It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Transforms/Utils/SimplifyCFG.cpp b/lib/Transforms/Utils/SimplifyCFG.cpp
new file mode 100644
index 0000000..6c34d02
--- /dev/null
+++ b/lib/Transforms/Utils/SimplifyCFG.cpp
@@ -0,0 +1,1905 @@
+//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Peephole optimize the CFG.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "simplifycfg"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/Type.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include <algorithm>
+#include <functional>
+#include <set>
+#include <map>
+using namespace llvm;
+
+/// SafeToMergeTerminators - Return true if it is safe to merge these two
+/// terminator instructions together.
+///
+static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
+ if (SI1 == SI2) return false; // Can't merge with self!
+
+ // It is not safe to merge these two switch instructions if they have a common
+ // successor, and if that successor has a PHI node, and if *that* PHI node has
+ // conflicting incoming values from the two switch blocks.
+ BasicBlock *SI1BB = SI1->getParent();
+ BasicBlock *SI2BB = SI2->getParent();
+ SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
+
+ for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
+ if (SI1Succs.count(*I))
+ for (BasicBlock::iterator BBI = (*I)->begin();
+ isa<PHINode>(BBI); ++BBI) {
+ PHINode *PN = cast<PHINode>(BBI);
+ if (PN->getIncomingValueForBlock(SI1BB) !=
+ PN->getIncomingValueForBlock(SI2BB))
+ return false;
+ }
+
+ return true;
+}
+
+/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
+/// now be entries in it from the 'NewPred' block. The values that will be
+/// flowing into the PHI nodes will be the same as those coming in from
+/// ExistPred, an existing predecessor of Succ.
+static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
+ BasicBlock *ExistPred) {
+ assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
+ succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
+ if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
+
+ for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ Value *V = PN->getIncomingValueForBlock(ExistPred);
+ PN->addIncoming(V, NewPred);
+ }
+}
+
+// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
+// almost-empty BB ending in an unconditional branch to Succ, into succ.
+//
+// Assumption: Succ is the single successor for BB.
+//
+static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
+ assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
+
+ // Check to see if one of the predecessors of BB is already a predecessor of
+ // Succ. If so, we cannot do the transformation if there are any PHI nodes
+ // with incompatible values coming in from the two edges!
+ //
+ if (isa<PHINode>(Succ->front())) {
+ SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
+ for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
+ PI != PE; ++PI)
+ if (BBPreds.count(*PI)) {
+ // Loop over all of the PHI nodes checking to see if there are
+ // incompatible values coming in.
+ for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ // Loop up the entries in the PHI node for BB and for *PI if the
+ // values coming in are non-equal, we cannot merge these two blocks
+ // (instead we should insert a conditional move or something, then
+ // merge the blocks).
+ if (PN->getIncomingValueForBlock(BB) !=
+ PN->getIncomingValueForBlock(*PI))
+ return false; // Values are not equal...
+ }
+ }
+ }
+
+ // Finally, if BB has PHI nodes that are used by things other than the PHIs in
+ // Succ and Succ has predecessors that are not Succ and not Pred, we cannot
+ // fold these blocks, as we don't know whether BB dominates Succ or not to
+ // update the PHI nodes correctly.
+ if (!isa<PHINode>(BB->begin()) || Succ->getSinglePredecessor()) return true;
+
+ // If the predecessors of Succ are only BB and Succ itself, handle it.
+ bool IsSafe = true;
+ for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
+ if (*PI != Succ && *PI != BB) {
+ IsSafe = false;
+ break;
+ }
+ if (IsSafe) return true;
+
+ // If the PHI nodes in BB are only used by instructions in Succ, we are ok if
+ // BB and Succ have no common predecessors.
+ for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E;
+ ++UI)
+ if (cast<Instruction>(*UI)->getParent() != Succ)
+ return false;
+ }
+
+ // Scan the predecessor sets of BB and Succ, making sure there are no common
+ // predecessors. Common predecessors would cause us to build a phi node with
+ // differing incoming values, which is not legal.
+ SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
+ for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
+ if (BBPreds.count(*PI))
+ return false;
+
+ return true;
+}
+
+/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
+/// branch to Succ, and contains no instructions other than PHI nodes and the
+/// branch. If possible, eliminate BB.
+static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
+ BasicBlock *Succ) {
+ // If our successor has PHI nodes, then we need to update them to include
+ // entries for BB's predecessors, not for BB itself. Be careful though,
+ // if this transformation fails (returns true) then we cannot do this
+ // transformation!
+ //
+ if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
+
+ DOUT << "Killing Trivial BB: \n" << *BB;
+
+ if (isa<PHINode>(Succ->begin())) {
+ // If there is more than one pred of succ, and there are PHI nodes in
+ // the successor, then we need to add incoming edges for the PHI nodes
+ //
+ const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
+
+ // Loop over all of the PHI nodes in the successor of BB.
+ for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ Value *OldVal = PN->removeIncomingValue(BB, false);
+ assert(OldVal && "No entry in PHI for Pred BB!");
+
+ // If this incoming value is one of the PHI nodes in BB, the new entries
+ // in the PHI node are the entries from the old PHI.
+ if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
+ PHINode *OldValPN = cast<PHINode>(OldVal);
+ for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
+ PN->addIncoming(OldValPN->getIncomingValue(i),
+ OldValPN->getIncomingBlock(i));
+ } else {
+ for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
+ End = BBPreds.end(); PredI != End; ++PredI) {
+ // Add an incoming value for each of the new incoming values...
+ PN->addIncoming(OldVal, *PredI);
+ }
+ }
+ }
+ }
+
+ if (isa<PHINode>(&BB->front())) {
+ std::vector<BasicBlock*>
+ OldSuccPreds(pred_begin(Succ), pred_end(Succ));
+
+ // Move all PHI nodes in BB to Succ if they are alive, otherwise
+ // delete them.
+ while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
+ if (PN->use_empty()) {
+ // Just remove the dead phi. This happens if Succ's PHIs were the only
+ // users of the PHI nodes.
+ PN->eraseFromParent();
+ } else {
+ // The instruction is alive, so this means that Succ must have
+ // *ONLY* had BB as a predecessor, and the PHI node is still valid
+ // now. Simply move it into Succ, because we know that BB
+ // strictly dominated Succ.
+ Succ->getInstList().splice(Succ->begin(),
+ BB->getInstList(), BB->begin());
+
+ // We need to add new entries for the PHI node to account for
+ // predecessors of Succ that the PHI node does not take into
+ // account. At this point, since we know that BB dominated succ,
+ // this means that we should any newly added incoming edges should
+ // use the PHI node as the value for these edges, because they are
+ // loop back edges.
+ for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
+ if (OldSuccPreds[i] != BB)
+ PN->addIncoming(PN, OldSuccPreds[i]);
+ }
+ }
+
+ // Everything that jumped to BB now goes to Succ.
+ BB->replaceAllUsesWith(Succ);
+ if (!Succ->hasName()) Succ->takeName(BB);
+ BB->eraseFromParent(); // Delete the old basic block.
+ return true;
+}
+
+/// GetIfCondition - Given a basic block (BB) with two predecessors (and
+/// presumably PHI nodes in it), check to see if the merge at this block is due
+/// to an "if condition". If so, return the boolean condition that determines
+/// which entry into BB will be taken. Also, return by references the block
+/// that will be entered from if the condition is true, and the block that will
+/// be entered if the condition is false.
+///
+///
+static Value *GetIfCondition(BasicBlock *BB,
+ BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
+ assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
+ "Function can only handle blocks with 2 predecessors!");
+ BasicBlock *Pred1 = *pred_begin(BB);
+ BasicBlock *Pred2 = *++pred_begin(BB);
+
+ // We can only handle branches. Other control flow will be lowered to
+ // branches if possible anyway.
+ if (!isa<BranchInst>(Pred1->getTerminator()) ||
+ !isa<BranchInst>(Pred2->getTerminator()))
+ return 0;
+ BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
+ BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
+
+ // Eliminate code duplication by ensuring that Pred1Br is conditional if
+ // either are.
+ if (Pred2Br->isConditional()) {
+ // If both branches are conditional, we don't have an "if statement". In
+ // reality, we could transform this case, but since the condition will be
+ // required anyway, we stand no chance of eliminating it, so the xform is
+ // probably not profitable.
+ if (Pred1Br->isConditional())
+ return 0;
+
+ std::swap(Pred1, Pred2);
+ std::swap(Pred1Br, Pred2Br);
+ }
+
+ if (Pred1Br->isConditional()) {
+ // If we found a conditional branch predecessor, make sure that it branches
+ // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
+ if (Pred1Br->getSuccessor(0) == BB &&
+ Pred1Br->getSuccessor(1) == Pred2) {
+ IfTrue = Pred1;
+ IfFalse = Pred2;
+ } else if (Pred1Br->getSuccessor(0) == Pred2 &&
+ Pred1Br->getSuccessor(1) == BB) {
+ IfTrue = Pred2;
+ IfFalse = Pred1;
+ } else {
+ // We know that one arm of the conditional goes to BB, so the other must
+ // go somewhere unrelated, and this must not be an "if statement".
+ return 0;
+ }
+
+ // The only thing we have to watch out for here is to make sure that Pred2
+ // doesn't have incoming edges from other blocks. If it does, the condition
+ // doesn't dominate BB.
+ if (++pred_begin(Pred2) != pred_end(Pred2))
+ return 0;
+
+ return Pred1Br->getCondition();
+ }
+
+ // Ok, if we got here, both predecessors end with an unconditional branch to
+ // BB. Don't panic! If both blocks only have a single (identical)
+ // predecessor, and THAT is a conditional branch, then we're all ok!
+ if (pred_begin(Pred1) == pred_end(Pred1) ||
+ ++pred_begin(Pred1) != pred_end(Pred1) ||
+ pred_begin(Pred2) == pred_end(Pred2) ||
+ ++pred_begin(Pred2) != pred_end(Pred2) ||
+ *pred_begin(Pred1) != *pred_begin(Pred2))
+ return 0;
+
+ // Otherwise, if this is a conditional branch, then we can use it!
+ BasicBlock *CommonPred = *pred_begin(Pred1);
+ if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
+ assert(BI->isConditional() && "Two successors but not conditional?");
+ if (BI->getSuccessor(0) == Pred1) {
+ IfTrue = Pred1;
+ IfFalse = Pred2;
+ } else {
+ IfTrue = Pred2;
+ IfFalse = Pred1;
+ }
+ return BI->getCondition();
+ }
+ return 0;
+}
+
+
+// If we have a merge point of an "if condition" as accepted above, return true
+// if the specified value dominates the block. We don't handle the true
+// generality of domination here, just a special case which works well enough
+// for us.
+//
+// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
+// see if V (which must be an instruction) is cheap to compute and is
+// non-trapping. If both are true, the instruction is inserted into the set and
+// true is returned.
+static bool DominatesMergePoint(Value *V, BasicBlock *BB,
+ std::set<Instruction*> *AggressiveInsts) {
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) {
+ // Non-instructions all dominate instructions, but not all constantexprs
+ // can be executed unconditionally.
+ if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
+ if (C->canTrap())
+ return false;
+ return true;
+ }
+ BasicBlock *PBB = I->getParent();
+
+ // We don't want to allow weird loops that might have the "if condition" in
+ // the bottom of this block.
+ if (PBB == BB) return false;
+
+ // If this instruction is defined in a block that contains an unconditional
+ // branch to BB, then it must be in the 'conditional' part of the "if
+ // statement".
+ if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
+ if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
+ if (!AggressiveInsts) return false;
+ // Okay, it looks like the instruction IS in the "condition". Check to
+ // see if its a cheap instruction to unconditionally compute, and if it
+ // only uses stuff defined outside of the condition. If so, hoist it out.
+ switch (I->getOpcode()) {
+ default: return false; // Cannot hoist this out safely.
+ case Instruction::Load:
+ // We can hoist loads that are non-volatile and obviously cannot trap.
+ if (cast<LoadInst>(I)->isVolatile())
+ return false;
+ if (!isa<AllocaInst>(I->getOperand(0)) &&
+ !isa<Constant>(I->getOperand(0)))
+ return false;
+
+ // Finally, we have to check to make sure there are no instructions
+ // before the load in its basic block, as we are going to hoist the loop
+ // out to its predecessor.
+ if (PBB->begin() != BasicBlock::iterator(I))
+ return false;
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ break; // These are all cheap and non-trapping instructions.
+ }
+
+ // Okay, we can only really hoist these out if their operands are not
+ // defined in the conditional region.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (!DominatesMergePoint(I->getOperand(i), BB, 0))
+ return false;
+ // Okay, it's safe to do this! Remember this instruction.
+ AggressiveInsts->insert(I);
+ }
+
+ return true;
+}
+
+// GatherConstantSetEQs - Given a potentially 'or'd together collection of
+// icmp_eq instructions that compare a value against a constant, return the
+// value being compared, and stick the constant into the Values vector.
+static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
+ if (Instruction *Inst = dyn_cast<Instruction>(V))
+ if (Inst->getOpcode() == Instruction::ICmp &&
+ cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
+ Values.push_back(C);
+ return Inst->getOperand(0);
+ } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
+ Values.push_back(C);
+ return Inst->getOperand(1);
+ }
+ } else if (Inst->getOpcode() == Instruction::Or) {
+ if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
+ if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
+ if (LHS == RHS)
+ return LHS;
+ }
+ return 0;
+}
+
+// GatherConstantSetNEs - Given a potentially 'and'd together collection of
+// setne instructions that compare a value against a constant, return the value
+// being compared, and stick the constant into the Values vector.
+static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
+ if (Instruction *Inst = dyn_cast<Instruction>(V))
+ if (Inst->getOpcode() == Instruction::ICmp &&
+ cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
+ Values.push_back(C);
+ return Inst->getOperand(0);
+ } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
+ Values.push_back(C);
+ return Inst->getOperand(1);
+ }
+ } else if (Inst->getOpcode() == Instruction::And) {
+ if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
+ if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
+ if (LHS == RHS)
+ return LHS;
+ }
+ return 0;
+}
+
+
+
+/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
+/// bunch of comparisons of one value against constants, return the value and
+/// the constants being compared.
+static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
+ std::vector<ConstantInt*> &Values) {
+ if (Cond->getOpcode() == Instruction::Or) {
+ CompVal = GatherConstantSetEQs(Cond, Values);
+
+ // Return true to indicate that the condition is true if the CompVal is
+ // equal to one of the constants.
+ return true;
+ } else if (Cond->getOpcode() == Instruction::And) {
+ CompVal = GatherConstantSetNEs(Cond, Values);
+
+ // Return false to indicate that the condition is false if the CompVal is
+ // equal to one of the constants.
+ return false;
+ }
+ return false;
+}
+
+/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
+/// has no side effects, nuke it. If it uses any instructions that become dead
+/// because the instruction is now gone, nuke them too.
+static void ErasePossiblyDeadInstructionTree(Instruction *I) {
+ if (!isInstructionTriviallyDead(I)) return;
+
+ std::vector<Instruction*> InstrsToInspect;
+ InstrsToInspect.push_back(I);
+
+ while (!InstrsToInspect.empty()) {
+ I = InstrsToInspect.back();
+ InstrsToInspect.pop_back();
+
+ if (!isInstructionTriviallyDead(I)) continue;
+
+ // If I is in the work list multiple times, remove previous instances.
+ for (unsigned i = 0, e = InstrsToInspect.size(); i != e; ++i)
+ if (InstrsToInspect[i] == I) {
+ InstrsToInspect.erase(InstrsToInspect.begin()+i);
+ --i, --e;
+ }
+
+ // Add operands of dead instruction to worklist.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
+ InstrsToInspect.push_back(OpI);
+
+ // Remove dead instruction.
+ I->eraseFromParent();
+ }
+}
+
+// isValueEqualityComparison - Return true if the specified terminator checks to
+// see if a value is equal to constant integer value.
+static Value *isValueEqualityComparison(TerminatorInst *TI) {
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ // Do not permit merging of large switch instructions into their
+ // predecessors unless there is only one predecessor.
+ if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
+ pred_end(SI->getParent())) > 128)
+ return 0;
+
+ return SI->getCondition();
+ }
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI))
+ if (BI->isConditional() && BI->getCondition()->hasOneUse())
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
+ if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
+ ICI->getPredicate() == ICmpInst::ICMP_NE) &&
+ isa<ConstantInt>(ICI->getOperand(1)))
+ return ICI->getOperand(0);
+ return 0;
+}
+
+// Given a value comparison instruction, decode all of the 'cases' that it
+// represents and return the 'default' block.
+static BasicBlock *
+GetValueEqualityComparisonCases(TerminatorInst *TI,
+ std::vector<std::pair<ConstantInt*,
+ BasicBlock*> > &Cases) {
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ Cases.reserve(SI->getNumCases());
+ for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+ Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
+ return SI->getDefaultDest();
+ }
+
+ BranchInst *BI = cast<BranchInst>(TI);
+ ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
+ Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
+ BI->getSuccessor(ICI->getPredicate() ==
+ ICmpInst::ICMP_NE)));
+ return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
+}
+
+
+// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
+// in the list that match the specified block.
+static void EliminateBlockCases(BasicBlock *BB,
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
+ for (unsigned i = 0, e = Cases.size(); i != e; ++i)
+ if (Cases[i].second == BB) {
+ Cases.erase(Cases.begin()+i);
+ --i; --e;
+ }
+}
+
+// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
+// well.
+static bool
+ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
+
+ // Make V1 be smaller than V2.
+ if (V1->size() > V2->size())
+ std::swap(V1, V2);
+
+ if (V1->size() == 0) return false;
+ if (V1->size() == 1) {
+ // Just scan V2.
+ ConstantInt *TheVal = (*V1)[0].first;
+ for (unsigned i = 0, e = V2->size(); i != e; ++i)
+ if (TheVal == (*V2)[i].first)
+ return true;
+ }
+
+ // Otherwise, just sort both lists and compare element by element.
+ std::sort(V1->begin(), V1->end());
+ std::sort(V2->begin(), V2->end());
+ unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
+ while (i1 != e1 && i2 != e2) {
+ if ((*V1)[i1].first == (*V2)[i2].first)
+ return true;
+ if ((*V1)[i1].first < (*V2)[i2].first)
+ ++i1;
+ else
+ ++i2;
+ }
+ return false;
+}
+
+// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
+// terminator instruction and its block is known to only have a single
+// predecessor block, check to see if that predecessor is also a value
+// comparison with the same value, and if that comparison determines the outcome
+// of this comparison. If so, simplify TI. This does a very limited form of
+// jump threading.
+static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
+ BasicBlock *Pred) {
+ Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
+ if (!PredVal) return false; // Not a value comparison in predecessor.
+
+ Value *ThisVal = isValueEqualityComparison(TI);
+ assert(ThisVal && "This isn't a value comparison!!");
+ if (ThisVal != PredVal) return false; // Different predicates.
+
+ // Find out information about when control will move from Pred to TI's block.
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
+ BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
+ PredCases);
+ EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
+
+ // Find information about how control leaves this block.
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
+ BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
+ EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
+
+ // If TI's block is the default block from Pred's comparison, potentially
+ // simplify TI based on this knowledge.
+ if (PredDef == TI->getParent()) {
+ // If we are here, we know that the value is none of those cases listed in
+ // PredCases. If there are any cases in ThisCases that are in PredCases, we
+ // can simplify TI.
+ if (ValuesOverlap(PredCases, ThisCases)) {
+ if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
+ // Okay, one of the successors of this condbr is dead. Convert it to a
+ // uncond br.
+ assert(ThisCases.size() == 1 && "Branch can only have one case!");
+ Value *Cond = BTI->getCondition();
+ // Insert the new branch.
+ Instruction *NI = new BranchInst(ThisDef, TI);
+
+ // Remove PHI node entries for the dead edge.
+ ThisCases[0].second->removePredecessor(TI->getParent());
+
+ DOUT << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
+
+ TI->eraseFromParent(); // Nuke the old one.
+ // If condition is now dead, nuke it.
+ if (Instruction *CondI = dyn_cast<Instruction>(Cond))
+ ErasePossiblyDeadInstructionTree(CondI);
+ return true;
+
+ } else {
+ SwitchInst *SI = cast<SwitchInst>(TI);
+ // Okay, TI has cases that are statically dead, prune them away.
+ SmallPtrSet<Constant*, 16> DeadCases;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ DeadCases.insert(PredCases[i].first);
+
+ DOUT << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI;
+
+ for (unsigned i = SI->getNumCases()-1; i != 0; --i)
+ if (DeadCases.count(SI->getCaseValue(i))) {
+ SI->getSuccessor(i)->removePredecessor(TI->getParent());
+ SI->removeCase(i);
+ }
+
+ DOUT << "Leaving: " << *TI << "\n";
+ return true;
+ }
+ }
+
+ } else {
+ // Otherwise, TI's block must correspond to some matched value. Find out
+ // which value (or set of values) this is.
+ ConstantInt *TIV = 0;
+ BasicBlock *TIBB = TI->getParent();
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].second == TIBB)
+ if (TIV == 0)
+ TIV = PredCases[i].first;
+ else
+ return false; // Cannot handle multiple values coming to this block.
+ assert(TIV && "No edge from pred to succ?");
+
+ // Okay, we found the one constant that our value can be if we get into TI's
+ // BB. Find out which successor will unconditionally be branched to.
+ BasicBlock *TheRealDest = 0;
+ for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
+ if (ThisCases[i].first == TIV) {
+ TheRealDest = ThisCases[i].second;
+ break;
+ }
+
+ // If not handled by any explicit cases, it is handled by the default case.
+ if (TheRealDest == 0) TheRealDest = ThisDef;
+
+ // Remove PHI node entries for dead edges.
+ BasicBlock *CheckEdge = TheRealDest;
+ for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
+ if (*SI != CheckEdge)
+ (*SI)->removePredecessor(TIBB);
+ else
+ CheckEdge = 0;
+
+ // Insert the new branch.
+ Instruction *NI = new BranchInst(TheRealDest, TI);
+
+ DOUT << "Threading pred instr: " << *Pred->getTerminator()
+ << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
+ Instruction *Cond = 0;
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI))
+ Cond = dyn_cast<Instruction>(BI->getCondition());
+ TI->eraseFromParent(); // Nuke the old one.
+
+ if (Cond) ErasePossiblyDeadInstructionTree(Cond);
+ return true;
+ }
+ return false;
+}
+
+// FoldValueComparisonIntoPredecessors - The specified terminator is a value
+// equality comparison instruction (either a switch or a branch on "X == c").
+// See if any of the predecessors of the terminator block are value comparisons
+// on the same value. If so, and if safe to do so, fold them together.
+static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
+ BasicBlock *BB = TI->getParent();
+ Value *CV = isValueEqualityComparison(TI); // CondVal
+ assert(CV && "Not a comparison?");
+ bool Changed = false;
+
+ std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
+ while (!Preds.empty()) {
+ BasicBlock *Pred = Preds.back();
+ Preds.pop_back();
+
+ // See if the predecessor is a comparison with the same value.
+ TerminatorInst *PTI = Pred->getTerminator();
+ Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
+
+ if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
+ // Figure out which 'cases' to copy from SI to PSI.
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
+ BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
+
+ std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
+ BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
+
+ // Based on whether the default edge from PTI goes to BB or not, fill in
+ // PredCases and PredDefault with the new switch cases we would like to
+ // build.
+ std::vector<BasicBlock*> NewSuccessors;
+
+ if (PredDefault == BB) {
+ // If this is the default destination from PTI, only the edges in TI
+ // that don't occur in PTI, or that branch to BB will be activated.
+ std::set<ConstantInt*> PTIHandled;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].second != BB)
+ PTIHandled.insert(PredCases[i].first);
+ else {
+ // The default destination is BB, we don't need explicit targets.
+ std::swap(PredCases[i], PredCases.back());
+ PredCases.pop_back();
+ --i; --e;
+ }
+
+ // Reconstruct the new switch statement we will be building.
+ if (PredDefault != BBDefault) {
+ PredDefault->removePredecessor(Pred);
+ PredDefault = BBDefault;
+ NewSuccessors.push_back(BBDefault);
+ }
+ for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
+ if (!PTIHandled.count(BBCases[i].first) &&
+ BBCases[i].second != BBDefault) {
+ PredCases.push_back(BBCases[i]);
+ NewSuccessors.push_back(BBCases[i].second);
+ }
+
+ } else {
+ // If this is not the default destination from PSI, only the edges
+ // in SI that occur in PSI with a destination of BB will be
+ // activated.
+ std::set<ConstantInt*> PTIHandled;
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ if (PredCases[i].second == BB) {
+ PTIHandled.insert(PredCases[i].first);
+ std::swap(PredCases[i], PredCases.back());
+ PredCases.pop_back();
+ --i; --e;
+ }
+
+ // Okay, now we know which constants were sent to BB from the
+ // predecessor. Figure out where they will all go now.
+ for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
+ if (PTIHandled.count(BBCases[i].first)) {
+ // If this is one we are capable of getting...
+ PredCases.push_back(BBCases[i]);
+ NewSuccessors.push_back(BBCases[i].second);
+ PTIHandled.erase(BBCases[i].first);// This constant is taken care of
+ }
+
+ // If there are any constants vectored to BB that TI doesn't handle,
+ // they must go to the default destination of TI.
+ for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
+ E = PTIHandled.end(); I != E; ++I) {
+ PredCases.push_back(std::make_pair(*I, BBDefault));
+ NewSuccessors.push_back(BBDefault);
+ }
+ }
+
+ // Okay, at this point, we know which new successor Pred will get. Make
+ // sure we update the number of entries in the PHI nodes for these
+ // successors.
+ for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
+ AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
+
+ // Now that the successors are updated, create the new Switch instruction.
+ SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
+ for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
+ NewSI->addCase(PredCases[i].first, PredCases[i].second);
+
+ Instruction *DeadCond = 0;
+ if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
+ // If PTI is a branch, remember the condition.
+ DeadCond = dyn_cast<Instruction>(BI->getCondition());
+ Pred->getInstList().erase(PTI);
+
+ // If the condition is dead now, remove the instruction tree.
+ if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
+
+ // Okay, last check. If BB is still a successor of PSI, then we must
+ // have an infinite loop case. If so, add an infinitely looping block
+ // to handle the case to preserve the behavior of the code.
+ BasicBlock *InfLoopBlock = 0;
+ for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
+ if (NewSI->getSuccessor(i) == BB) {
+ if (InfLoopBlock == 0) {
+ // Insert it at the end of the loop, because it's either code,
+ // or it won't matter if it's hot. :)
+ InfLoopBlock = new BasicBlock("infloop", BB->getParent());
+ new BranchInst(InfLoopBlock, InfLoopBlock);
+ }
+ NewSI->setSuccessor(i, InfLoopBlock);
+ }
+
+ Changed = true;
+ }
+ }
+ return Changed;
+}
+
+/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
+/// BB2, hoist any common code in the two blocks up into the branch block. The
+/// caller of this function guarantees that BI's block dominates BB1 and BB2.
+static bool HoistThenElseCodeToIf(BranchInst *BI) {
+ // This does very trivial matching, with limited scanning, to find identical
+ // instructions in the two blocks. In particular, we don't want to get into
+ // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
+ // such, we currently just scan for obviously identical instructions in an
+ // identical order.
+ BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
+ BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
+
+ Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
+ if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
+ isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
+ return false;
+
+ // If we get here, we can hoist at least one instruction.
+ BasicBlock *BIParent = BI->getParent();
+
+ do {
+ // If we are hoisting the terminator instruction, don't move one (making a
+ // broken BB), instead clone it, and remove BI.
+ if (isa<TerminatorInst>(I1))
+ goto HoistTerminator;
+
+ // For a normal instruction, we just move one to right before the branch,
+ // then replace all uses of the other with the first. Finally, we remove
+ // the now redundant second instruction.
+ BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
+ if (!I2->use_empty())
+ I2->replaceAllUsesWith(I1);
+ BB2->getInstList().erase(I2);
+
+ I1 = BB1->begin();
+ I2 = BB2->begin();
+ } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
+
+ return true;
+
+HoistTerminator:
+ // Okay, it is safe to hoist the terminator.
+ Instruction *NT = I1->clone();
+ BIParent->getInstList().insert(BI, NT);
+ if (NT->getType() != Type::VoidTy) {
+ I1->replaceAllUsesWith(NT);
+ I2->replaceAllUsesWith(NT);
+ NT->takeName(I1);
+ }
+
+ // Hoisting one of the terminators from our successor is a great thing.
+ // Unfortunately, the successors of the if/else blocks may have PHI nodes in
+ // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
+ // nodes, so we insert select instruction to compute the final result.
+ std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
+ for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
+ PHINode *PN;
+ for (BasicBlock::iterator BBI = SI->begin();
+ (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
+ Value *BB1V = PN->getIncomingValueForBlock(BB1);
+ Value *BB2V = PN->getIncomingValueForBlock(BB2);
+ if (BB1V != BB2V) {
+ // These values do not agree. Insert a select instruction before NT
+ // that determines the right value.
+ SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
+ if (SI == 0)
+ SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
+ BB1V->getName()+"."+BB2V->getName(), NT);
+ // Make the PHI node use the select for all incoming values for BB1/BB2
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
+ PN->setIncomingValue(i, SI);
+ }
+ }
+ }
+
+ // Update any PHI nodes in our new successors.
+ for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
+ AddPredecessorToBlock(*SI, BIParent, BB1);
+
+ BI->eraseFromParent();
+ return true;
+}
+
+/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
+/// across this block.
+static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
+ BranchInst *BI = cast<BranchInst>(BB->getTerminator());
+ unsigned Size = 0;
+
+ // If this basic block contains anything other than a PHI (which controls the
+ // branch) and branch itself, bail out. FIXME: improve this in the future.
+ for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
+ if (Size > 10) return false; // Don't clone large BB's.
+
+ // We can only support instructions that are do not define values that are
+ // live outside of the current basic block.
+ for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
+ UI != E; ++UI) {
+ Instruction *U = cast<Instruction>(*UI);
+ if (U->getParent() != BB || isa<PHINode>(U)) return false;
+ }
+
+ // Looks ok, continue checking.
+ }
+
+ return true;
+}
+
+/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
+/// that is defined in the same block as the branch and if any PHI entries are
+/// constants, thread edges corresponding to that entry to be branches to their
+/// ultimate destination.
+static bool FoldCondBranchOnPHI(BranchInst *BI) {
+ BasicBlock *BB = BI->getParent();
+ PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
+ // NOTE: we currently cannot transform this case if the PHI node is used
+ // outside of the block.
+ if (!PN || PN->getParent() != BB || !PN->hasOneUse())
+ return false;
+
+ // Degenerate case of a single entry PHI.
+ if (PN->getNumIncomingValues() == 1) {
+ if (PN->getIncomingValue(0) != PN)
+ PN->replaceAllUsesWith(PN->getIncomingValue(0));
+ else
+ PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
+ PN->eraseFromParent();
+ return true;
+ }
+
+ // Now we know that this block has multiple preds and two succs.
+ if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
+
+ // Okay, this is a simple enough basic block. See if any phi values are
+ // constants.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ ConstantInt *CB;
+ if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
+ CB->getType() == Type::Int1Ty) {
+ // Okay, we now know that all edges from PredBB should be revectored to
+ // branch to RealDest.
+ BasicBlock *PredBB = PN->getIncomingBlock(i);
+ BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
+
+ if (RealDest == BB) continue; // Skip self loops.
+
+ // The dest block might have PHI nodes, other predecessors and other
+ // difficult cases. Instead of being smart about this, just insert a new
+ // block that jumps to the destination block, effectively splitting
+ // the edge we are about to create.
+ BasicBlock *EdgeBB = new BasicBlock(RealDest->getName()+".critedge",
+ RealDest->getParent(), RealDest);
+ new BranchInst(RealDest, EdgeBB);
+ PHINode *PN;
+ for (BasicBlock::iterator BBI = RealDest->begin();
+ (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
+ Value *V = PN->getIncomingValueForBlock(BB);
+ PN->addIncoming(V, EdgeBB);
+ }
+
+ // BB may have instructions that are being threaded over. Clone these
+ // instructions into EdgeBB. We know that there will be no uses of the
+ // cloned instructions outside of EdgeBB.
+ BasicBlock::iterator InsertPt = EdgeBB->begin();
+ std::map<Value*, Value*> TranslateMap; // Track translated values.
+ for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
+ if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
+ TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
+ } else {
+ // Clone the instruction.
+ Instruction *N = BBI->clone();
+ if (BBI->hasName()) N->setName(BBI->getName()+".c");
+
+ // Update operands due to translation.
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ std::map<Value*, Value*>::iterator PI =
+ TranslateMap.find(N->getOperand(i));
+ if (PI != TranslateMap.end())
+ N->setOperand(i, PI->second);
+ }
+
+ // Check for trivial simplification.
+ if (Constant *C = ConstantFoldInstruction(N)) {
+ TranslateMap[BBI] = C;
+ delete N; // Constant folded away, don't need actual inst
+ } else {
+ // Insert the new instruction into its new home.
+ EdgeBB->getInstList().insert(InsertPt, N);
+ if (!BBI->use_empty())
+ TranslateMap[BBI] = N;
+ }
+ }
+ }
+
+ // Loop over all of the edges from PredBB to BB, changing them to branch
+ // to EdgeBB instead.
+ TerminatorInst *PredBBTI = PredBB->getTerminator();
+ for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
+ if (PredBBTI->getSuccessor(i) == BB) {
+ BB->removePredecessor(PredBB);
+ PredBBTI->setSuccessor(i, EdgeBB);
+ }
+
+ // Recurse, simplifying any other constants.
+ return FoldCondBranchOnPHI(BI) | true;
+ }
+ }
+
+ return false;
+}
+
+/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
+/// PHI node, see if we can eliminate it.
+static bool FoldTwoEntryPHINode(PHINode *PN) {
+ // Ok, this is a two entry PHI node. Check to see if this is a simple "if
+ // statement", which has a very simple dominance structure. Basically, we
+ // are trying to find the condition that is being branched on, which
+ // subsequently causes this merge to happen. We really want control
+ // dependence information for this check, but simplifycfg can't keep it up
+ // to date, and this catches most of the cases we care about anyway.
+ //
+ BasicBlock *BB = PN->getParent();
+ BasicBlock *IfTrue, *IfFalse;
+ Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
+ if (!IfCond) return false;
+
+ // Okay, we found that we can merge this two-entry phi node into a select.
+ // Doing so would require us to fold *all* two entry phi nodes in this block.
+ // At some point this becomes non-profitable (particularly if the target
+ // doesn't support cmov's). Only do this transformation if there are two or
+ // fewer PHI nodes in this block.
+ unsigned NumPhis = 0;
+ for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
+ if (NumPhis > 2)
+ return false;
+
+ DOUT << "FOUND IF CONDITION! " << *IfCond << " T: "
+ << IfTrue->getName() << " F: " << IfFalse->getName() << "\n";
+
+ // Loop over the PHI's seeing if we can promote them all to select
+ // instructions. While we are at it, keep track of the instructions
+ // that need to be moved to the dominating block.
+ std::set<Instruction*> AggressiveInsts;
+
+ BasicBlock::iterator AfterPHIIt = BB->begin();
+ while (isa<PHINode>(AfterPHIIt)) {
+ PHINode *PN = cast<PHINode>(AfterPHIIt++);
+ if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
+ if (PN->getIncomingValue(0) != PN)
+ PN->replaceAllUsesWith(PN->getIncomingValue(0));
+ else
+ PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
+ } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
+ &AggressiveInsts) ||
+ !DominatesMergePoint(PN->getIncomingValue(1), BB,
+ &AggressiveInsts)) {
+ return false;
+ }
+ }
+
+ // If we all PHI nodes are promotable, check to make sure that all
+ // instructions in the predecessor blocks can be promoted as well. If
+ // not, we won't be able to get rid of the control flow, so it's not
+ // worth promoting to select instructions.
+ BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
+ PN = cast<PHINode>(BB->begin());
+ BasicBlock *Pred = PN->getIncomingBlock(0);
+ if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
+ IfBlock1 = Pred;
+ DomBlock = *pred_begin(Pred);
+ for (BasicBlock::iterator I = Pred->begin();
+ !isa<TerminatorInst>(I); ++I)
+ if (!AggressiveInsts.count(I)) {
+ // This is not an aggressive instruction that we can promote.
+ // Because of this, we won't be able to get rid of the control
+ // flow, so the xform is not worth it.
+ return false;
+ }
+ }
+
+ Pred = PN->getIncomingBlock(1);
+ if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
+ IfBlock2 = Pred;
+ DomBlock = *pred_begin(Pred);
+ for (BasicBlock::iterator I = Pred->begin();
+ !isa<TerminatorInst>(I); ++I)
+ if (!AggressiveInsts.count(I)) {
+ // This is not an aggressive instruction that we can promote.
+ // Because of this, we won't be able to get rid of the control
+ // flow, so the xform is not worth it.
+ return false;
+ }
+ }
+
+ // If we can still promote the PHI nodes after this gauntlet of tests,
+ // do all of the PHI's now.
+
+ // Move all 'aggressive' instructions, which are defined in the
+ // conditional parts of the if's up to the dominating block.
+ if (IfBlock1) {
+ DomBlock->getInstList().splice(DomBlock->getTerminator(),
+ IfBlock1->getInstList(),
+ IfBlock1->begin(),
+ IfBlock1->getTerminator());
+ }
+ if (IfBlock2) {
+ DomBlock->getInstList().splice(DomBlock->getTerminator(),
+ IfBlock2->getInstList(),
+ IfBlock2->begin(),
+ IfBlock2->getTerminator());
+ }
+
+ while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
+ // Change the PHI node into a select instruction.
+ Value *TrueVal =
+ PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
+ Value *FalseVal =
+ PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
+
+ Value *NV = new SelectInst(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
+ PN->replaceAllUsesWith(NV);
+ NV->takeName(PN);
+
+ BB->getInstList().erase(PN);
+ }
+ return true;
+}
+
+namespace {
+ /// ConstantIntOrdering - This class implements a stable ordering of constant
+ /// integers that does not depend on their address. This is important for
+ /// applications that sort ConstantInt's to ensure uniqueness.
+ struct ConstantIntOrdering {
+ bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
+ return LHS->getValue().ult(RHS->getValue());
+ }
+ };
+}
+
+// SimplifyCFG - This function is used to do simplification of a CFG. For
+// example, it adjusts branches to branches to eliminate the extra hop, it
+// eliminates unreachable basic blocks, and does other "peephole" optimization
+// of the CFG. It returns true if a modification was made.
+//
+// WARNING: The entry node of a function may not be simplified.
+//
+bool llvm::SimplifyCFG(BasicBlock *BB) {
+ bool Changed = false;
+ Function *M = BB->getParent();
+
+ assert(BB && BB->getParent() && "Block not embedded in function!");
+ assert(BB->getTerminator() && "Degenerate basic block encountered!");
+ assert(&BB->getParent()->getEntryBlock() != BB &&
+ "Can't Simplify entry block!");
+
+ // Remove basic blocks that have no predecessors... which are unreachable.
+ if (pred_begin(BB) == pred_end(BB) ||
+ *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
+ DOUT << "Removing BB: \n" << *BB;
+
+ // Loop through all of our successors and make sure they know that one
+ // of their predecessors is going away.
+ for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
+ SI->removePredecessor(BB);
+
+ while (!BB->empty()) {
+ Instruction &I = BB->back();
+ // If this instruction is used, replace uses with an arbitrary
+ // value. Because control flow can't get here, we don't care
+ // what we replace the value with. Note that since this block is
+ // unreachable, and all values contained within it must dominate their
+ // uses, that all uses will eventually be removed.
+ if (!I.use_empty())
+ // Make all users of this instruction use undef instead
+ I.replaceAllUsesWith(UndefValue::get(I.getType()));
+
+ // Remove the instruction from the basic block
+ BB->getInstList().pop_back();
+ }
+ M->getBasicBlockList().erase(BB);
+ return true;
+ }
+
+ // Check to see if we can constant propagate this terminator instruction
+ // away...
+ Changed |= ConstantFoldTerminator(BB);
+
+ // If this is a returning block with only PHI nodes in it, fold the return
+ // instruction into any unconditional branch predecessors.
+ //
+ // If any predecessor is a conditional branch that just selects among
+ // different return values, fold the replace the branch/return with a select
+ // and return.
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
+ BasicBlock::iterator BBI = BB->getTerminator();
+ if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
+ // Find predecessors that end with branches.
+ std::vector<BasicBlock*> UncondBranchPreds;
+ std::vector<BranchInst*> CondBranchPreds;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ TerminatorInst *PTI = (*PI)->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
+ if (BI->isUnconditional())
+ UncondBranchPreds.push_back(*PI);
+ else
+ CondBranchPreds.push_back(BI);
+ }
+
+ // If we found some, do the transformation!
+ if (!UncondBranchPreds.empty()) {
+ while (!UncondBranchPreds.empty()) {
+ BasicBlock *Pred = UncondBranchPreds.back();
+ DOUT << "FOLDING: " << *BB
+ << "INTO UNCOND BRANCH PRED: " << *Pred;
+ UncondBranchPreds.pop_back();
+ Instruction *UncondBranch = Pred->getTerminator();
+ // Clone the return and add it to the end of the predecessor.
+ Instruction *NewRet = RI->clone();
+ Pred->getInstList().push_back(NewRet);
+
+ // If the return instruction returns a value, and if the value was a
+ // PHI node in "BB", propagate the right value into the return.
+ if (NewRet->getNumOperands() == 1)
+ if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
+ if (PN->getParent() == BB)
+ NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
+ // Update any PHI nodes in the returning block to realize that we no
+ // longer branch to them.
+ BB->removePredecessor(Pred);
+ Pred->getInstList().erase(UncondBranch);
+ }
+
+ // If we eliminated all predecessors of the block, delete the block now.
+ if (pred_begin(BB) == pred_end(BB))
+ // We know there are no successors, so just nuke the block.
+ M->getBasicBlockList().erase(BB);
+
+ return true;
+ }
+
+ // Check out all of the conditional branches going to this return
+ // instruction. If any of them just select between returns, change the
+ // branch itself into a select/return pair.
+ while (!CondBranchPreds.empty()) {
+ BranchInst *BI = CondBranchPreds.back();
+ CondBranchPreds.pop_back();
+ BasicBlock *TrueSucc = BI->getSuccessor(0);
+ BasicBlock *FalseSucc = BI->getSuccessor(1);
+ BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
+
+ // Check to see if the non-BB successor is also a return block.
+ if (isa<ReturnInst>(OtherSucc->getTerminator())) {
+ // Check to see if there are only PHI instructions in this block.
+ BasicBlock::iterator OSI = OtherSucc->getTerminator();
+ if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
+ // Okay, we found a branch that is going to two return nodes. If
+ // there is no return value for this function, just change the
+ // branch into a return.
+ if (RI->getNumOperands() == 0) {
+ TrueSucc->removePredecessor(BI->getParent());
+ FalseSucc->removePredecessor(BI->getParent());
+ new ReturnInst(0, BI);
+ BI->getParent()->getInstList().erase(BI);
+ return true;
+ }
+
+ // Otherwise, figure out what the true and false return values are
+ // so we can insert a new select instruction.
+ Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
+ Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
+
+ // Unwrap any PHI nodes in the return blocks.
+ if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
+ if (TVPN->getParent() == TrueSucc)
+ TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
+ if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
+ if (FVPN->getParent() == FalseSucc)
+ FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
+
+ // In order for this transformation to be safe, we must be able to
+ // unconditionally execute both operands to the return. This is
+ // normally the case, but we could have a potentially-trapping
+ // constant expression that prevents this transformation from being
+ // safe.
+ if ((!isa<ConstantExpr>(TrueValue) ||
+ !cast<ConstantExpr>(TrueValue)->canTrap()) &&
+ (!isa<ConstantExpr>(TrueValue) ||
+ !cast<ConstantExpr>(TrueValue)->canTrap())) {
+ TrueSucc->removePredecessor(BI->getParent());
+ FalseSucc->removePredecessor(BI->getParent());
+
+ // Insert a new select instruction.
+ Value *NewRetVal;
+ Value *BrCond = BI->getCondition();
+ if (TrueValue != FalseValue)
+ NewRetVal = new SelectInst(BrCond, TrueValue,
+ FalseValue, "retval", BI);
+ else
+ NewRetVal = TrueValue;
+
+ DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
+ << "\n " << *BI << "Select = " << *NewRetVal
+ << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
+
+ new ReturnInst(NewRetVal, BI);
+ BI->eraseFromParent();
+ if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
+ if (isInstructionTriviallyDead(BrCondI))
+ BrCondI->eraseFromParent();
+ return true;
+ }
+ }
+ }
+ }
+ }
+ } else if (isa<UnwindInst>(BB->begin())) {
+ // Check to see if the first instruction in this block is just an unwind.
+ // If so, replace any invoke instructions which use this as an exception
+ // destination with call instructions, and any unconditional branch
+ // predecessor with an unwind.
+ //
+ std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
+ while (!Preds.empty()) {
+ BasicBlock *Pred = Preds.back();
+ if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
+ if (BI->isUnconditional()) {
+ Pred->getInstList().pop_back(); // nuke uncond branch
+ new UnwindInst(Pred); // Use unwind.
+ Changed = true;
+ }
+ } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
+ if (II->getUnwindDest() == BB) {
+ // Insert a new branch instruction before the invoke, because this
+ // is now a fall through...
+ BranchInst *BI = new BranchInst(II->getNormalDest(), II);
+ Pred->getInstList().remove(II); // Take out of symbol table
+
+ // Insert the call now...
+ SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
+ CallInst *CI = new CallInst(II->getCalledValue(),
+ &Args[0], Args.size(), II->getName(), BI);
+ CI->setCallingConv(II->getCallingConv());
+ // If the invoke produced a value, the Call now does instead
+ II->replaceAllUsesWith(CI);
+ delete II;
+ Changed = true;
+ }
+
+ Preds.pop_back();
+ }
+
+ // If this block is now dead, remove it.
+ if (pred_begin(BB) == pred_end(BB)) {
+ // We know there are no successors, so just nuke the block.
+ M->getBasicBlockList().erase(BB);
+ return true;
+ }
+
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+ if (isValueEqualityComparison(SI)) {
+ // If we only have one predecessor, and if it is a branch on this value,
+ // see if that predecessor totally determines the outcome of this switch.
+ if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
+ if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
+ return SimplifyCFG(BB) || 1;
+
+ // If the block only contains the switch, see if we can fold the block
+ // away into any preds.
+ if (SI == &BB->front())
+ if (FoldValueComparisonIntoPredecessors(SI))
+ return SimplifyCFG(BB) || 1;
+ }
+ } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
+ if (BI->isUnconditional()) {
+ BasicBlock::iterator BBI = BB->begin(); // Skip over phi nodes...
+ while (isa<PHINode>(*BBI)) ++BBI;
+
+ BasicBlock *Succ = BI->getSuccessor(0);
+ if (BBI->isTerminator() && // Terminator is the only non-phi instruction!
+ Succ != BB) // Don't hurt infinite loops!
+ if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
+ return 1;
+
+ } else { // Conditional branch
+ if (isValueEqualityComparison(BI)) {
+ // If we only have one predecessor, and if it is a branch on this value,
+ // see if that predecessor totally determines the outcome of this
+ // switch.
+ if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
+ if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
+ return SimplifyCFG(BB) || 1;
+
+ // This block must be empty, except for the setcond inst, if it exists.
+ BasicBlock::iterator I = BB->begin();
+ if (&*I == BI ||
+ (&*I == cast<Instruction>(BI->getCondition()) &&
+ &*++I == BI))
+ if (FoldValueComparisonIntoPredecessors(BI))
+ return SimplifyCFG(BB) | true;
+ }
+
+ // If this is a branch on a phi node in the current block, thread control
+ // through this block if any PHI node entries are constants.
+ if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
+ if (PN->getParent() == BI->getParent())
+ if (FoldCondBranchOnPHI(BI))
+ return SimplifyCFG(BB) | true;
+
+ // If this basic block is ONLY a setcc and a branch, and if a predecessor
+ // branches to us and one of our successors, fold the setcc into the
+ // predecessor and use logical operations to pick the right destination.
+ BasicBlock *TrueDest = BI->getSuccessor(0);
+ BasicBlock *FalseDest = BI->getSuccessor(1);
+ if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition())) {
+ BasicBlock::iterator CondIt = Cond;
+ if ((isa<CmpInst>(Cond) || isa<BinaryOperator>(Cond)) &&
+ Cond->getParent() == BB && &BB->front() == Cond &&
+ &*++CondIt == BI && Cond->hasOneUse() &&
+ TrueDest != BB && FalseDest != BB)
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
+ if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
+ if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
+ BasicBlock *PredBlock = *PI;
+ if (PBI->getSuccessor(0) == FalseDest ||
+ PBI->getSuccessor(1) == TrueDest) {
+ // Invert the predecessors condition test (xor it with true),
+ // which allows us to write this code once.
+ Value *NewCond =
+ BinaryOperator::createNot(PBI->getCondition(),
+ PBI->getCondition()->getName()+".not", PBI);
+ PBI->setCondition(NewCond);
+ BasicBlock *OldTrue = PBI->getSuccessor(0);
+ BasicBlock *OldFalse = PBI->getSuccessor(1);
+ PBI->setSuccessor(0, OldFalse);
+ PBI->setSuccessor(1, OldTrue);
+ }
+
+ if ((PBI->getSuccessor(0) == TrueDest && FalseDest != BB) ||
+ (PBI->getSuccessor(1) == FalseDest && TrueDest != BB)) {
+ // Clone Cond into the predecessor basic block, and or/and the
+ // two conditions together.
+ Instruction *New = Cond->clone();
+ PredBlock->getInstList().insert(PBI, New);
+ New->takeName(Cond);
+ Cond->setName(New->getName()+".old");
+ Instruction::BinaryOps Opcode =
+ PBI->getSuccessor(0) == TrueDest ?
+ Instruction::Or : Instruction::And;
+ Value *NewCond =
+ BinaryOperator::create(Opcode, PBI->getCondition(),
+ New, "bothcond", PBI);
+ PBI->setCondition(NewCond);
+ if (PBI->getSuccessor(0) == BB) {
+ AddPredecessorToBlock(TrueDest, PredBlock, BB);
+ PBI->setSuccessor(0, TrueDest);
+ }
+ if (PBI->getSuccessor(1) == BB) {
+ AddPredecessorToBlock(FalseDest, PredBlock, BB);
+ PBI->setSuccessor(1, FalseDest);
+ }
+ return SimplifyCFG(BB) | 1;
+ }
+ }
+ }
+
+ // Scan predessor blocks for conditional branches.
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
+ if (PBI != BI && PBI->isConditional()) {
+
+ // If this block ends with a branch instruction, and if there is a
+ // predecessor that ends on a branch of the same condition, make
+ // this conditional branch redundant.
+ if (PBI->getCondition() == BI->getCondition() &&
+ PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
+ // Okay, the outcome of this conditional branch is statically
+ // knowable. If this block had a single pred, handle specially.
+ if (BB->getSinglePredecessor()) {
+ // Turn this into a branch on constant.
+ bool CondIsTrue = PBI->getSuccessor(0) == BB;
+ BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
+ return SimplifyCFG(BB); // Nuke the branch on constant.
+ }
+
+ // Otherwise, if there are multiple predecessors, insert a PHI
+ // that merges in the constant and simplify the block result.
+ if (BlockIsSimpleEnoughToThreadThrough(BB)) {
+ PHINode *NewPN = new PHINode(Type::Int1Ty,
+ BI->getCondition()->getName()+".pr",
+ BB->begin());
+ for (PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
+ PBI != BI && PBI->isConditional() &&
+ PBI->getCondition() == BI->getCondition() &&
+ PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
+ bool CondIsTrue = PBI->getSuccessor(0) == BB;
+ NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
+ CondIsTrue), *PI);
+ } else {
+ NewPN->addIncoming(BI->getCondition(), *PI);
+ }
+
+ BI->setCondition(NewPN);
+ // This will thread the branch.
+ return SimplifyCFG(BB) | true;
+ }
+ }
+
+ // If this is a conditional branch in an empty block, and if any
+ // predecessors is a conditional branch to one of our destinations,
+ // fold the conditions into logical ops and one cond br.
+ if (&BB->front() == BI) {
+ int PBIOp, BIOp;
+ if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
+ PBIOp = BIOp = 0;
+ } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
+ PBIOp = 0; BIOp = 1;
+ } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
+ PBIOp = 1; BIOp = 0;
+ } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
+ PBIOp = BIOp = 1;
+ } else {
+ PBIOp = BIOp = -1;
+ }
+
+ // Check to make sure that the other destination of this branch
+ // isn't BB itself. If so, this is an infinite loop that will
+ // keep getting unwound.
+ if (PBIOp != -1 && PBI->getSuccessor(PBIOp) == BB)
+ PBIOp = BIOp = -1;
+
+ // Do not perform this transformation if it would require
+ // insertion of a large number of select instructions. For targets
+ // without predication/cmovs, this is a big pessimization.
+ if (PBIOp != -1) {
+ BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
+
+ unsigned NumPhis = 0;
+ for (BasicBlock::iterator II = CommonDest->begin();
+ isa<PHINode>(II); ++II, ++NumPhis) {
+ if (NumPhis > 2) {
+ // Disable this xform.
+ PBIOp = -1;
+ break;
+ }
+ }
+ }
+
+ // Finally, if everything is ok, fold the branches to logical ops.
+ if (PBIOp != -1) {
+ BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
+ BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
+
+ // If OtherDest *is* BB, then this is a basic block with just
+ // a conditional branch in it, where one edge (OtherDesg) goes
+ // back to the block. We know that the program doesn't get
+ // stuck in the infinite loop, so the condition must be such
+ // that OtherDest isn't branched through. Forward to CommonDest,
+ // and avoid an infinite loop at optimizer time.
+ if (OtherDest == BB)
+ OtherDest = CommonDest;
+
+ DOUT << "FOLDING BRs:" << *PBI->getParent()
+ << "AND: " << *BI->getParent();
+
+ // BI may have other predecessors. Because of this, we leave
+ // it alone, but modify PBI.
+
+ // Make sure we get to CommonDest on True&True directions.
+ Value *PBICond = PBI->getCondition();
+ if (PBIOp)
+ PBICond = BinaryOperator::createNot(PBICond,
+ PBICond->getName()+".not",
+ PBI);
+ Value *BICond = BI->getCondition();
+ if (BIOp)
+ BICond = BinaryOperator::createNot(BICond,
+ BICond->getName()+".not",
+ PBI);
+ // Merge the conditions.
+ Value *Cond =
+ BinaryOperator::createOr(PBICond, BICond, "brmerge", PBI);
+
+ // Modify PBI to branch on the new condition to the new dests.
+ PBI->setCondition(Cond);
+ PBI->setSuccessor(0, CommonDest);
+ PBI->setSuccessor(1, OtherDest);
+
+ // OtherDest may have phi nodes. If so, add an entry from PBI's
+ // block that are identical to the entries for BI's block.
+ PHINode *PN;
+ for (BasicBlock::iterator II = OtherDest->begin();
+ (PN = dyn_cast<PHINode>(II)); ++II) {
+ Value *V = PN->getIncomingValueForBlock(BB);
+ PN->addIncoming(V, PBI->getParent());
+ }
+
+ // We know that the CommonDest already had an edge from PBI to
+ // it. If it has PHIs though, the PHIs may have different
+ // entries for BB and PBI's BB. If so, insert a select to make
+ // them agree.
+ for (BasicBlock::iterator II = CommonDest->begin();
+ (PN = dyn_cast<PHINode>(II)); ++II) {
+ Value * BIV = PN->getIncomingValueForBlock(BB);
+ unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
+ Value *PBIV = PN->getIncomingValue(PBBIdx);
+ if (BIV != PBIV) {
+ // Insert a select in PBI to pick the right value.
+ Value *NV = new SelectInst(PBICond, PBIV, BIV,
+ PBIV->getName()+".mux", PBI);
+ PN->setIncomingValue(PBBIdx, NV);
+ }
+ }
+
+ DOUT << "INTO: " << *PBI->getParent();
+
+ // This basic block is probably dead. We know it has at least
+ // one fewer predecessor.
+ return SimplifyCFG(BB) | true;
+ }
+ }
+ }
+ }
+ } else if (isa<UnreachableInst>(BB->getTerminator())) {
+ // If there are any instructions immediately before the unreachable that can
+ // be removed, do so.
+ Instruction *Unreachable = BB->getTerminator();
+ while (Unreachable != BB->begin()) {
+ BasicBlock::iterator BBI = Unreachable;
+ --BBI;
+ if (isa<CallInst>(BBI)) break;
+ // Delete this instruction
+ BB->getInstList().erase(BBI);
+ Changed = true;
+ }
+
+ // If the unreachable instruction is the first in the block, take a gander
+ // at all of the predecessors of this instruction, and simplify them.
+ if (&BB->front() == Unreachable) {
+ std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
+ for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
+ TerminatorInst *TI = Preds[i]->getTerminator();
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isUnconditional()) {
+ if (BI->getSuccessor(0) == BB) {
+ new UnreachableInst(TI);
+ TI->eraseFromParent();
+ Changed = true;
+ }
+ } else {
+ if (BI->getSuccessor(0) == BB) {
+ new BranchInst(BI->getSuccessor(1), BI);
+ BI->eraseFromParent();
+ } else if (BI->getSuccessor(1) == BB) {
+ new BranchInst(BI->getSuccessor(0), BI);
+ BI->eraseFromParent();
+ Changed = true;
+ }
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+ if (SI->getSuccessor(i) == BB) {
+ BB->removePredecessor(SI->getParent());
+ SI->removeCase(i);
+ --i; --e;
+ Changed = true;
+ }
+ // If the default value is unreachable, figure out the most popular
+ // destination and make it the default.
+ if (SI->getSuccessor(0) == BB) {
+ std::map<BasicBlock*, unsigned> Popularity;
+ for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+ Popularity[SI->getSuccessor(i)]++;
+
+ // Find the most popular block.
+ unsigned MaxPop = 0;
+ BasicBlock *MaxBlock = 0;
+ for (std::map<BasicBlock*, unsigned>::iterator
+ I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
+ if (I->second > MaxPop) {
+ MaxPop = I->second;
+ MaxBlock = I->first;
+ }
+ }
+ if (MaxBlock) {
+ // Make this the new default, allowing us to delete any explicit
+ // edges to it.
+ SI->setSuccessor(0, MaxBlock);
+ Changed = true;
+
+ // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
+ // it.
+ if (isa<PHINode>(MaxBlock->begin()))
+ for (unsigned i = 0; i != MaxPop-1; ++i)
+ MaxBlock->removePredecessor(SI->getParent());
+
+ for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
+ if (SI->getSuccessor(i) == MaxBlock) {
+ SI->removeCase(i);
+ --i; --e;
+ }
+ }
+ }
+ } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
+ if (II->getUnwindDest() == BB) {
+ // Convert the invoke to a call instruction. This would be a good
+ // place to note that the call does not throw though.
+ BranchInst *BI = new BranchInst(II->getNormalDest(), II);
+ II->removeFromParent(); // Take out of symbol table
+
+ // Insert the call now...
+ SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
+ CallInst *CI = new CallInst(II->getCalledValue(),
+ &Args[0], Args.size(),
+ II->getName(), BI);
+ CI->setCallingConv(II->getCallingConv());
+ // If the invoke produced a value, the Call does now instead.
+ II->replaceAllUsesWith(CI);
+ delete II;
+ Changed = true;
+ }
+ }
+ }
+
+ // If this block is now dead, remove it.
+ if (pred_begin(BB) == pred_end(BB)) {
+ // We know there are no successors, so just nuke the block.
+ M->getBasicBlockList().erase(BB);
+ return true;
+ }
+ }
+ }
+
+ // Merge basic blocks into their predecessor if there is only one distinct
+ // pred, and if there is only one distinct successor of the predecessor, and
+ // if there are no PHI nodes.
+ //
+ pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
+ BasicBlock *OnlyPred = *PI++;
+ for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
+ if (*PI != OnlyPred) {
+ OnlyPred = 0; // There are multiple different predecessors...
+ break;
+ }
+
+ BasicBlock *OnlySucc = 0;
+ if (OnlyPred && OnlyPred != BB && // Don't break self loops
+ OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
+ // Check to see if there is only one distinct successor...
+ succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
+ OnlySucc = BB;
+ for (; SI != SE; ++SI)
+ if (*SI != OnlySucc) {
+ OnlySucc = 0; // There are multiple distinct successors!
+ break;
+ }
+ }
+
+ if (OnlySucc) {
+ DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
+
+ // Resolve any PHI nodes at the start of the block. They are all
+ // guaranteed to have exactly one entry if they exist, unless there are
+ // multiple duplicate (but guaranteed to be equal) entries for the
+ // incoming edges. This occurs when there are multiple edges from
+ // OnlyPred to OnlySucc.
+ //
+ while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
+ PN->replaceAllUsesWith(PN->getIncomingValue(0));
+ BB->getInstList().pop_front(); // Delete the phi node.
+ }
+
+ // Delete the unconditional branch from the predecessor.
+ OnlyPred->getInstList().pop_back();
+
+ // Move all definitions in the successor to the predecessor.
+ OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
+
+ // Make all PHI nodes that referred to BB now refer to Pred as their
+ // source.
+ BB->replaceAllUsesWith(OnlyPred);
+
+ // Inherit predecessors name if it exists.
+ if (!OnlyPred->hasName())
+ OnlyPred->takeName(BB);
+
+ // Erase basic block from the function.
+ M->getBasicBlockList().erase(BB);
+
+ return true;
+ }
+
+ // Otherwise, if this block only has a single predecessor, and if that block
+ // is a conditional branch, see if we can hoist any code from this block up
+ // into our predecessor.
+ if (OnlyPred)
+ if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
+ if (BI->isConditional()) {
+ // Get the other block.
+ BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
+ PI = pred_begin(OtherBB);
+ ++PI;
+ if (PI == pred_end(OtherBB)) {
+ // We have a conditional branch to two blocks that are only reachable
+ // from the condbr. We know that the condbr dominates the two blocks,
+ // so see if there is any identical code in the "then" and "else"
+ // blocks. If so, we can hoist it up to the branching block.
+ Changed |= HoistThenElseCodeToIf(BI);
+ }
+ }
+
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
+ // Change br (X == 0 | X == 1), T, F into a switch instruction.
+ if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
+ Instruction *Cond = cast<Instruction>(BI->getCondition());
+ // If this is a bunch of seteq's or'd together, or if it's a bunch of
+ // 'setne's and'ed together, collect them.
+ Value *CompVal = 0;
+ std::vector<ConstantInt*> Values;
+ bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
+ if (CompVal && CompVal->getType()->isInteger()) {
+ // There might be duplicate constants in the list, which the switch
+ // instruction can't handle, remove them now.
+ std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
+ Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
+
+ // Figure out which block is which destination.
+ BasicBlock *DefaultBB = BI->getSuccessor(1);
+ BasicBlock *EdgeBB = BI->getSuccessor(0);
+ if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
+
+ // Create the new switch instruction now.
+ SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);
+
+ // Add all of the 'cases' to the switch instruction.
+ for (unsigned i = 0, e = Values.size(); i != e; ++i)
+ New->addCase(Values[i], EdgeBB);
+
+ // We added edges from PI to the EdgeBB. As such, if there were any
+ // PHI nodes in EdgeBB, they need entries to be added corresponding to
+ // the number of edges added.
+ for (BasicBlock::iterator BBI = EdgeBB->begin();
+ isa<PHINode>(BBI); ++BBI) {
+ PHINode *PN = cast<PHINode>(BBI);
+ Value *InVal = PN->getIncomingValueForBlock(*PI);
+ for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
+ PN->addIncoming(InVal, *PI);
+ }
+
+ // Erase the old branch instruction.
+ (*PI)->getInstList().erase(BI);
+
+ // Erase the potentially condition tree that was used to computed the
+ // branch condition.
+ ErasePossiblyDeadInstructionTree(Cond);
+ return true;
+ }
+ }
+
+ // If there is a trivial two-entry PHI node in this basic block, and we can
+ // eliminate it, do so now.
+ if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
+ if (PN->getNumIncomingValues() == 2)
+ Changed |= FoldTwoEntryPHINode(PN);
+
+ return Changed;
+}