It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp
new file mode 100644
index 0000000..2969df3
--- /dev/null
+++ b/lib/Transforms/Scalar/CodeGenPrepare.cpp
@@ -0,0 +1,988 @@
+//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass munges the code in the input function to better prepare it for
+// SelectionDAG-based code generation.  This works around limitations in it's
+// basic-block-at-a-time approach.  It should eventually be removed.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "codegenprepare"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/Pass.h"
+#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+using namespace llvm;
+
+namespace {  
+  class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
+    /// TLI - Keep a pointer of a TargetLowering to consult for determining
+    /// transformation profitability.
+    const TargetLowering *TLI;
+  public:
+    static char ID; // Pass identification, replacement for typeid
+    CodeGenPrepare(const TargetLowering *tli = 0) : FunctionPass((intptr_t)&ID),
+      TLI(tli) {}
+    bool runOnFunction(Function &F);
+    
+  private:
+    bool EliminateMostlyEmptyBlocks(Function &F);
+    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
+    void EliminateMostlyEmptyBlock(BasicBlock *BB);
+    bool OptimizeBlock(BasicBlock &BB);
+    bool OptimizeLoadStoreInst(Instruction *I, Value *Addr,
+                               const Type *AccessTy,
+                               DenseMap<Value*,Value*> &SunkAddrs);
+  };
+}
+
+char CodeGenPrepare::ID = 0;
+static RegisterPass<CodeGenPrepare> X("codegenprepare",
+                                      "Optimize for code generation");
+
+FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
+  return new CodeGenPrepare(TLI);
+}
+
+
+bool CodeGenPrepare::runOnFunction(Function &F) {
+  bool EverMadeChange = false;
+  
+  // First pass, eliminate blocks that contain only PHI nodes and an
+  // unconditional branch.
+  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
+  
+  bool MadeChange = true;
+  while (MadeChange) {
+    MadeChange = false;
+    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+      MadeChange |= OptimizeBlock(*BB);
+    EverMadeChange |= MadeChange;
+  }
+  return EverMadeChange;
+}
+
+/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
+/// and an unconditional branch.  Passes before isel (e.g. LSR/loopsimplify) 
+/// often split edges in ways that are non-optimal for isel.  Start by
+/// eliminating these blocks so we can split them the way we want them.
+bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
+  bool MadeChange = false;
+  // Note that this intentionally skips the entry block.
+  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
+    BasicBlock *BB = I++;
+
+    // If this block doesn't end with an uncond branch, ignore it.
+    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+    if (!BI || !BI->isUnconditional())
+      continue;
+    
+    // If the instruction before the branch isn't a phi node, then other stuff
+    // is happening here.
+    BasicBlock::iterator BBI = BI;
+    if (BBI != BB->begin()) {
+      --BBI;
+      if (!isa<PHINode>(BBI)) continue;
+    }
+    
+    // Do not break infinite loops.
+    BasicBlock *DestBB = BI->getSuccessor(0);
+    if (DestBB == BB)
+      continue;
+    
+    if (!CanMergeBlocks(BB, DestBB))
+      continue;
+    
+    EliminateMostlyEmptyBlock(BB);
+    MadeChange = true;
+  }
+  return MadeChange;
+}
+
+/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
+/// single uncond branch between them, and BB contains no other non-phi
+/// instructions.
+bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
+                                    const BasicBlock *DestBB) const {
+  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
+  // the successor.  If there are more complex condition (e.g. preheaders),
+  // don't mess around with them.
+  BasicBlock::const_iterator BBI = BB->begin();
+  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
+    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
+         UI != E; ++UI) {
+      const Instruction *User = cast<Instruction>(*UI);
+      if (User->getParent() != DestBB || !isa<PHINode>(User))
+        return false;
+      // If User is inside DestBB block and it is a PHINode then check 
+      // incoming value. If incoming value is not from BB then this is 
+      // a complex condition (e.g. preheaders) we want to avoid here.
+      if (User->getParent() == DestBB) {
+        if (const PHINode *UPN = dyn_cast<PHINode>(User))
+          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
+            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
+            if (Insn && Insn->getParent() == BB &&
+                Insn->getParent() != UPN->getIncomingBlock(I))
+              return false;
+          }
+      }
+    }
+  }
+  
+  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
+  // and DestBB may have conflicting incoming values for the block.  If so, we
+  // can't merge the block.
+  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
+  if (!DestBBPN) return true;  // no conflict.
+  
+  // Collect the preds of BB.
+  SmallPtrSet<BasicBlock*, 16> BBPreds;
+  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
+    // It is faster to get preds from a PHI than with pred_iterator.
+    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
+      BBPreds.insert(BBPN->getIncomingBlock(i));
+  } else {
+    BBPreds.insert(pred_begin(BB), pred_end(BB));
+  }
+  
+  // Walk the preds of DestBB.
+  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
+    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
+    if (BBPreds.count(Pred)) {   // Common predecessor?
+      BBI = DestBB->begin();
+      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
+        const Value *V1 = PN->getIncomingValueForBlock(Pred);
+        const Value *V2 = PN->getIncomingValueForBlock(BB);
+        
+        // If V2 is a phi node in BB, look up what the mapped value will be.
+        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
+          if (V2PN->getParent() == BB)
+            V2 = V2PN->getIncomingValueForBlock(Pred);
+        
+        // If there is a conflict, bail out.
+        if (V1 != V2) return false;
+      }
+    }
+  }
+
+  return true;
+}
+
+
+/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
+/// an unconditional branch in it.
+void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
+  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
+  BasicBlock *DestBB = BI->getSuccessor(0);
+  
+  DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
+  
+  // If the destination block has a single pred, then this is a trivial edge,
+  // just collapse it.
+  if (DestBB->getSinglePredecessor()) {
+    // If DestBB has single-entry PHI nodes, fold them.
+    while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
+      PN->replaceAllUsesWith(PN->getIncomingValue(0));
+      PN->eraseFromParent();
+    }
+    
+    // Splice all the PHI nodes from BB over to DestBB.
+    DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
+                                 BB->begin(), BI);
+    
+    // Anything that branched to BB now branches to DestBB.
+    BB->replaceAllUsesWith(DestBB);
+    
+    // Nuke BB.
+    BB->eraseFromParent();
+    
+    DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
+    return;
+  }
+  
+  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
+  // to handle the new incoming edges it is about to have.
+  PHINode *PN;
+  for (BasicBlock::iterator BBI = DestBB->begin();
+       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
+    // Remove the incoming value for BB, and remember it.
+    Value *InVal = PN->removeIncomingValue(BB, false);
+    
+    // Two options: either the InVal is a phi node defined in BB or it is some
+    // value that dominates BB.
+    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
+    if (InValPhi && InValPhi->getParent() == BB) {
+      // Add all of the input values of the input PHI as inputs of this phi.
+      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
+        PN->addIncoming(InValPhi->getIncomingValue(i),
+                        InValPhi->getIncomingBlock(i));
+    } else {
+      // Otherwise, add one instance of the dominating value for each edge that
+      // we will be adding.
+      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
+        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
+          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
+      } else {
+        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+          PN->addIncoming(InVal, *PI);
+      }
+    }
+  }
+  
+  // The PHIs are now updated, change everything that refers to BB to use
+  // DestBB and remove BB.
+  BB->replaceAllUsesWith(DestBB);
+  BB->eraseFromParent();
+  
+  DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
+}
+
+
+/// SplitEdgeNicely - Split the critical edge from TI to it's specified
+/// successor if it will improve codegen.  We only do this if the successor has
+/// phi nodes (otherwise critical edges are ok).  If there is already another
+/// predecessor of the succ that is empty (and thus has no phi nodes), use it
+/// instead of introducing a new block.
+static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
+  BasicBlock *TIBB = TI->getParent();
+  BasicBlock *Dest = TI->getSuccessor(SuccNum);
+  assert(isa<PHINode>(Dest->begin()) &&
+         "This should only be called if Dest has a PHI!");
+  
+  /// TIPHIValues - This array is lazily computed to determine the values of
+  /// PHIs in Dest that TI would provide.
+  std::vector<Value*> TIPHIValues;
+  
+  // Check to see if Dest has any blocks that can be used as a split edge for
+  // this terminator.
+  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
+    BasicBlock *Pred = *PI;
+    // To be usable, the pred has to end with an uncond branch to the dest.
+    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
+    if (!PredBr || !PredBr->isUnconditional() ||
+        // Must be empty other than the branch.
+        &Pred->front() != PredBr ||
+        // Cannot be the entry block; its label does not get emitted.
+        Pred == &(Dest->getParent()->getEntryBlock()))
+      continue;
+    
+    // Finally, since we know that Dest has phi nodes in it, we have to make
+    // sure that jumping to Pred will have the same affect as going to Dest in
+    // terms of PHI values.
+    PHINode *PN;
+    unsigned PHINo = 0;
+    bool FoundMatch = true;
+    for (BasicBlock::iterator I = Dest->begin();
+         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
+      if (PHINo == TIPHIValues.size())
+        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
+      
+      // If the PHI entry doesn't work, we can't use this pred.
+      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
+        FoundMatch = false;
+        break;
+      }
+    }
+    
+    // If we found a workable predecessor, change TI to branch to Succ.
+    if (FoundMatch) {
+      Dest->removePredecessor(TIBB);
+      TI->setSuccessor(SuccNum, Pred);
+      return;
+    }
+  }
+  
+  SplitCriticalEdge(TI, SuccNum, P, true);  
+}
+
+/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
+/// copy (e.g. it's casting from one pointer type to another, int->uint, or
+/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
+/// registers that must be created and coalesced.
+///
+/// Return true if any changes are made.
+static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
+  // If this is a noop copy, 
+  MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
+  MVT::ValueType DstVT = TLI.getValueType(CI->getType());
+  
+  // This is an fp<->int conversion?
+  if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
+    return false;
+  
+  // If this is an extension, it will be a zero or sign extension, which
+  // isn't a noop.
+  if (SrcVT < DstVT) return false;
+  
+  // If these values will be promoted, find out what they will be promoted
+  // to.  This helps us consider truncates on PPC as noop copies when they
+  // are.
+  if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
+    SrcVT = TLI.getTypeToTransformTo(SrcVT);
+  if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
+    DstVT = TLI.getTypeToTransformTo(DstVT);
+  
+  // If, after promotion, these are the same types, this is a noop copy.
+  if (SrcVT != DstVT)
+    return false;
+  
+  BasicBlock *DefBB = CI->getParent();
+  
+  /// InsertedCasts - Only insert a cast in each block once.
+  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
+  
+  bool MadeChange = false;
+  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); 
+       UI != E; ) {
+    Use &TheUse = UI.getUse();
+    Instruction *User = cast<Instruction>(*UI);
+    
+    // Figure out which BB this cast is used in.  For PHI's this is the
+    // appropriate predecessor block.
+    BasicBlock *UserBB = User->getParent();
+    if (PHINode *PN = dyn_cast<PHINode>(User)) {
+      unsigned OpVal = UI.getOperandNo()/2;
+      UserBB = PN->getIncomingBlock(OpVal);
+    }
+    
+    // Preincrement use iterator so we don't invalidate it.
+    ++UI;
+    
+    // If this user is in the same block as the cast, don't change the cast.
+    if (UserBB == DefBB) continue;
+    
+    // If we have already inserted a cast into this block, use it.
+    CastInst *&InsertedCast = InsertedCasts[UserBB];
+
+    if (!InsertedCast) {
+      BasicBlock::iterator InsertPt = UserBB->begin();
+      while (isa<PHINode>(InsertPt)) ++InsertPt;
+      
+      InsertedCast = 
+        CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 
+                         InsertPt);
+      MadeChange = true;
+    }
+    
+    // Replace a use of the cast with a use of the new cast.
+    TheUse = InsertedCast;
+  }
+  
+  // If we removed all uses, nuke the cast.
+  if (CI->use_empty())
+    CI->eraseFromParent();
+  
+  return MadeChange;
+}
+
+/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce 
+/// the number of virtual registers that must be created and coalesced.  This is
+/// a clear win except on targets with multiple condition code registers (powerPC),
+/// where it might lose; some adjustment may be wanted there.
+///
+/// Return true if any changes are made.
+static bool OptimizeCmpExpression(CmpInst *CI){
+
+  BasicBlock *DefBB = CI->getParent();
+  
+  /// InsertedCmp - Only insert a cmp in each block once.
+  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
+  
+  bool MadeChange = false;
+  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); 
+       UI != E; ) {
+    Use &TheUse = UI.getUse();
+    Instruction *User = cast<Instruction>(*UI);
+    
+    // Preincrement use iterator so we don't invalidate it.
+    ++UI;
+    
+    // Don't bother for PHI nodes.
+    if (isa<PHINode>(User))
+      continue;
+
+    // Figure out which BB this cmp is used in.
+    BasicBlock *UserBB = User->getParent();
+    
+    // If this user is in the same block as the cmp, don't change the cmp.
+    if (UserBB == DefBB) continue;
+    
+    // If we have already inserted a cmp into this block, use it.
+    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
+
+    if (!InsertedCmp) {
+      BasicBlock::iterator InsertPt = UserBB->begin();
+      while (isa<PHINode>(InsertPt)) ++InsertPt;
+      
+      InsertedCmp = 
+        CmpInst::create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0), 
+                        CI->getOperand(1), "", InsertPt);
+      MadeChange = true;
+    }
+    
+    // Replace a use of the cmp with a use of the new cmp.
+    TheUse = InsertedCmp;
+  }
+  
+  // If we removed all uses, nuke the cmp.
+  if (CI->use_empty())
+    CI->eraseFromParent();
+  
+  return MadeChange;
+}
+
+/// EraseDeadInstructions - Erase any dead instructions
+static void EraseDeadInstructions(Value *V) {
+  Instruction *I = dyn_cast<Instruction>(V);
+  if (!I || !I->use_empty()) return;
+  
+  SmallPtrSet<Instruction*, 16> Insts;
+  Insts.insert(I);
+  
+  while (!Insts.empty()) {
+    I = *Insts.begin();
+    Insts.erase(I);
+    if (isInstructionTriviallyDead(I)) {
+      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
+          Insts.insert(U);
+      I->eraseFromParent();
+    }
+  }
+}
+
+
+/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode which
+/// holds actual Value*'s for register values.
+struct ExtAddrMode : public TargetLowering::AddrMode {
+  Value *BaseReg;
+  Value *ScaledReg;
+  ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
+  void dump() const;
+};
+
+static std::ostream &operator<<(std::ostream &OS, const ExtAddrMode &AM) {
+  bool NeedPlus = false;
+  OS << "[";
+  if (AM.BaseGV)
+    OS << (NeedPlus ? " + " : "")
+       << "GV:%" << AM.BaseGV->getName(), NeedPlus = true;
+  
+  if (AM.BaseOffs)
+    OS << (NeedPlus ? " + " : "") << AM.BaseOffs, NeedPlus = true;
+  
+  if (AM.BaseReg)
+    OS << (NeedPlus ? " + " : "")
+       << "Base:%" << AM.BaseReg->getName(), NeedPlus = true;
+  if (AM.Scale)
+    OS << (NeedPlus ? " + " : "")
+       << AM.Scale << "*%" << AM.ScaledReg->getName(), NeedPlus = true;
+  
+  return OS << "]";
+}
+
+void ExtAddrMode::dump() const {
+  cerr << *this << "\n";
+}
+
+static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
+                                   const Type *AccessTy, ExtAddrMode &AddrMode,
+                                   SmallVector<Instruction*, 16> &AddrModeInsts,
+                                   const TargetLowering &TLI, unsigned Depth);
+  
+/// FindMaximalLegalAddressingMode - If we can, try to merge the computation of
+/// Addr into the specified addressing mode.  If Addr can't be added to AddrMode
+/// this returns false.  This assumes that Addr is either a pointer type or
+/// intptr_t for the target.
+static bool FindMaximalLegalAddressingMode(Value *Addr, const Type *AccessTy,
+                                           ExtAddrMode &AddrMode,
+                                   SmallVector<Instruction*, 16> &AddrModeInsts,
+                                           const TargetLowering &TLI,
+                                           unsigned Depth) {
+  
+  // If this is a global variable, fold it into the addressing mode if possible.
+  if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
+    if (AddrMode.BaseGV == 0) {
+      AddrMode.BaseGV = GV;
+      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+        return true;
+      AddrMode.BaseGV = 0;
+    }
+  } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
+    AddrMode.BaseOffs += CI->getSExtValue();
+    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+      return true;
+    AddrMode.BaseOffs -= CI->getSExtValue();
+  } else if (isa<ConstantPointerNull>(Addr)) {
+    return true;
+  }
+  
+  // Look through constant exprs and instructions.
+  unsigned Opcode = ~0U;
+  User *AddrInst = 0;
+  if (Instruction *I = dyn_cast<Instruction>(Addr)) {
+    Opcode = I->getOpcode();
+    AddrInst = I;
+  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
+    Opcode = CE->getOpcode();
+    AddrInst = CE;
+  }
+
+  // Limit recursion to avoid exponential behavior.
+  if (Depth == 5) { AddrInst = 0; Opcode = ~0U; }
+
+  // If this is really an instruction, add it to our list of related
+  // instructions.
+  if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst))
+    AddrModeInsts.push_back(I);
+
+  switch (Opcode) {
+  case Instruction::PtrToInt:
+    // PtrToInt is always a noop, as we know that the int type is pointer sized.
+    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
+                                       AddrMode, AddrModeInsts, TLI, Depth))
+      return true;
+    break;
+  case Instruction::IntToPtr:
+    // This inttoptr is a no-op if the integer type is pointer sized.
+    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
+        TLI.getPointerTy()) {
+      if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
+                                         AddrMode, AddrModeInsts, TLI, Depth))
+        return true;
+    }
+    break;
+  case Instruction::Add: {
+    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
+    ExtAddrMode BackupAddrMode = AddrMode;
+    unsigned OldSize = AddrModeInsts.size();
+    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
+                                       AddrMode, AddrModeInsts, TLI, Depth+1) &&
+        FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
+                                       AddrMode, AddrModeInsts, TLI, Depth+1))
+      return true;
+
+    // Restore the old addr mode info.
+    AddrMode = BackupAddrMode;
+    AddrModeInsts.resize(OldSize);
+    
+    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
+    if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
+                                       AddrMode, AddrModeInsts, TLI, Depth+1) &&
+        FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
+                                       AddrMode, AddrModeInsts, TLI, Depth+1))
+      return true;
+    
+    // Otherwise we definitely can't merge the ADD in.
+    AddrMode = BackupAddrMode;
+    AddrModeInsts.resize(OldSize);
+    break;    
+  }
+  case Instruction::Or: {
+    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
+    if (!RHS) break;
+    // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
+    break;
+  }
+  case Instruction::Mul:
+  case Instruction::Shl: {
+    // Can only handle X*C and X << C, and can only handle this when the scale
+    // field is available.
+    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
+    if (!RHS) break;
+    int64_t Scale = RHS->getSExtValue();
+    if (Opcode == Instruction::Shl)
+      Scale = 1 << Scale;
+    
+    if (TryMatchingScaledValue(AddrInst->getOperand(0), Scale, AccessTy,
+                               AddrMode, AddrModeInsts, TLI, Depth))
+      return true;
+    break;
+  }
+  case Instruction::GetElementPtr: {
+    // Scan the GEP.  We check it if it contains constant offsets and at most
+    // one variable offset.
+    int VariableOperand = -1;
+    unsigned VariableScale = 0;
+    
+    int64_t ConstantOffset = 0;
+    const TargetData *TD = TLI.getTargetData();
+    gep_type_iterator GTI = gep_type_begin(AddrInst);
+    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
+      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+        const StructLayout *SL = TD->getStructLayout(STy);
+        unsigned Idx =
+          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
+        ConstantOffset += SL->getElementOffset(Idx);
+      } else {
+        uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType());
+        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
+          ConstantOffset += CI->getSExtValue()*TypeSize;
+        } else if (TypeSize) {  // Scales of zero don't do anything.
+          // We only allow one variable index at the moment.
+          if (VariableOperand != -1) {
+            VariableOperand = -2;
+            break;
+          }
+          
+          // Remember the variable index.
+          VariableOperand = i;
+          VariableScale = TypeSize;
+        }
+      }
+    }
+
+    // If the GEP had multiple variable indices, punt.
+    if (VariableOperand == -2)
+      break;
+
+    // A common case is for the GEP to only do a constant offset.  In this case,
+    // just add it to the disp field and check validity.
+    if (VariableOperand == -1) {
+      AddrMode.BaseOffs += ConstantOffset;
+      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
+        // Check to see if we can fold the base pointer in too.
+        if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
+                                           AddrMode, AddrModeInsts, TLI,
+                                           Depth+1))
+          return true;
+      }
+      AddrMode.BaseOffs -= ConstantOffset;
+    } else {
+      // Check that this has no base reg yet.  If so, we won't have a place to
+      // put the base of the GEP (assuming it is not a null ptr).
+      bool SetBaseReg = false;
+      if (AddrMode.HasBaseReg) {
+        if (!isa<ConstantPointerNull>(AddrInst->getOperand(0)))
+          break;
+      } else {
+        AddrMode.HasBaseReg = true;
+        AddrMode.BaseReg = AddrInst->getOperand(0);
+        SetBaseReg = true;
+      }
+      
+      // See if the scale amount is valid for this target.
+      AddrMode.BaseOffs += ConstantOffset;
+      if (TryMatchingScaledValue(AddrInst->getOperand(VariableOperand),
+                                 VariableScale, AccessTy, AddrMode, 
+                                 AddrModeInsts, TLI, Depth)) {
+        if (!SetBaseReg) return true;
+
+        // If this match succeeded, we know that we can form an address with the
+        // GepBase as the basereg.  See if we can match *more*.
+        AddrMode.HasBaseReg = false;
+        AddrMode.BaseReg = 0;
+        if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
+                                           AddrMode, AddrModeInsts, TLI,
+                                           Depth+1))
+          return true;
+        // Strange, shouldn't happen.  Restore the base reg and succeed the easy
+        // way.        
+        AddrMode.HasBaseReg = true;
+        AddrMode.BaseReg = AddrInst->getOperand(0);
+        return true;
+      }
+      
+      AddrMode.BaseOffs -= ConstantOffset;
+      if (SetBaseReg) {
+        AddrMode.HasBaseReg = false;
+        AddrMode.BaseReg = 0;
+      }
+    }
+    break;    
+  }
+  }
+  
+  if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst)) {
+    assert(AddrModeInsts.back() == I && "Stack imbalance");
+    AddrModeInsts.pop_back();
+  }
+  
+  // Worse case, the target should support [reg] addressing modes. :)
+  if (!AddrMode.HasBaseReg) {
+    AddrMode.HasBaseReg = true;
+    // Still check for legality in case the target supports [imm] but not [i+r].
+    if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
+      AddrMode.BaseReg = Addr;
+      return true;
+    }
+    AddrMode.HasBaseReg = false;
+  }
+  
+  // If the base register is already taken, see if we can do [r+r].
+  if (AddrMode.Scale == 0) {
+    AddrMode.Scale = 1;
+    if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
+      AddrMode.ScaledReg = Addr;
+      return true;
+    }
+    AddrMode.Scale = 0;
+  }
+  // Couldn't match.
+  return false;
+}
+
+/// TryMatchingScaledValue - Try adding ScaleReg*Scale to the specified
+/// addressing mode.  Return true if this addr mode is legal for the target,
+/// false if not.
+static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
+                                   const Type *AccessTy, ExtAddrMode &AddrMode,
+                                   SmallVector<Instruction*, 16> &AddrModeInsts,
+                                   const TargetLowering &TLI, unsigned Depth) {
+  // If we already have a scale of this value, we can add to it, otherwise, we
+  // need an available scale field.
+  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
+    return false;
+  
+  ExtAddrMode InputAddrMode = AddrMode;
+  
+  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
+  // [A+B + A*7] -> [B+A*8].
+  AddrMode.Scale += Scale;
+  AddrMode.ScaledReg = ScaleReg;
+  
+  if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
+    // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
+    // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
+    // X*Scale + C*Scale to addr mode.
+    BinaryOperator *BinOp = dyn_cast<BinaryOperator>(ScaleReg);
+    if (BinOp && BinOp->getOpcode() == Instruction::Add &&
+        isa<ConstantInt>(BinOp->getOperand(1)) && InputAddrMode.ScaledReg ==0) {
+      
+      InputAddrMode.Scale = Scale;
+      InputAddrMode.ScaledReg = BinOp->getOperand(0);
+      InputAddrMode.BaseOffs += 
+        cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue()*Scale;
+      if (TLI.isLegalAddressingMode(InputAddrMode, AccessTy)) {
+        AddrModeInsts.push_back(BinOp);
+        AddrMode = InputAddrMode;
+        return true;
+      }
+    }
+
+    // Otherwise, not (x+c)*scale, just return what we have.
+    return true;
+  }
+  
+  // Otherwise, back this attempt out.
+  AddrMode.Scale -= Scale;
+  if (AddrMode.Scale == 0) AddrMode.ScaledReg = 0;
+  
+  return false;
+}
+
+
+/// IsNonLocalValue - Return true if the specified values are defined in a
+/// different basic block than BB.
+static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
+  if (Instruction *I = dyn_cast<Instruction>(V))
+    return I->getParent() != BB;
+  return false;
+}
+
+/// OptimizeLoadStoreInst - Load and Store Instructions have often have
+/// addressing modes that can do significant amounts of computation.  As such,
+/// instruction selection will try to get the load or store to do as much
+/// computation as possible for the program.  The problem is that isel can only
+/// see within a single block.  As such, we sink as much legal addressing mode
+/// stuff into the block as possible.
+bool CodeGenPrepare::OptimizeLoadStoreInst(Instruction *LdStInst, Value *Addr,
+                                           const Type *AccessTy,
+                                           DenseMap<Value*,Value*> &SunkAddrs) {
+  // Figure out what addressing mode will be built up for this operation.
+  SmallVector<Instruction*, 16> AddrModeInsts;
+  ExtAddrMode AddrMode;
+  bool Success = FindMaximalLegalAddressingMode(Addr, AccessTy, AddrMode,
+                                                AddrModeInsts, *TLI, 0);
+  Success = Success; assert(Success && "Couldn't select *anything*?");
+  
+  // Check to see if any of the instructions supersumed by this addr mode are
+  // non-local to I's BB.
+  bool AnyNonLocal = false;
+  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
+    if (IsNonLocalValue(AddrModeInsts[i], LdStInst->getParent())) {
+      AnyNonLocal = true;
+      break;
+    }
+  }
+  
+  // If all the instructions matched are already in this BB, don't do anything.
+  if (!AnyNonLocal) {
+    DEBUG(cerr << "CGP: Found      local addrmode: " << AddrMode << "\n");
+    return false;
+  }
+  
+  // Insert this computation right after this user.  Since our caller is
+  // scanning from the top of the BB to the bottom, reuse of the expr are
+  // guaranteed to happen later.
+  BasicBlock::iterator InsertPt = LdStInst;
+  
+  // Now that we determined the addressing expression we want to use and know
+  // that we have to sink it into this block.  Check to see if we have already
+  // done this for some other load/store instr in this block.  If so, reuse the
+  // computation.
+  Value *&SunkAddr = SunkAddrs[Addr];
+  if (SunkAddr) {
+    DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n");
+    if (SunkAddr->getType() != Addr->getType())
+      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
+  } else {
+    DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n");
+    const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
+    
+    Value *Result = 0;
+    // Start with the scale value.
+    if (AddrMode.Scale) {
+      Value *V = AddrMode.ScaledReg;
+      if (V->getType() == IntPtrTy) {
+        // done.
+      } else if (isa<PointerType>(V->getType())) {
+        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
+      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
+                 cast<IntegerType>(V->getType())->getBitWidth()) {
+        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
+      } else {
+        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
+      }
+      if (AddrMode.Scale != 1)
+        V = BinaryOperator::createMul(V, ConstantInt::get(IntPtrTy,
+                                                          AddrMode.Scale),
+                                      "sunkaddr", InsertPt);
+      Result = V;
+    }
+
+    // Add in the base register.
+    if (AddrMode.BaseReg) {
+      Value *V = AddrMode.BaseReg;
+      if (V->getType() != IntPtrTy)
+        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
+      if (Result)
+        Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
+      else
+        Result = V;
+    }
+    
+    // Add in the BaseGV if present.
+    if (AddrMode.BaseGV) {
+      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
+                                  InsertPt);
+      if (Result)
+        Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
+      else
+        Result = V;
+    }
+    
+    // Add in the Base Offset if present.
+    if (AddrMode.BaseOffs) {
+      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
+      if (Result)
+        Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
+      else
+        Result = V;
+    }
+
+    if (Result == 0)
+      SunkAddr = Constant::getNullValue(Addr->getType());
+    else
+      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
+  }
+  
+  LdStInst->replaceUsesOfWith(Addr, SunkAddr);
+  
+  if (Addr->use_empty())
+    EraseDeadInstructions(Addr);
+  return true;
+}
+
+// In this pass we look for GEP and cast instructions that are used
+// across basic blocks and rewrite them to improve basic-block-at-a-time
+// selection.
+bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
+  bool MadeChange = false;
+  
+  // Split all critical edges where the dest block has a PHI and where the phi
+  // has shared immediate operands.
+  TerminatorInst *BBTI = BB.getTerminator();
+  if (BBTI->getNumSuccessors() > 1) {
+    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
+      if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
+          isCriticalEdge(BBTI, i, true))
+        SplitEdgeNicely(BBTI, i, this);
+  }
+  
+  
+  // Keep track of non-local addresses that have been sunk into this block.
+  // This allows us to avoid inserting duplicate code for blocks with multiple
+  // load/stores of the same address.
+  DenseMap<Value*, Value*> SunkAddrs;
+  
+  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
+    Instruction *I = BBI++;
+    
+    if (CastInst *CI = dyn_cast<CastInst>(I)) {
+      // If the source of the cast is a constant, then this should have
+      // already been constant folded.  The only reason NOT to constant fold
+      // it is if something (e.g. LSR) was careful to place the constant
+      // evaluation in a block other than then one that uses it (e.g. to hoist
+      // the address of globals out of a loop).  If this is the case, we don't
+      // want to forward-subst the cast.
+      if (isa<Constant>(CI->getOperand(0)))
+        continue;
+      
+      if (TLI)
+        MadeChange |= OptimizeNoopCopyExpression(CI, *TLI);
+    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
+      MadeChange |= OptimizeCmpExpression(CI);
+    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+      if (TLI)
+        MadeChange |= OptimizeLoadStoreInst(I, I->getOperand(0), LI->getType(),
+                                            SunkAddrs);
+    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+      if (TLI)
+        MadeChange |= OptimizeLoadStoreInst(I, SI->getOperand(1),
+                                            SI->getOperand(0)->getType(),
+                                            SunkAddrs);
+    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
+      if (GEPI->hasAllZeroIndices()) {
+        /// The GEP operand must be a pointer, so must its result -> BitCast
+        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 
+                                          GEPI->getName(), GEPI);
+        GEPI->replaceAllUsesWith(NC);
+        GEPI->eraseFromParent();
+        MadeChange = true;
+        BBI = NC;
+      }
+    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
+      // If we found an inline asm expession, and if the target knows how to
+      // lower it to normal LLVM code, do so now.
+      if (TLI && isa<InlineAsm>(CI->getCalledValue()))
+        if (const TargetAsmInfo *TAI = 
+            TLI->getTargetMachine().getTargetAsmInfo()) {
+          if (TAI->ExpandInlineAsm(CI))
+            BBI = BB.begin();
+        }
+    }
+  }
+    
+  return MadeChange;
+}
+