
+             " ConstantFoldLoadThroughGEPConstantExpr");
+    }
+    
+    assert(CI->getZExtValue() < ATy->getNumElements());
+    Elts[CI->getZExtValue()] =
+      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
+    return ConstantArray::get(ATy, Elts);
+  }    
+}
+
+/// CommitValueTo - We have decided that Addr (which satisfies the predicate
+/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
+static void CommitValueTo(Constant *Val, Constant *Addr) {
+  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
+    assert(GV->hasInitializer());
+    GV->setInitializer(Val);
+    return;
+  }
+  
+  ConstantExpr *CE = cast<ConstantExpr>(Addr);
+  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
+  
+  Constant *Init = GV->getInitializer();
+  Init = EvaluateStoreInto(Init, Val, CE, 2);
+  GV->setInitializer(Init);
+}
+
+/// ComputeLoadResult - Return the value that would be computed by a load from
+/// P after the stores reflected by 'memory' have been performed.  If we can't
+/// decide, return null.
+static Constant *ComputeLoadResult(Constant *P,
+                                const std::map<Constant*, Constant*> &Memory) {
+  // If this memory location has been recently stored, use the stored value: it
+  // is the most up-to-date.
+  std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
+  if (I != Memory.end()) return I->second;
+ 
+  // Access it.
+  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
+    if (GV->hasInitializer())
+      return GV->getInitializer();
+    return 0;
+  }
+  
+  // Handle a constantexpr getelementptr.
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
+    if (CE->getOpcode() == Instruction::GetElementPtr &&
+        isa<GlobalVariable>(CE->getOperand(0))) {
+      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
+      if (GV->hasInitializer())
+        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
+    }
+
+  return 0;  // don't know how to evaluate.
+}
+
+/// EvaluateFunction - Evaluate a call to function F, returning true if
+/// successful, false if we can't evaluate it.  ActualArgs contains the formal
+/// arguments for the function.
+static bool EvaluateFunction(Function *F, Constant *&RetVal,
+                             const std::vector<Constant*> &ActualArgs,
+                             std::vector<Function*> &CallStack,
+                             std::map<Constant*, Constant*> &MutatedMemory,
+                             std::vector<GlobalVariable*> &AllocaTmps) {
+  // Check to see if this function is already executing (recursion).  If so,
+  // bail out.  TODO: we might want to accept limited recursion.
+  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
+    return false;
+  
+  CallStack.push_back(F);
+  
+  /// Values - As we compute SSA register values, we store their contents here.
+  std::map<Value*, Constant*> Values;
+  
+  // Initialize arguments to the incoming values specified.
+  unsigned ArgNo = 0;
+  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
+       ++AI, ++ArgNo)
+    Values[AI] = ActualArgs[ArgNo];
+
+  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
+  /// we can only evaluate any one basic block at most once.  This set keeps
+  /// track of what we have executed so we can detect recursive cases etc.
+  std::set<BasicBlock*> ExecutedBlocks;
+  
+  // CurInst - The current instruction we're evaluating.
+  BasicBlock::iterator CurInst = F->begin()->begin();
+  
+  // This is the main evaluation loop.
+  while (1) {
+    Constant *InstResult = 0;
+    
+    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
+      if (SI->isVolatile()) return false;  // no volatile accesses.
+      Constant *Ptr = getVal(Values, SI->getOperand(1));
+      if (!isSimpleEnoughPointerToCommit(Ptr))
+        // If this is too complex for us to commit, reject it.
+        return false;
+      Constant *Val = getVal(Values, SI->getOperand(0));
+      MutatedMemory[Ptr] = Val;
+    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
+      InstResult = ConstantExpr::get(BO->getOpcode(),
+                                     getVal(Values, BO->getOperand(0)),
+                                     getVal(Values, BO->getOperand(1)));
+    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
+      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
+                                            getVal(Values, CI->getOperand(0)),
+                                            getVal(Values, CI->getOperand(1)));
+    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
+      InstResult = ConstantExpr::getCast(CI->getOpcode(),
+                                         getVal(Values, CI->getOperand(0)),
+                                         CI->getType());
+    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
+      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
+                                           getVal(Values, SI->getOperand(1)),
+                                           getVal(Values, SI->getOperand(2)));
+    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
+      Constant *P = getVal(Values, GEP->getOperand(0));
+      SmallVector<Constant*, 8> GEPOps;
+      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
+        GEPOps.push_back(getVal(Values, GEP->getOperand(i)));
+      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
+    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
+      if (LI->isVolatile()) return false;  // no volatile accesses.
+      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
+                                     MutatedMemory);
+      if (InstResult == 0) return false; // Could not evaluate load.
+    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
+      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
+      const Type *Ty = AI->getType()->getElementType();
+      AllocaTmps.push_back(new GlobalVariable(Ty, false,
+                                              GlobalValue::InternalLinkage,
+                                              UndefValue::get(Ty),
+                                              AI->getName()));
+      InstResult = AllocaTmps.back();     
+    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
+      // Cannot handle inline asm.
+      if (isa<InlineAsm>(CI->getOperand(0))) return false;
+
+      // Resolve function pointers.
+      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
+      if (!Callee) return false;  // Cannot resolve.
+
+      std::vector<Constant*> Formals;
+      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
+        Formals.push_back(getVal(Values, CI->getOperand(i)));
+      
+      if (Callee->isDeclaration()) {
+        // If this is a function we can constant fold, do it.
+        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
+                                           Formals.size())) {
+          InstResult = C;
+        } else {
+          return false;
+        }
+      } else {
+        if (Callee->getFunctionType()->isVarArg())
+          return false;
+        
+        Constant *RetVal;
+        
+        // Execute the call, if successful, use the return value.
+        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
+                              MutatedMemory, AllocaTmps))
+          return false;
+        InstResult = RetVal;
+      }
+    } else if (isa<TerminatorInst>(CurInst)) {
+      BasicBlock *NewBB = 0;
+      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
+        if (BI->isUnconditional()) {
+          NewBB = BI->getSuccessor(0);
+        } else {
+          ConstantInt *Cond =
+            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
+          if (!Cond) return false;  // Cannot determine.
+
+          NewBB = BI->getSuccessor(!Cond->getZExtValue());          
+        }
+      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
+        ConstantInt *Val =
+          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
+        if (!Val) return false;  // Cannot determine.
+        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
+      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
+        if (RI->getNumOperands())
+          RetVal = getVal(Values, RI->getOperand(0));
+        
+        CallStack.pop_back();  // return from fn.
+        return true;  // We succeeded at evaluating this ctor!
+      } else {
+        // invoke, unwind, unreachable.
+        return false;  // Cannot handle this terminator.
+      }
+      
+      // Okay, we succeeded in evaluating this control flow.  See if we have
+      // executed the new block before.  If so, we have a looping function,
+      // which we cannot evaluate in reasonable time.
+      if (!ExecutedBlocks.insert(NewBB).second)
+        return false;  // looped!
+      
+      // Okay, we have never been in this block before.  Check to see if there
+      // are any PHI nodes.  If so, evaluate them with information about where
+      // we came from.
+      BasicBlock *OldBB = CurInst->getParent();
+      CurInst = NewBB->begin();
+      PHINode *PN;
+      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
+        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
+
+      // Do NOT increment CurInst.  We know that the terminator had no value.
+      continue;
+    } else {
+      // Did not know how to evaluate this!
+      return false;
+    }
+    
+    if (!CurInst->use_empty())
+      Values[CurInst] = InstResult;
+    
+    // Advance program counter.
+    ++CurInst;
+  }
+}
+
+/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
+/// we can.  Return true if we can, false otherwise.
+static bool EvaluateStaticConstructor(Function *F) {
+  /// MutatedMemory - For each store we execute, we update this map.  Loads
+  /// check this to get the most up-to-date value.  If evaluation is successful,
+  /// this state is committed to the process.
+  std::map<Constant*, Constant*> MutatedMemory;
+
+  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
+  /// to represent its body.  This vector is needed so we can delete the
+  /// temporary globals when we are done.
+  std::vector<GlobalVariable*> AllocaTmps;
+  
+  /// CallStack - This is used to detect recursion.  In pathological situations
+  /// we could hit exponential behavior, but at least there is nothing
+  /// unbounded.
+  std::vector<Function*> CallStack;
+
+  // Call the function.
+  Constant *RetValDummy;
+  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
+                                       CallStack, MutatedMemory, AllocaTmps);
+  if (EvalSuccess) {
+    // We succeeded at evaluation: commit the result.
+    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
+         << F->getName() << "' to " << MutatedMemory.size()
+         << " stores.\n";
+    for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
+         E = MutatedMemory.end(); I != E; ++I)
+      CommitValueTo(I->second, I->first);
+  }
+  
+  // At this point, we are done interpreting.  If we created any 'alloca'
+  // temporaries, release them now.
+  while (!AllocaTmps.empty()) {
+    GlobalVariable *Tmp = AllocaTmps.back();
+    AllocaTmps.pop_back();
+    
+    // If there are still users of the alloca, the program is doing something
+    // silly, e.g. storing the address of the alloca somewhere and using it
+    // later.  Since this is undefined, we'll just make it be null.
+    if (!Tmp->use_empty())
+      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
+    delete Tmp;
+  }
+  
+  return EvalSuccess;
+}
+
+
+
+/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
+/// Return true if anything changed.
+bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
+  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
+  bool MadeChange = false;
+  if (Ctors.empty()) return false;
+  
+  // Loop over global ctors, optimizing them when we can.
+  for (unsigned i = 0; i != Ctors.size(); ++i) {
+    Function *F = Ctors[i];
+    // Found a null terminator in the middle of the list, prune off the rest of
+    // the list.
+    if (F == 0) {
+      if (i != Ctors.size()-1) {
+        Ctors.resize(i+1);
+        MadeChange = true;
+      }
+      break;
+    }
+    
+    // We cannot simplify external ctor functions.
+    if (F->empty()) continue;
+    
+    // If we can evaluate the ctor at compile time, do.
+    if (EvaluateStaticConstructor(F)) {
+      Ctors.erase(Ctors.begin()+i);
+      MadeChange = true;
+      --i;
+      ++NumCtorsEvaluated;
+      continue;
+    }
+  }
+  
+  if (!MadeChange) return false;
+  
+  GCL = InstallGlobalCtors(GCL, Ctors);
+  return true;
+}
+
+
+bool GlobalOpt::runOnModule(Module &M) {
+  bool Changed = false;
+  
+  // Try to find the llvm.globalctors list.
+  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
+
+  bool LocalChange = true;
+  while (LocalChange) {
+    LocalChange = false;
+    
+    // Delete functions that are trivially dead, ccc -> fastcc
+    LocalChange |= OptimizeFunctions(M);
+    
+    // Optimize global_ctors list.
+    if (GlobalCtors)
+      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
+    
+    // Optimize non-address-taken globals.
+    LocalChange |= OptimizeGlobalVars(M);
+    Changed |= LocalChange;
+  }
+  
+  // TODO: Move all global ctors functions to the end of the module for code
+  // layout.
+  
+  return Changed;
+}