It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Transforms/Utils/LCSSA.cpp b/lib/Transforms/Utils/LCSSA.cpp
new file mode 100644
index 0000000..220241d
--- /dev/null
+++ b/lib/Transforms/Utils/LCSSA.cpp
@@ -0,0 +1,269 @@
+//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Owen Anderson and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass transforms loops by placing phi nodes at the end of the loops for
+// all values that are live across the loop boundary.  For example, it turns
+// the left into the right code:
+// 
+// for (...)                for (...)
+//   if (c)                   if (c)
+//     X1 = ...                 X1 = ...
+//   else                     else
+//     X2 = ...                 X2 = ...
+//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
+// ... = X3 + 4              X4 = phi(X3)
+//                           ... = X4 + 4
+//
+// This is still valid LLVM; the extra phi nodes are purely redundant, and will
+// be trivially eliminated by InstCombine.  The major benefit of this 
+// transformation is that it makes many other loop optimizations, such as 
+// LoopUnswitching, simpler.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "lcssa"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/Pass.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Compiler.h"
+#include <algorithm>
+#include <map>
+using namespace llvm;
+
+STATISTIC(NumLCSSA, "Number of live out of a loop variables");
+
+namespace {
+  struct VISIBILITY_HIDDEN LCSSA : public LoopPass {
+    static char ID; // Pass identification, replacement for typeid
+    LCSSA() : LoopPass((intptr_t)&ID) {}
+
+    // Cached analysis information for the current function.
+    LoopInfo *LI;
+    DominatorTree *DT;
+    std::vector<BasicBlock*> LoopBlocks;
+    
+    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
+
+    void ProcessInstruction(Instruction* Instr,
+                            const std::vector<BasicBlock*>& exitBlocks);
+    
+    /// This transformation requires natural loop information & requires that
+    /// loop preheaders be inserted into the CFG.  It maintains both of these,
+    /// as well as the CFG.  It also requires dominator information.
+    ///
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.setPreservesCFG();
+      AU.addRequiredID(LoopSimplifyID);
+      AU.addPreservedID(LoopSimplifyID);
+      AU.addRequired<LoopInfo>();
+      AU.addPreserved<LoopInfo>();
+      AU.addRequired<DominatorTree>();
+      AU.addPreserved<ScalarEvolution>();
+    }
+  private:
+    void getLoopValuesUsedOutsideLoop(Loop *L,
+                                      SetVector<Instruction*> &AffectedValues);
+
+    Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
+                            std::map<DomTreeNode*, Value*> &Phis);
+
+    /// inLoop - returns true if the given block is within the current loop
+    const bool inLoop(BasicBlock* B) {
+      return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
+    }
+  };
+  
+  char LCSSA::ID = 0;
+  RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass");
+}
+
+LoopPass *llvm::createLCSSAPass() { return new LCSSA(); }
+const PassInfo *llvm::LCSSAID = X.getPassInfo();
+
+/// runOnFunction - Process all loops in the function, inner-most out.
+bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
+  
+  LI = &LPM.getAnalysis<LoopInfo>();
+  DT = &getAnalysis<DominatorTree>();
+    
+  // Speed up queries by creating a sorted list of blocks
+  LoopBlocks.clear();
+  LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
+  std::sort(LoopBlocks.begin(), LoopBlocks.end());
+  
+  SetVector<Instruction*> AffectedValues;
+  getLoopValuesUsedOutsideLoop(L, AffectedValues);
+  
+  // If no values are affected, we can save a lot of work, since we know that
+  // nothing will be changed.
+  if (AffectedValues.empty())
+    return false;
+  
+  std::vector<BasicBlock*> exitBlocks;
+  L->getExitBlocks(exitBlocks);
+  
+  
+  // Iterate over all affected values for this loop and insert Phi nodes
+  // for them in the appropriate exit blocks
+  
+  for (SetVector<Instruction*>::iterator I = AffectedValues.begin(),
+       E = AffectedValues.end(); I != E; ++I)
+    ProcessInstruction(*I, exitBlocks);
+  
+  assert(L->isLCSSAForm());
+  
+  return true;
+}
+
+/// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes,
+/// eliminate all out-of-loop uses.
+void LCSSA::ProcessInstruction(Instruction *Instr,
+                               const std::vector<BasicBlock*>& exitBlocks) {
+  ++NumLCSSA; // We are applying the transformation
+
+  // Keep track of the blocks that have the value available already.
+  std::map<DomTreeNode*, Value*> Phis;
+
+  DomTreeNode *InstrNode = DT->getNode(Instr->getParent());
+
+  // Insert the LCSSA phi's into the exit blocks (dominated by the value), and
+  // add them to the Phi's map.
+  for (std::vector<BasicBlock*>::const_iterator BBI = exitBlocks.begin(),
+      BBE = exitBlocks.end(); BBI != BBE; ++BBI) {
+    BasicBlock *BB = *BBI;
+    DomTreeNode *ExitBBNode = DT->getNode(BB);
+    Value *&Phi = Phis[ExitBBNode];
+    if (!Phi && DT->dominates(InstrNode, ExitBBNode)) {
+      PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa",
+                                BB->begin());
+      PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
+
+      // Remember that this phi makes the value alive in this block.
+      Phi = PN;
+
+      // Add inputs from inside the loop for this PHI.
+      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+        PN->addIncoming(Instr, *PI);
+    }
+  }
+  
+  
+  // Record all uses of Instr outside the loop.  We need to rewrite these.  The
+  // LCSSA phis won't be included because they use the value in the loop.
+  for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end();
+       UI != E;) {
+    BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
+    if (PHINode *P = dyn_cast<PHINode>(*UI)) {
+      unsigned OperandNo = UI.getOperandNo();
+      UserBB = P->getIncomingBlock(OperandNo/2);
+    }
+    
+    // If the user is in the loop, don't rewrite it!
+    if (UserBB == Instr->getParent() || inLoop(UserBB)) {
+      ++UI;
+      continue;
+    }
+    
+    // Otherwise, patch up uses of the value with the appropriate LCSSA Phi,
+    // inserting PHI nodes into join points where needed.
+    Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis);
+    
+    // Preincrement the iterator to avoid invalidating it when we change the
+    // value.
+    Use &U = UI.getUse();
+    ++UI;
+    U.set(Val);
+  }
+}
+
+/// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that
+/// are used by instructions outside of it.
+void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L,
+                                      SetVector<Instruction*> &AffectedValues) {
+  // FIXME: For large loops, we may be able to avoid a lot of use-scanning
+  // by using dominance information.  In particular, if a block does not
+  // dominate any of the loop exits, then none of the values defined in the
+  // block could be used outside the loop.
+  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
+       BB != E; ++BB) {
+    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I)
+      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
+           ++UI) {
+        BasicBlock *UserBB = cast<Instruction>(*UI)->getParent();
+        if (PHINode* p = dyn_cast<PHINode>(*UI)) {
+          unsigned OperandNo = UI.getOperandNo();
+          UserBB = p->getIncomingBlock(OperandNo/2);
+        }
+        
+        if (*BB != UserBB && !inLoop(UserBB)) {
+          AffectedValues.insert(I);
+          break;
+        }
+      }
+  }
+}
+
+/// GetValueForBlock - Get the value to use within the specified basic block.
+/// available values are in Phis.
+Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst,
+                               std::map<DomTreeNode*, Value*> &Phis) {
+  // If there is no dominator info for this BB, it is unreachable.
+  if (BB == 0)
+    return UndefValue::get(OrigInst->getType());
+                                 
+  // If we have already computed this value, return the previously computed val.
+  Value *&V = Phis[BB];
+  if (V) return V;
+
+  DomTreeNode *IDom = BB->getIDom();
+
+  // If the block has no dominator, bail
+  if (!IDom)
+    return V = UndefValue::get(OrigInst->getType());
+
+  // Otherwise, there are two cases: we either have to insert a PHI node or we
+  // don't.  We need to insert a PHI node if this block is not dominated by one
+  // of the exit nodes from the loop (the loop could have multiple exits, and
+  // though the value defined *inside* the loop dominated all its uses, each
+  // exit by itself may not dominate all the uses).
+  //
+  // The simplest way to check for this condition is by checking to see if the
+  // idom is in the loop.  If so, we *know* that none of the exit blocks
+  // dominate this block.  Note that we *know* that the block defining the
+  // original instruction is in the idom chain, because if it weren't, then the
+  // original value didn't dominate this use.
+  if (!inLoop(IDom->getBlock())) {
+    // Idom is not in the loop, we must still be "below" the exit block and must
+    // be fully dominated by the value live in the idom.
+    return V = GetValueForBlock(IDom, OrigInst, Phis);
+  }
+  
+  BasicBlock *BBN = BB->getBlock();
+  
+  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
+  // now, then get values to fill in the incoming values for the PHI.
+  PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa",
+                            BBN->begin());
+  PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN)));
+  V = PN;
+                                 
+  // Fill in the incoming values for the block.
+  for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI)
+    PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI);
+  return PN;
+}
+