| //===- FunctionRepBuilder.cpp - Build the local datastructure graph -------===// |
| // |
| // Build the local datastructure graph for a single method. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "FunctionRepBuilder.h" |
| #include "llvm/Function.h" |
| #include "llvm/iMemory.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/iOther.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/DerivedTypes.h" |
| #include "Support/STLExtras.h" |
| #include <algorithm> |
| |
| // synthesizeNode - Create a new shadow node that is to be linked into this |
| // chain.. |
| // FIXME: This should not take a FunctionRepBuilder as an argument! |
| // |
| ShadowDSNode *ShadowDSNode::synthesizeNode(const Type *Ty, |
| FunctionRepBuilder *Rep) { |
| // If we are a derived shadow node, defer to our parent to synthesize the node |
| if (ShadowParent) return ShadowParent->synthesizeNode(Ty, Rep); |
| |
| // See if we have already synthesized a node of this type... |
| for (unsigned i = 0, e = SynthNodes.size(); i != e; ++i) |
| if (SynthNodes[i].first == Ty) return SynthNodes[i].second; |
| |
| // No we haven't. Do so now and add it to our list of saved nodes... |
| ShadowDSNode *SN = new ShadowDSNode(Ty, Mod, this); |
| SynthNodes.push_back(make_pair(Ty, SN)); |
| Rep->addShadowNode(SN); |
| return SN; |
| } |
| |
| |
| |
| |
| // visitOperand - If the specified instruction operand is a global value, add |
| // a node for it... |
| // |
| void InitVisitor::visitOperand(Value *V) { |
| if (!Rep->ValueMap.count(V)) // Only process it once... |
| if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| GlobalDSNode *N = new GlobalDSNode(GV); |
| Rep->Nodes.push_back(N); |
| Rep->ValueMap[V].add(N); |
| Rep->addAllUsesToWorkList(GV); |
| |
| // FIXME: If the global variable has fields, we should add critical |
| // shadow nodes to represent them! |
| } |
| } |
| |
| |
| // visitCallInst - Create a call node for the callinst, and create as shadow |
| // node if the call returns a pointer value. Check to see if the call node |
| // uses any global variables... |
| // |
| void InitVisitor::visitCallInst(CallInst *CI) { |
| CallDSNode *C = new CallDSNode(CI); |
| Rep->Nodes.push_back(C); |
| Rep->CallMap[CI] = C; |
| |
| if (isa<PointerType>(CI->getType())) { |
| // Create a critical shadow node to represent the memory object that the |
| // return value points to... |
| ShadowDSNode *Shad = new ShadowDSNode(C, Func->getParent(), true); |
| Rep->ShadowNodes.push_back(Shad); |
| |
| // The return value of the function is a pointer to the shadow value |
| // just created... |
| // |
| C->getLink(0).add(Shad); |
| |
| // The call instruction returns a pointer to the shadow block... |
| Rep->ValueMap[CI].add(Shad, CI); |
| |
| // If the call returns a value with pointer type, add all of the users |
| // of the call instruction to the work list... |
| Rep->addAllUsesToWorkList(CI); |
| } |
| |
| // Loop over all of the operands of the call instruction (except the first |
| // one), to look for global variable references... |
| // |
| for_each(CI->op_begin()+1, CI->op_end(), // Skip first arg |
| bind_obj(this, &InitVisitor::visitOperand)); |
| } |
| |
| |
| // visitAllocationInst - Create an allocation node for the allocation. Since |
| // allocation instructions do not take pointer arguments, they cannot refer to |
| // global vars... |
| // |
| void InitVisitor::visitAllocationInst(AllocationInst *AI) { |
| NewDSNode *N = new NewDSNode(AI); |
| Rep->Nodes.push_back(N); |
| |
| Rep->ValueMap[AI].add(N, AI); |
| |
| // Add all of the users of the malloc instruction to the work list... |
| Rep->addAllUsesToWorkList(AI); |
| } |
| |
| |
| // Visit all other instruction types. Here we just scan, looking for uses of |
| // global variables... |
| // |
| void InitVisitor::visitInstruction(Instruction *I) { |
| for_each(I->op_begin(), I->op_end(), |
| bind_obj(this, &InitVisitor::visitOperand)); |
| } |
| |
| |
| // addAllUsesToWorkList - Add all of the instructions users of the specified |
| // value to the work list for further processing... |
| // |
| void FunctionRepBuilder::addAllUsesToWorkList(Value *V) { |
| //cerr << "Adding all uses of " << V << "\n"; |
| for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) { |
| Instruction *Inst = cast<Instruction>(*I); |
| // When processing global values, it's possible that the instructions on |
| // the use list are not all in this method. Only add the instructions |
| // that _are_ in this method. |
| // |
| if (Inst->getParent()->getParent() == F->getFunction()) |
| // Only let an instruction occur on the work list once... |
| if (std::find(WorkList.begin(), WorkList.end(), Inst) == WorkList.end()) |
| WorkList.push_back(Inst); |
| } |
| } |
| |
| |
| |
| |
| void FunctionRepBuilder::initializeWorkList(Function *Func) { |
| // Add all of the arguments to the method to the graph and add all users to |
| // the worklists... |
| // |
| for (Function::ArgumentListType::iterator I = Func->getArgumentList().begin(), |
| E = Func->getArgumentList().end(); I != E; ++I) |
| // Only process arguments that are of pointer type... |
| if (isa<PointerType>((*I)->getType())) { |
| ArgDSNode *Arg = new ArgDSNode(*I); |
| Nodes.push_back(Arg); |
| |
| // Add a critical shadow value for it to represent what it is pointing |
| // to and add this to the value map... |
| ShadowDSNode *Shad = new ShadowDSNode(Arg, Func->getParent(), true); |
| ShadowNodes.push_back(Shad); |
| ValueMap[*I].add(PointerVal(Shad), *I); |
| |
| // The value of the argument is the shadow value... |
| Arg->getLink(0).add(Shad); |
| |
| // Make sure that all users of the argument are processed... |
| addAllUsesToWorkList(*I); |
| } |
| |
| // Iterate over the instructions in the method. Create nodes for malloc and |
| // call instructions. Add all uses of these to the worklist of instructions |
| // to process. |
| // |
| InitVisitor IV(this, Func); |
| IV.visit(Func); |
| } |
| |
| |
| |
| |
| PointerVal FunctionRepBuilder::getIndexedPointerDest(const PointerVal &InP, |
| const MemAccessInst *MAI) { |
| unsigned Index = InP.Index; |
| const Type *SrcTy = MAI->getPointerOperand()->getType(); |
| |
| for (MemAccessInst::const_op_iterator I = MAI->idx_begin(), |
| E = MAI->idx_end(); I != E; ++I) |
| if ((*I)->getType() == Type::UByteTy) { // Look for struct indices... |
| StructType *STy = cast<StructType>(SrcTy); |
| unsigned StructIdx = cast<ConstantUInt>(*I)->getValue(); |
| for (unsigned i = 0; i != StructIdx; ++i) |
| Index += countPointerFields(STy->getContainedType(i)); |
| |
| // Advance SrcTy to be the new element type... |
| SrcTy = STy->getContainedType(StructIdx); |
| } else { |
| // Otherwise, stepping into array or initial pointer, just increment type |
| SrcTy = cast<SequentialType>(SrcTy)->getElementType(); |
| } |
| |
| return PointerVal(InP.Node, Index); |
| } |
| |
| static PointerValSet &getField(const PointerVal &DestPtr) { |
| assert(DestPtr.Node != 0); |
| |
| return DestPtr.Node->getLink(DestPtr.Index); |
| } |
| |
| |
| // Reprocessing a GEP instruction is the result of the pointer operand |
| // changing. This means that the set of possible values for the GEP |
| // needs to be expanded. |
| // |
| void FunctionRepBuilder::visitGetElementPtrInst(GetElementPtrInst *GEP) { |
| PointerValSet &GEPPVS = ValueMap[GEP]; // PointerValSet to expand |
| |
| // Get the input pointer val set... |
| const PointerValSet &SrcPVS = ValueMap[GEP->getOperand(0)]; |
| |
| bool Changed = false; // Process each input value... propogating it. |
| for (unsigned i = 0, e = SrcPVS.size(); i != e; ++i) { |
| // Calculate where the resulting pointer would point based on an |
| // input of 'Val' as the pointer type... and add it to our outgoing |
| // value set. Keep track of whether or not we actually changed |
| // anything. |
| // |
| Changed |= GEPPVS.add(getIndexedPointerDest(SrcPVS[i], GEP)); |
| } |
| |
| // If our current value set changed, notify all of the users of our |
| // value. |
| // |
| if (Changed) addAllUsesToWorkList(GEP); |
| } |
| |
| void FunctionRepBuilder::visitReturnInst(ReturnInst *RI) { |
| RetNode.add(ValueMap[RI->getOperand(0)]); |
| } |
| |
| void FunctionRepBuilder::visitLoadInst(LoadInst *LI) { |
| // Only loads that return pointers are interesting... |
| if (!isa<PointerType>(LI->getType())) return; |
| const PointerType *DestTy = cast<PointerType>(LI->getType()); |
| |
| const PointerValSet &SrcPVS = ValueMap[LI->getOperand(0)]; |
| PointerValSet &LIPVS = ValueMap[LI]; |
| |
| bool Changed = false; |
| for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) { |
| PointerVal Ptr = getIndexedPointerDest(SrcPVS[si], LI); |
| PointerValSet &Field = getField(Ptr); |
| |
| if (Field.size()) { // Field loaded wasn't null? |
| Changed |= LIPVS.add(Field); |
| } else if (Ptr.Node->NodeType == DSNode::ShadowNode) { |
| // If we are loading a null field out of a shadow node, we need to |
| // synthesize a new shadow node and link it in... |
| // |
| ShadowDSNode *Shad = (ShadowDSNode*)Ptr.Node; |
| ShadowDSNode *SynthNode = |
| Shad->synthesizeNode(DestTy->getElementType(), this); |
| Field.add(SynthNode); |
| |
| Changed |= LIPVS.add(Field); |
| } |
| } |
| |
| if (Changed) addAllUsesToWorkList(LI); |
| } |
| |
| void FunctionRepBuilder::visitStoreInst(StoreInst *SI) { |
| // The only stores that are interesting are stores the store pointers |
| // into data structures... |
| // |
| if (!isa<PointerType>(SI->getOperand(0)->getType())) return; |
| |
| const PointerValSet &SrcPVS = ValueMap[SI->getOperand(0)]; |
| const PointerValSet &PtrPVS = ValueMap[SI->getOperand(1)]; |
| |
| for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) { |
| const PointerVal &SrcPtr = SrcPVS[si]; |
| for (unsigned pi = 0, pe = PtrPVS.size(); pi != pe; ++pi) { |
| PointerVal Dest = getIndexedPointerDest(PtrPVS[pi], SI); |
| |
| #if 0 |
| cerr << "Setting Dest:\n"; |
| Dest.print(cerr); |
| cerr << "to point to Src:\n"; |
| SrcPtr.print(cerr); |
| #endif |
| |
| // Add SrcPtr into the Dest field... |
| if (getField(Dest).add(SrcPtr)) { |
| // If we modified the dest field, then invalidate everyone that points |
| // to Dest. |
| const std::vector<Value*> &Ptrs = Dest.Node->getPointers(); |
| for (unsigned i = 0, e = Ptrs.size(); i != e; ++i) |
| addAllUsesToWorkList(Ptrs[i]); |
| } |
| } |
| } |
| } |
| |
| void FunctionRepBuilder::visitCallInst(CallInst *CI) { |
| CallDSNode *DSN = CallMap[CI]; |
| |
| unsigned PtrNum = 0, i = 0; |
| if (isa<Function>(CI->getOperand(0))) |
| ++i; // Not an Indirect function call? Skip the function pointer... |
| |
| for (unsigned e = CI->getNumOperands(); i != e; ++i) |
| if (isa<PointerType>(CI->getOperand(i)->getType())) |
| DSN->addArgValue(PtrNum++, ValueMap[CI->getOperand(i)]); |
| } |
| |
| void FunctionRepBuilder::visitPHINode(PHINode *PN) { |
| assert(isa<PointerType>(PN->getType()) && "Should only update ptr phis"); |
| |
| PointerValSet &PN_PVS = ValueMap[PN]; |
| bool Changed = false; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| Changed |= PN_PVS.add(ValueMap[PN->getIncomingValue(i)], |
| PN->getIncomingValue(i)); |
| |
| if (Changed) addAllUsesToWorkList(PN); |
| } |
| |
| |
| |
| |
| // FunctionDSGraph constructor - Perform the global analysis to determine |
| // what the data structure usage behavior or a method looks like. |
| // |
| FunctionDSGraph::FunctionDSGraph(Function *F) : Func(F) { |
| FunctionRepBuilder Builder(this); |
| Nodes = Builder.getNodes(); |
| ShadowNodes = Builder.getShadowNodes(); |
| RetNode = Builder.getRetNode(); |
| ValueMap = Builder.getValueMap(); |
| |
| bool Changed = true; |
| while (Changed) { |
| // Eliminate shadow nodes that are not distinguishable from some other |
| // node in the graph... |
| // |
| Changed = UnlinkUndistinguishableShadowNodes(); |
| |
| // Eliminate shadow nodes that are now extraneous due to linking... |
| Changed |= RemoveUnreachableShadowNodes(); |
| } |
| } |
| |