Delete the IPO simplify-libcalls and completely reimplement it as
a FunctionPass.  This makes it simpler, fixes dozens of bugs, adds
a couple of minor features, and shrinks is considerably: from
2214 to 1437 lines.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50520 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Transforms/Scalar/SimplifyLibCalls.cpp b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
new file mode 100644
index 0000000..a03bc7e
--- /dev/null
+++ b/lib/Transforms/Scalar/SimplifyLibCalls.cpp
@@ -0,0 +1,1437 @@
+//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a simple pass that applies a variety of small
+// optimizations for calls to specific well-known function calls (e.g. runtime
+// library functions). For example, a call to the function "exit(3)" that
+// occurs within the main() function can be transformed into a simple "return 3"
+// instruction. Any optimization that takes this form (replace call to library
+// function with simpler code that provides the same result) belongs in this
+// file.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "simplify-libcalls"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/IRBuilder.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Config/config.h"
+using namespace llvm;
+
+STATISTIC(NumSimplified, "Number of library calls simplified");
+
+//===----------------------------------------------------------------------===//
+// Optimizer Base Class
+//===----------------------------------------------------------------------===//
+
+/// This class is the abstract base class for the set of optimizations that
+/// corresponds to one library call.
+namespace {
+class VISIBILITY_HIDDEN LibCallOptimization {
+protected:
+  Function *Caller;
+  const TargetData *TD;
+public:
+  LibCallOptimization() { }
+  virtual ~LibCallOptimization() {}
+
+  /// CallOptimizer - This pure virtual method is implemented by base classes to
+  /// do various optimizations.  If this returns null then no transformation was
+  /// performed.  If it returns CI, then it transformed the call and CI is to be
+  /// deleted.  If it returns something else, replace CI with the new value and
+  /// delete CI.
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) =0;
+  
+  Value *OptimizeCall(CallInst *CI, const TargetData &TD, IRBuilder &B) {
+    Caller = CI->getParent()->getParent();
+    this->TD = &TD;
+    return CallOptimizer(CI->getCalledFunction(), CI, B);
+  }
+
+  /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
+  Value *CastToCStr(Value *V, IRBuilder &B);
+
+  /// EmitStrLen - Emit a call to the strlen function to the builder, for the
+  /// specified pointer.  Ptr is required to be some pointer type, and the
+  /// return value has 'intptr_t' type.
+  Value *EmitStrLen(Value *Ptr, IRBuilder &B);
+  
+  /// EmitMemCpy - Emit a call to the memcpy function to the builder.  This
+  /// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
+  Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len, 
+                    unsigned Align, IRBuilder &B);
+  
+  /// EmitMemChr - Emit a call to the memchr function.  This assumes that Ptr is
+  /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
+  Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder &B);
+    
+  /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
+  /// 'floor').  This function is known to take a single of type matching 'Op'
+  /// and returns one value with the same type.  If 'Op' is a long double, 'l'
+  /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
+  Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder &B);
+  
+  /// EmitPutChar - Emit a call to the putchar function.  This assumes that Char
+  /// is an integer.
+  void EmitPutChar(Value *Char, IRBuilder &B);
+  
+  /// EmitPutS - Emit a call to the puts function.  This assumes that Str is
+  /// some pointer.
+  void EmitPutS(Value *Str, IRBuilder &B);
+    
+  /// EmitFPutC - Emit a call to the fputc function.  This assumes that Char is
+  /// an i32, and File is a pointer to FILE.
+  void EmitFPutC(Value *Char, Value *File, IRBuilder &B);
+  
+  /// EmitFPutS - Emit a call to the puts function.  Str is required to be a
+  /// pointer and File is a pointer to FILE.
+  void EmitFPutS(Value *Str, Value *File, IRBuilder &B);
+  
+  /// EmitFWrite - Emit a call to the fwrite function.  This assumes that Ptr is
+  /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
+  void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder &B);
+    
+};
+} // End anonymous namespace.
+
+/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
+Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder &B) {
+  return B.CreateBitCast(V, PointerType::getUnqual(Type::Int8Ty), "cstr");
+}
+
+/// EmitStrLen - Emit a call to the strlen function to the builder, for the
+/// specified pointer.  This always returns an integer value of size intptr_t.
+Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder &B) {
+  Module *M = Caller->getParent();
+  Constant *StrLen =M->getOrInsertFunction("strlen", TD->getIntPtrType(),
+                                           PointerType::getUnqual(Type::Int8Ty),
+                                           NULL);
+  return B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
+}
+
+/// EmitMemCpy - Emit a call to the memcpy function to the builder.  This always
+/// expects that the size has type 'intptr_t' and Dst/Src are pointers.
+Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len,
+                                       unsigned Align, IRBuilder &B) {
+  Module *M = Caller->getParent();
+  Intrinsic::ID IID = TD->getIntPtrType() == Type::Int32Ty ?
+                           Intrinsic::memcpy_i32 : Intrinsic::memcpy_i64;
+  Value *MemCpy = Intrinsic::getDeclaration(M, IID);
+  return B.CreateCall4(MemCpy, CastToCStr(Dst, B), CastToCStr(Src, B), Len,
+                       ConstantInt::get(Type::Int32Ty, Align));
+}
+
+/// EmitMemChr - Emit a call to the memchr function.  This assumes that Ptr is
+/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
+Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val,
+                                       Value *Len, IRBuilder &B) {
+  Module *M = Caller->getParent();
+  Value *MemChr = M->getOrInsertFunction("memchr",
+                                         PointerType::getUnqual(Type::Int8Ty),
+                                         PointerType::getUnqual(Type::Int8Ty),
+                                         Type::Int32Ty, TD->getIntPtrType(),
+                                         NULL);
+  return B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
+}
+
+/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
+/// 'floor').  This function is known to take a single of type matching 'Op' and
+/// returns one value with the same type.  If 'Op' is a long double, 'l' is
+/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
+Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
+                                                 IRBuilder &B) {
+  char NameBuffer[20];
+  if (Op->getType() != Type::DoubleTy) {
+    // If we need to add a suffix, copy into NameBuffer.
+    unsigned NameLen = strlen(Name);
+    assert(NameLen < sizeof(NameBuffer)-2);
+    memcpy(NameBuffer, Name, NameLen);
+    if (Op->getType() == Type::FloatTy)
+      NameBuffer[NameLen] = 'f';  // floorf
+    else
+      NameBuffer[NameLen] = 'l';  // floorl
+    NameBuffer[NameLen+1] = 0;
+    Name = NameBuffer;
+  }
+  
+  Module *M = Caller->getParent();
+  Value *Callee = M->getOrInsertFunction(Name, Op->getType(), 
+                                         Op->getType(), NULL);
+  return B.CreateCall(Callee, Op, Name);
+}
+
+/// EmitPutChar - Emit a call to the putchar function.  This assumes that Char
+/// is an integer.
+void LibCallOptimization::EmitPutChar(Value *Char, IRBuilder &B) {
+  Module *M = Caller->getParent();
+  Value *F = M->getOrInsertFunction("putchar", Type::Int32Ty,
+                                    Type::Int32Ty, NULL);
+  B.CreateCall(F, B.CreateIntCast(Char, Type::Int32Ty, "chari"), "putchar");
+}
+
+/// EmitPutS - Emit a call to the puts function.  This assumes that Str is
+/// some pointer.
+void LibCallOptimization::EmitPutS(Value *Str, IRBuilder &B) {
+  Module *M = Caller->getParent();
+  Value *F = M->getOrInsertFunction("puts", Type::Int32Ty,
+                                    PointerType::getUnqual(Type::Int8Ty), NULL);
+  B.CreateCall(F, CastToCStr(Str, B), "puts");
+}
+
+/// EmitFPutC - Emit a call to the fputc function.  This assumes that Char is
+/// an integer and File is a pointer to FILE.
+void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder &B) {
+  Module *M = Caller->getParent();
+  Constant *F = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
+                                       File->getType(), NULL);
+  Char = B.CreateIntCast(Char, Type::Int32Ty, "chari");
+  B.CreateCall2(F, Char, File, "fputc");
+}
+
+/// EmitFPutS - Emit a call to the puts function.  Str is required to be a
+/// pointer and File is a pointer to FILE.
+void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder &B) {
+  Module *M = Caller->getParent();
+  Constant *F = M->getOrInsertFunction("fputs", Type::Int32Ty,
+                                       PointerType::getUnqual(Type::Int8Ty),
+                                       File->getType(), NULL);
+  B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
+}
+
+/// EmitFWrite - Emit a call to the fwrite function.  This assumes that Ptr is
+/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
+void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File,
+                                     IRBuilder &B) {
+  Module *M = Caller->getParent();
+  Constant *F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
+                                       PointerType::getUnqual(Type::Int8Ty),
+                                       TD->getIntPtrType(), TD->getIntPtrType(),
+                                       File->getType(), NULL);
+  B.CreateCall4(F, CastToCStr(Ptr, B), Size, 
+                ConstantInt::get(TD->getIntPtrType(), 1), File);
+}
+
+//===----------------------------------------------------------------------===//
+// Helper Functions
+//===----------------------------------------------------------------------===//
+
+/// GetConstantStringInfo - This function computes the length of a
+/// null-terminated C string pointed to by V.  If successful, it returns true
+/// and returns the string in Str.  If unsuccessful, it returns false.
+static bool GetConstantStringInfo(Value *V, std::string &Str) {
+  // Look bitcast instructions.
+  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
+    return GetConstantStringInfo(BCI->getOperand(0), Str);
+  
+  // If the value is not a GEP instruction nor a constant expression with a
+  // GEP instruction, then return false because ConstantArray can't occur
+  // any other way
+  User *GEP = 0;
+  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
+    GEP = GEPI;
+  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+    if (CE->getOpcode() != Instruction::GetElementPtr)
+      return false;
+    GEP = CE;
+  } else {
+    return false;
+  }
+  
+  // Make sure the GEP has exactly three arguments.
+  if (GEP->getNumOperands() != 3)
+    return false;
+  
+  // Check to make sure that the first operand of the GEP is an integer and
+  // has value 0 so that we are sure we're indexing into the initializer.
+  if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
+    if (!Idx->isZero())
+      return false;
+  } else
+    return false;
+  
+  // If the second index isn't a ConstantInt, then this is a variable index
+  // into the array.  If this occurs, we can't say anything meaningful about
+  // the string.
+  uint64_t StartIdx = 0;
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
+    StartIdx = CI->getZExtValue();
+  else
+    return false;
+  
+  // The GEP instruction, constant or instruction, must reference a global
+  // variable that is a constant and is initialized. The referenced constant
+  // initializer is the array that we'll use for optimization.
+  GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
+  if (!GV || !GV->isConstant() || !GV->hasInitializer())
+    return false;
+  Constant *GlobalInit = GV->getInitializer();
+  
+  // Handle the ConstantAggregateZero case
+  if (isa<ConstantAggregateZero>(GlobalInit)) {
+    // This is a degenerate case. The initializer is constant zero so the
+    // length of the string must be zero.
+    Str.clear();
+    return true;
+  }
+  
+  // Must be a Constant Array
+  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
+  if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
+    return false;
+  
+  // Get the number of elements in the array
+  uint64_t NumElts = Array->getType()->getNumElements();
+  
+  // Traverse the constant array from StartIdx (derived above) which is
+  // the place the GEP refers to in the array.
+  for (unsigned i = StartIdx; i < NumElts; ++i) {
+    Constant *Elt = Array->getOperand(i);
+    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
+    if (!CI) // This array isn't suitable, non-int initializer.
+      return false;
+    if (CI->isZero())
+      return true; // we found end of string, success!
+    Str += (char)CI->getZExtValue();
+  }
+  
+  return false; // The array isn't null terminated.
+}
+
+/// GetStringLengthH - If we can compute the length of the string pointed to by
+/// the specified pointer, return 'len+1'.  If we can't, return 0.
+static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
+  // Look through noop bitcast instructions.
+  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
+    return GetStringLengthH(BCI->getOperand(0), PHIs);
+  
+  // If this is a PHI node, there are two cases: either we have already seen it
+  // or we haven't.
+  if (PHINode *PN = dyn_cast<PHINode>(V)) {
+    if (!PHIs.insert(PN))
+      return ~0ULL;  // already in the set.
+    
+    // If it was new, see if all the input strings are the same length.
+    uint64_t LenSoFar = ~0ULL;
+    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
+      if (Len == 0) return 0; // Unknown length -> unknown.
+      
+      if (Len == ~0ULL) continue;
+      
+      if (Len != LenSoFar && LenSoFar != ~0ULL)
+        return 0;    // Disagree -> unknown.
+      LenSoFar = Len;
+    }
+    
+    // Success, all agree.
+    return LenSoFar;
+  }
+  
+  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
+  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
+    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
+    if (Len1 == 0) return 0;
+    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
+    if (Len2 == 0) return 0;
+    if (Len1 == ~0ULL) return Len2;
+    if (Len2 == ~0ULL) return Len1;
+    if (Len1 != Len2) return 0;
+    return Len1;
+  }
+  
+  // If the value is not a GEP instruction nor a constant expression with a
+  // GEP instruction, then return unknown.
+  User *GEP = 0;
+  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
+    GEP = GEPI;
+  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+    if (CE->getOpcode() != Instruction::GetElementPtr)
+      return 0;
+    GEP = CE;
+  } else {
+    return 0;
+  }
+  
+  // Make sure the GEP has exactly three arguments.
+  if (GEP->getNumOperands() != 3)
+    return 0;
+  
+  // Check to make sure that the first operand of the GEP is an integer and
+  // has value 0 so that we are sure we're indexing into the initializer.
+  if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
+    if (!Idx->isZero())
+      return 0;
+  } else
+    return 0;
+  
+  // If the second index isn't a ConstantInt, then this is a variable index
+  // into the array.  If this occurs, we can't say anything meaningful about
+  // the string.
+  uint64_t StartIdx = 0;
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
+    StartIdx = CI->getZExtValue();
+  else
+    return 0;
+  
+  // The GEP instruction, constant or instruction, must reference a global
+  // variable that is a constant and is initialized. The referenced constant
+  // initializer is the array that we'll use for optimization.
+  GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
+  if (!GV || !GV->isConstant() || !GV->hasInitializer())
+    return 0;
+  Constant *GlobalInit = GV->getInitializer();
+  
+  // Handle the ConstantAggregateZero case, which is a degenerate case. The
+  // initializer is constant zero so the length of the string must be zero.
+  if (isa<ConstantAggregateZero>(GlobalInit))
+    return 1;  // Len = 0 offset by 1.
+  
+  // Must be a Constant Array
+  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
+  if (!Array || Array->getType()->getElementType() != Type::Int8Ty)
+    return false;
+  
+  // Get the number of elements in the array
+  uint64_t NumElts = Array->getType()->getNumElements();
+  
+  // Traverse the constant array from StartIdx (derived above) which is
+  // the place the GEP refers to in the array.
+  for (unsigned i = StartIdx; i != NumElts; ++i) {
+    Constant *Elt = Array->getOperand(i);
+    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
+    if (!CI) // This array isn't suitable, non-int initializer.
+      return 0;
+    if (CI->isZero())
+      return i-StartIdx+1; // We found end of string, success!
+  }
+  
+  return 0; // The array isn't null terminated, conservatively return 'unknown'.
+}
+
+/// GetStringLength - If we can compute the length of the string pointed to by
+/// the specified pointer, return 'len+1'.  If we can't, return 0.
+static uint64_t GetStringLength(Value *V) {
+  if (!isa<PointerType>(V->getType())) return 0;
+  
+  SmallPtrSet<PHINode*, 32> PHIs;
+  uint64_t Len = GetStringLengthH(V, PHIs);
+  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
+  // an empty string as a length.
+  return Len == ~0ULL ? 1 : Len;
+}
+
+/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
+/// value is equal or not-equal to zero. 
+static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
+       UI != E; ++UI) {
+    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
+      if (IC->isEquality())
+        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
+          if (C->isNullValue())
+            continue;
+    // Unknown instruction.
+    return false;
+  }
+  return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Miscellaneous LibCall Optimizations
+//===----------------------------------------------------------------------===//
+
+//===---------------------------------------===//
+// 'exit' Optimizations
+
+/// ExitOpt - int main() { exit(4); } --> int main() { return 4; }
+struct VISIBILITY_HIDDEN ExitOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    // Verify we have a reasonable prototype for exit.
+    if (Callee->arg_size() == 0 || !CI->use_empty())
+      return 0;
+
+    // Verify the caller is main, and that the result type of main matches the
+    // argument type of exit.
+    if (!Caller->isName("main") || !Caller->hasExternalLinkage() ||
+        Caller->getReturnType() != CI->getOperand(1)->getType())
+      return 0;
+
+    TerminatorInst *OldTI = CI->getParent()->getTerminator();
+    
+    // Create the return after the call.
+    ReturnInst *RI = B.CreateRet(CI->getOperand(1));
+
+    // Drop all successor phi node entries.
+    for (unsigned i = 0, e = OldTI->getNumSuccessors(); i != e; ++i)
+      OldTI->getSuccessor(i)->removePredecessor(CI->getParent());
+    
+    // Erase all instructions from after our return instruction until the end of
+    // the block.
+    BasicBlock::iterator FirstDead = RI; ++FirstDead;
+    CI->getParent()->getInstList().erase(FirstDead, CI->getParent()->end());
+    return CI;
+  }
+};
+
+//===----------------------------------------------------------------------===//
+// String and Memory LibCall Optimizations
+//===----------------------------------------------------------------------===//
+
+//===---------------------------------------===//
+// 'strcat' Optimizations
+
+struct VISIBILITY_HIDDEN StrCatOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    // Verify the "strcat" function prototype.
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 2 ||
+        FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
+        FT->getParamType(0) != FT->getReturnType() ||
+        FT->getParamType(1) != FT->getReturnType())
+      return 0;
+    
+    // Extract some information from the instruction
+    Value *Dst = CI->getOperand(1);
+    Value *Src = CI->getOperand(2);
+    
+    // See if we can get the length of the input string.
+    uint64_t Len = GetStringLength(Src);
+    if (Len == 0) return false;
+    --Len;  // Unbias length.
+    
+    // Handle the simple, do-nothing case: strcat(x, "") -> x
+    if (Len == 0)
+      return Dst;
+    
+    // We need to find the end of the destination string.  That's where the
+    // memory is to be moved to. We just generate a call to strlen.
+    Value *DstLen = EmitStrLen(Dst, B);
+    
+    // Now that we have the destination's length, we must index into the
+    // destination's pointer to get the actual memcpy destination (end of
+    // the string .. we're concatenating).
+    Dst = B.CreateGEP(Dst, DstLen, "endptr");
+    
+    // We have enough information to now generate the memcpy call to do the
+    // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
+    EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len+1), 1, B);
+    return Dst;
+  }
+};
+
+//===---------------------------------------===//
+// 'strchr' Optimizations
+
+struct VISIBILITY_HIDDEN StrChrOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    // Verify the "strchr" function prototype.
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 2 ||
+        FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
+        FT->getParamType(0) != FT->getReturnType())
+      return 0;
+    
+    Value *SrcStr = CI->getOperand(1);
+    
+    // If the second operand is non-constant, see if we can compute the length
+    // of the input string and turn this into memchr.
+    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getOperand(2));
+    if (CharC == 0) {
+      uint64_t Len = GetStringLength(SrcStr);
+      if (Len == 0 || FT->getParamType(1) != Type::Int32Ty) // memchr needs i32.
+        return 0;
+      
+      return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
+                        ConstantInt::get(TD->getIntPtrType(), Len), B);
+    }
+
+    // Otherwise, the character is a constant, see if the first argument is
+    // a string literal.  If so, we can constant fold.
+    std::string Str;
+    if (!GetConstantStringInfo(SrcStr, Str))
+      return false;
+    
+    // strchr can find the nul character.
+    Str += '\0';
+    char CharValue = CharC->getSExtValue();
+    
+    // Compute the offset.
+    uint64_t i = 0;
+    while (1) {
+      if (i == Str.size())    // Didn't find the char.  strchr returns null.
+        return Constant::getNullValue(CI->getType());
+      // Did we find our match?
+      if (Str[i] == CharValue)
+        break;
+      ++i;
+    }
+    
+    // strchr(s+n,c)  -> gep(s+n+i,c)
+    Value *Idx = ConstantInt::get(Type::Int64Ty, i);
+    return B.CreateGEP(SrcStr, Idx, "strchr");
+  }
+};
+
+//===---------------------------------------===//
+// 'strcmp' Optimizations
+
+struct VISIBILITY_HIDDEN StrCmpOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    // Verify the "strcmp" function prototype.
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 2 || FT->getReturnType() != Type::Int32Ty ||
+        FT->getParamType(0) != FT->getParamType(1) ||
+        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
+      return 0;
+    
+    Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
+    if (Str1P == Str2P)      // strcmp(x,x)  -> 0
+      return ConstantInt::get(CI->getType(), 0);
+    
+    std::string Str1, Str2;
+    bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
+    bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
+    
+    if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
+      return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
+    
+    if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
+      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+    
+    // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
+    if (HasStr1 && HasStr2)
+      return ConstantInt::get(CI->getType(), strcmp(Str1.c_str(),Str2.c_str()));
+    return 0;
+  }
+};
+
+//===---------------------------------------===//
+// 'strncmp' Optimizations
+
+struct VISIBILITY_HIDDEN StrNCmpOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    // Verify the "strncmp" function prototype.
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 3 || FT->getReturnType() != Type::Int32Ty ||
+        FT->getParamType(0) != FT->getParamType(1) ||
+        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
+        !isa<IntegerType>(FT->getParamType(2)))
+      return 0;
+    
+    Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
+    if (Str1P == Str2P)      // strncmp(x,x,n)  -> 0
+      return ConstantInt::get(CI->getType(), 0);
+    
+    // Get the length argument if it is constant.
+    uint64_t Length;
+    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
+      Length = LengthArg->getZExtValue();
+    else
+      return 0;
+    
+    if (Length == 0) // strncmp(x,y,0)   -> 0
+      return ConstantInt::get(CI->getType(), 0);
+    
+    std::string Str1, Str2;
+    bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
+    bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
+    
+    if (HasStr1 && Str1.empty())  // strncmp("", x, n) -> *x
+      return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
+    
+    if (HasStr2 && Str2.empty())  // strncmp(x, "", n) -> *x
+      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+    
+    // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
+    if (HasStr1 && HasStr2)
+      return ConstantInt::get(CI->getType(),
+                              strncmp(Str1.c_str(), Str2.c_str(), Length));
+    return 0;
+  }
+};
+
+
+//===---------------------------------------===//
+// 'strcpy' Optimizations
+
+struct VISIBILITY_HIDDEN StrCpyOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    // Verify the "strcpy" function prototype.
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+        FT->getParamType(0) != FT->getParamType(1) ||
+        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
+      return 0;
+    
+    Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2);
+    if (Dst == Src)      // strcpy(x,x)  -> x
+      return Src;
+    
+    // See if we can get the length of the input string.
+    uint64_t Len = GetStringLength(Src);
+    if (Len == 0) return false;
+    
+    // We have enough information to now generate the memcpy call to do the
+    // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
+    EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len), 1, B);
+    return Dst;
+  }
+};
+
+
+
+//===---------------------------------------===//
+// 'strlen' Optimizations
+
+struct VISIBILITY_HIDDEN StrLenOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 1 ||
+        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
+        !isa<IntegerType>(FT->getReturnType()))
+      return 0;
+    
+    Value *Src = CI->getOperand(1);
+
+    // Constant folding: strlen("xyz") -> 3
+    if (uint64_t Len = GetStringLength(Src))
+      return ConstantInt::get(CI->getType(), Len-1);
+
+    // Handle strlen(p) != 0.
+    if (!IsOnlyUsedInZeroEqualityComparison(CI)) return 0;
+
+    // strlen(x) != 0 --> *x != 0
+    // strlen(x) == 0 --> *x == 0
+    return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
+  }
+};
+
+//===---------------------------------------===//
+// 'memcmp' Optimizations
+
+struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 3 || !isa<PointerType>(FT->getParamType(0)) ||
+        !isa<PointerType>(FT->getParamType(1)) ||
+        FT->getReturnType() != Type::Int32Ty)
+      return 0;
+    
+    Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
+    
+    if (LHS == RHS)  // memcmp(s,s,x) -> 0
+      return Constant::getNullValue(CI->getType());
+    
+    // Make sure we have a constant length.
+    ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
+    if (!LenC) return false;
+    uint64_t Len = LenC->getZExtValue();
+    
+    if (Len == 0) // memcmp(s1,s2,0) -> 0
+      return Constant::getNullValue(CI->getType());
+
+    if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS
+      Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv");
+      Value *RHSV = B.CreateLoad(CastToCStr(RHS, B), "rhsv");
+      return B.CreateZExt(B.CreateSub(LHSV, RHSV, "chardiff"), CI->getType());
+    }
+    
+    // memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS)  != 0
+    // memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS)  != 0
+    if ((Len == 2 || Len == 4) && IsOnlyUsedInZeroEqualityComparison(CI)) {
+      LHS = B.CreateBitCast(LHS, PointerType::getUnqual(Type::Int16Ty), "tmp");
+      RHS = B.CreateBitCast(RHS, LHS->getType(), "tmp");
+      LoadInst *LHSV = B.CreateLoad(LHS, "lhsv");
+      LoadInst *RHSV = B.CreateLoad(RHS, "rhsv");
+      LHSV->setAlignment(1); RHSV->setAlignment(1);  // Unaligned loads.
+      return B.CreateZExt(B.CreateXor(LHSV, RHSV, "shortdiff"), CI->getType());
+    }
+    
+    return 0;
+  }
+};
+
+//===---------------------------------------===//
+// 'memcpy' Optimizations
+
+struct VISIBILITY_HIDDEN MemCpyOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
+        !isa<PointerType>(FT->getParamType(0)) ||
+        !isa<PointerType>(FT->getParamType(1)) ||
+        FT->getParamType(2) != TD->getIntPtrType())
+      return 0;
+
+    // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
+    EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
+    return CI->getOperand(1);
+  }
+};
+
+//===----------------------------------------------------------------------===//
+// Math Library Optimizations
+//===----------------------------------------------------------------------===//
+
+//===---------------------------------------===//
+// 'pow*' Optimizations
+
+struct VISIBILITY_HIDDEN PowOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    const FunctionType *FT = Callee->getFunctionType();
+    // Just make sure this has 2 arguments of the same FP type, which match the
+    // result type.
+    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
+        FT->getParamType(0) != FT->getParamType(1) ||
+        !FT->getParamType(0)->isFloatingPoint())
+      return 0;
+    
+    Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2);
+    if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+      if (Op1C->isExactlyValue(1.0))  // pow(1.0, x) -> 1.0
+        return Op1C;
+      if (Op1C->isExactlyValue(2.0))  // pow(2.0, x) -> exp2(x)
+        return EmitUnaryFloatFnCall(Op2, "exp2", B);
+    }
+    
+    ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
+    if (Op2C == 0) return 0;
+    
+    if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
+      return ConstantFP::get(CI->getType(), 1.0);
+    
+    if (Op2C->isExactlyValue(0.5)) {
+      // FIXME: This is not safe for -0.0 and -inf.  This can only be done when
+      // 'unsafe' math optimizations are allowed.
+      // x    pow(x, 0.5)  sqrt(x)
+      // ---------------------------------------------
+      // -0.0    +0.0       -0.0
+      // -inf    +inf       NaN
+#if 0
+      // pow(x, 0.5) -> sqrt(x)
+      return B.CreateCall(get_sqrt(), Op1, "sqrt");
+#endif
+    }
+    
+    if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
+      return Op1;
+    if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
+      return B.CreateMul(Op1, Op1, "pow2");
+    if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
+      return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
+    return 0;
+  }
+};
+
+//===---------------------------------------===//
+// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
+
+struct VISIBILITY_HIDDEN UnaryDoubleFPOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 1 || FT->getReturnType() != Type::DoubleTy ||
+        FT->getParamType(0) != Type::DoubleTy)
+      return 0;
+    
+    // If this is something like 'floor((double)floatval)', convert to floorf.
+    FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1));
+    if (Cast == 0 || Cast->getOperand(0)->getType() != Type::FloatTy)
+      return 0;
+
+    // floor((double)floatval) -> (double)floorf(floatval)
+    Value *V = Cast->getOperand(0);
+    V = EmitUnaryFloatFnCall(V, Callee->getNameStart(), B);
+    return B.CreateFPExt(V, Type::DoubleTy);
+  }
+};
+
+//===----------------------------------------------------------------------===//
+// Integer Optimizations
+//===----------------------------------------------------------------------===//
+
+//===---------------------------------------===//
+// 'ffs*' Optimizations
+
+struct VISIBILITY_HIDDEN FFSOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    const FunctionType *FT = Callee->getFunctionType();
+    // Just make sure this has 2 arguments of the same FP type, which match the
+    // result type.
+    if (FT->getNumParams() != 1 || FT->getReturnType() != Type::Int32Ty ||
+        !isa<IntegerType>(FT->getParamType(0)))
+      return 0;
+    
+    Value *Op = CI->getOperand(1);
+    
+    // Constant fold.
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+      if (CI->getValue() == 0)  // ffs(0) -> 0.
+        return Constant::getNullValue(CI->getType());
+      return ConstantInt::get(Type::Int32Ty, // ffs(c) -> cttz(c)+1
+                              CI->getValue().countTrailingZeros()+1);
+    }
+    
+    // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
+    const Type *ArgType = Op->getType();
+    Value *F = Intrinsic::getDeclaration(Callee->getParent(),
+                                         Intrinsic::cttz, &ArgType, 1);
+    Value *V = B.CreateCall(F, Op, "cttz");
+    V = B.CreateAdd(V, ConstantInt::get(Type::Int32Ty, 1), "tmp");
+    V = B.CreateIntCast(V, Type::Int32Ty, false, "tmp");
+    
+    Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
+    return B.CreateSelect(Cond, V, ConstantInt::get(Type::Int32Ty, 0));
+  }
+};
+
+//===---------------------------------------===//
+// 'isdigit' Optimizations
+
+struct VISIBILITY_HIDDEN IsDigitOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    const FunctionType *FT = Callee->getFunctionType();
+    // We require integer(i32)
+    if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
+        FT->getParamType(0) != Type::Int32Ty)
+      return 0;
+    
+    // isdigit(c) -> (c-'0') <u 10
+    Value *Op = CI->getOperand(1);
+    Op = B.CreateSub(Op, ConstantInt::get(Type::Int32Ty, '0'), "isdigittmp");
+    Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 10), "isdigit");
+    return B.CreateZExt(Op, CI->getType());
+  }
+};
+
+//===---------------------------------------===//
+// 'isascii' Optimizations
+
+struct VISIBILITY_HIDDEN IsAsciiOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    const FunctionType *FT = Callee->getFunctionType();
+    // We require integer(i32)
+    if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
+        FT->getParamType(0) != Type::Int32Ty)
+      return 0;
+    
+    // isascii(c) -> c <u 128
+    Value *Op = CI->getOperand(1);
+    Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 128), "isascii");
+    return B.CreateZExt(Op, CI->getType());
+  }
+};
+
+//===---------------------------------------===//
+// 'toascii' Optimizations
+
+struct VISIBILITY_HIDDEN ToAsciiOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    const FunctionType *FT = Callee->getFunctionType();
+    // We require i32(i32)
+    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
+        FT->getParamType(0) != Type::Int32Ty)
+      return 0;
+    
+    // isascii(c) -> c & 0x7f
+    return B.CreateAnd(CI->getOperand(1), ConstantInt::get(CI->getType(),0x7F));
+  }
+};
+
+//===----------------------------------------------------------------------===//
+// Formatting and IO Optimizations
+//===----------------------------------------------------------------------===//
+
+//===---------------------------------------===//
+// 'printf' Optimizations
+
+struct VISIBILITY_HIDDEN PrintFOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    // Require one fixed pointer argument and an integer/void result.
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() < 1 || !isa<PointerType>(FT->getParamType(0)) ||
+        !(isa<IntegerType>(FT->getReturnType()) ||
+          FT->getReturnType() == Type::VoidTy))
+      return 0;
+    
+    // Check for a fixed format string.
+    std::string FormatStr;
+    if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
+      return false;
+
+    // Empty format string -> noop.
+    if (FormatStr.empty())  // Tolerate printf's declared void.
+      return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 0);
+    
+    // printf("x") -> putchar('x'), even for '%'.
+    if (FormatStr.size() == 1) {
+      EmitPutChar(ConstantInt::get(Type::Int32Ty, FormatStr[0]), B);
+      return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 1);
+    }
+    
+    // printf("foo\n") --> puts("foo")
+    if (FormatStr[FormatStr.size()-1] == '\n' &&
+        FormatStr.find('%') == std::string::npos) {  // no format characters.
+      // Create a string literal with no \n on it.  We expect the constant merge
+      // pass to be run after this pass, to merge duplicate strings.
+      FormatStr.erase(FormatStr.end()-1);
+      Constant *C = ConstantArray::get(FormatStr, true);
+      C = new GlobalVariable(C->getType(), true,GlobalVariable::InternalLinkage,
+                             C, "str", Callee->getParent());
+      EmitPutS(C, B);
+      return CI->use_empty() ? (Value*)CI : 
+                          ConstantInt::get(CI->getType(), FormatStr.size()+1);
+    }
+    
+    // Optimize specific format strings.
+    // printf("%c", chr) --> putchar(*(i8*)dst)
+    if (FormatStr == "%c" && CI->getNumOperands() > 2 &&
+        isa<IntegerType>(CI->getOperand(2)->getType())) {
+      EmitPutChar(CI->getOperand(2), B);
+      return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 1);
+    }
+    
+    // printf("%s\n", str) --> puts(str)
+    if (FormatStr == "%s\n" && CI->getNumOperands() > 2 &&
+        isa<PointerType>(CI->getOperand(2)->getType()) &&
+        CI->use_empty()) {
+      EmitPutS(CI->getOperand(2), B);
+      return CI;
+    }
+    return 0;
+  }
+};
+
+//===---------------------------------------===//
+// 'sprintf' Optimizations
+
+struct VISIBILITY_HIDDEN SPrintFOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    // Require two fixed pointer arguments and an integer result.
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
+        !isa<PointerType>(FT->getParamType(1)) ||
+        !isa<IntegerType>(FT->getReturnType()))
+      return 0;
+
+    // Check for a fixed format string.
+    std::string FormatStr;
+    if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
+      return false;
+    
+    // If we just have a format string (nothing else crazy) transform it.
+    if (CI->getNumOperands() == 3) {
+      // Make sure there's no % in the constant array.  We could try to handle
+      // %% -> % in the future if we cared.
+      for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+        if (FormatStr[i] == '%')
+          return 0; // we found a format specifier, bail out.
+      
+      // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
+      EmitMemCpy(CI->getOperand(1), CI->getOperand(2), // Copy the nul byte.
+                 ConstantInt::get(TD->getIntPtrType(), FormatStr.size()+1),1,B);
+      return ConstantInt::get(CI->getType(), FormatStr.size());
+    }
+    
+    // The remaining optimizations require the format string to be "%s" or "%c"
+    // and have an extra operand.
+    if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
+      return 0;
+    
+    // Decode the second character of the format string.
+    if (FormatStr[1] == 'c') {
+      // sprintf(dst, "%c", chr) --> *(i8*)dst = chr
+      if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
+      Value *V = B.CreateTrunc(CI->getOperand(3), Type::Int8Ty, "char");
+      B.CreateStore(V, CastToCStr(CI->getOperand(1), B));
+      return ConstantInt::get(CI->getType(), 1);
+    }
+    
+    if (FormatStr[1] == 's') {
+      // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
+      if (!isa<PointerType>(CI->getOperand(3)->getType())) return 0;
+
+      Value *Len = EmitStrLen(CI->getOperand(3), B);
+      Value *IncLen = B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1),
+                                  "leninc");
+      EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B);
+      
+      // The sprintf result is the unincremented number of bytes in the string.
+      return B.CreateIntCast(Len, CI->getType(), false);
+    }
+    return 0;
+  }
+};
+
+//===---------------------------------------===//
+// 'fwrite' Optimizations
+
+struct VISIBILITY_HIDDEN FWriteOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    // Require a pointer, an integer, an integer, a pointer, returning integer.
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 4 || !isa<PointerType>(FT->getParamType(0)) ||
+        !isa<IntegerType>(FT->getParamType(1)) ||
+        !isa<IntegerType>(FT->getParamType(2)) ||
+        !isa<PointerType>(FT->getParamType(3)) ||
+        !isa<IntegerType>(FT->getReturnType()))
+      return 0;
+    
+    // Get the element size and count.
+    ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getOperand(2));
+    ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getOperand(3));
+    if (!SizeC || !CountC) return 0;
+    uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
+    
+    // If this is writing zero records, remove the call (it's a noop).
+    if (Bytes == 0)
+      return ConstantInt::get(CI->getType(), 0);
+    
+    // If this is writing one byte, turn it into fputc.
+    if (Bytes == 1) {  // fwrite(S,1,1,F) -> fputc(S[0],F)
+      Value *Char = B.CreateLoad(CastToCStr(CI->getOperand(1), B), "char");
+      EmitFPutC(Char, CI->getOperand(4), B);
+      return ConstantInt::get(CI->getType(), 1);
+    }
+
+    return 0;
+  }
+};
+
+//===---------------------------------------===//
+// 'fputs' Optimizations
+
+struct VISIBILITY_HIDDEN FPutsOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    // Require two pointers.  Also, we can't optimize if return value is used.
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
+        !isa<PointerType>(FT->getParamType(1)) ||
+        !CI->use_empty())
+      return 0;
+    
+    // fputs(s,F) --> fwrite(s,1,strlen(s),F)
+    uint64_t Len = GetStringLength(CI->getOperand(1));
+    if (!Len) return false;
+    EmitFWrite(CI->getOperand(1), ConstantInt::get(TD->getIntPtrType(), Len-1),
+               CI->getOperand(2), B);
+    return CI;  // Known to have no uses (see above).
+  }
+};
+
+//===---------------------------------------===//
+// 'fprintf' Optimizations
+
+struct VISIBILITY_HIDDEN FPrintFOpt : public LibCallOptimization {
+  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
+    // Require two fixed paramters as pointers and integer result.
+    const FunctionType *FT = Callee->getFunctionType();
+    if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
+        !isa<PointerType>(FT->getParamType(1)) ||
+        !isa<IntegerType>(FT->getReturnType()))
+      return 0;
+    
+    // All the optimizations depend on the format string.
+    std::string FormatStr;
+    if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
+      return false;
+
+    // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
+    if (CI->getNumOperands() == 3) {
+      for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
+        if (FormatStr[i] == '%')  // Could handle %% -> % if we cared.
+          return false; // We found a format specifier.
+      
+      EmitFWrite(CI->getOperand(2), ConstantInt::get(TD->getIntPtrType(),
+                                                     FormatStr.size()),
+                 CI->getOperand(1), B);
+      return ConstantInt::get(CI->getType(), FormatStr.size());
+    }
+    
+    // The remaining optimizations require the format string to be "%s" or "%c"
+    // and have an extra operand.
+    if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
+      return 0;
+    
+    // Decode the second character of the format string.
+    if (FormatStr[1] == 'c') {
+      // fprintf(F, "%c", chr) --> *(i8*)dst = chr
+      if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
+      EmitFPutC(CI->getOperand(3), CI->getOperand(1), B);
+      return ConstantInt::get(CI->getType(), 1);
+    }
+    
+    if (FormatStr[1] == 's') {
+      // fprintf(F, "%s", str) -> fputs(str, F)
+      if (!isa<PointerType>(CI->getOperand(3)->getType()) || !CI->use_empty())
+        return 0;
+      EmitFPutS(CI->getOperand(3), CI->getOperand(1), B);
+      return CI;
+    }
+    return 0;
+  }
+};
+
+
+//===----------------------------------------------------------------------===//
+// SimplifyLibCalls Pass Implementation
+//===----------------------------------------------------------------------===//
+
+namespace {
+  /// This pass optimizes well known library functions from libc and libm.
+  ///
+  class VISIBILITY_HIDDEN SimplifyLibCalls : public FunctionPass {
+    StringMap<LibCallOptimization*> Optimizations;
+    // Miscellaneous LibCall Optimizations
+    ExitOpt Exit; 
+    // String and Memory LibCall Optimizations
+    StrCatOpt StrCat; StrChrOpt StrChr; StrCmpOpt StrCmp; StrNCmpOpt StrNCmp;
+    StrCpyOpt StrCpy; StrLenOpt StrLen; MemCmpOpt MemCmp; MemCpyOpt  MemCpy;
+    // Math Library Optimizations
+    PowOpt Pow; UnaryDoubleFPOpt UnaryDoubleFP;
+    // Integer Optimizations
+    FFSOpt FFS; IsDigitOpt IsDigit; IsAsciiOpt IsAscii; ToAsciiOpt ToAscii;
+    // Formatting and IO Optimizations
+    SPrintFOpt SPrintF; PrintFOpt PrintF;
+    FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
+  public:
+    static char ID; // Pass identification
+    SimplifyLibCalls() : FunctionPass((intptr_t)&ID) {}
+
+    void InitOptimizations();
+    bool runOnFunction(Function &F);
+
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addRequired<TargetData>();
+    }
+  };
+  char SimplifyLibCalls::ID = 0;
+} // end anonymous namespace.
+
+static RegisterPass<SimplifyLibCalls>
+X("simplify-libcalls", "Simplify well-known library calls");
+
+// Public interface to the Simplify LibCalls pass.
+FunctionPass *llvm::createSimplifyLibCallsPass() {
+  return new SimplifyLibCalls(); 
+}
+
+/// Optimizations - Populate the Optimizations map with all the optimizations
+/// we know.
+void SimplifyLibCalls::InitOptimizations() {
+  // Miscellaneous LibCall Optimizations
+  Optimizations["exit"] = &Exit;
+  
+  // String and Memory LibCall Optimizations
+  Optimizations["strcat"] = &StrCat;
+  Optimizations["strchr"] = &StrChr;
+  Optimizations["strcmp"] = &StrCmp;
+  Optimizations["strncmp"] = &StrNCmp;
+  Optimizations["strcpy"] = &StrCpy;
+  Optimizations["strlen"] = &StrLen;
+  Optimizations["memcmp"] = &MemCmp;
+  Optimizations["memcpy"] = &MemCpy;
+  
+  // Math Library Optimizations
+  Optimizations["powf"] = &Pow;
+  Optimizations["pow"] = &Pow;
+  Optimizations["powl"] = &Pow;
+#ifdef HAVE_FLOORF
+  Optimizations["floor"] = &UnaryDoubleFP;
+#endif
+#ifdef HAVE_CEILF
+  Optimizations["ceil"] = &UnaryDoubleFP;
+#endif
+#ifdef HAVE_ROUNDF
+  Optimizations["round"] = &UnaryDoubleFP;
+#endif
+#ifdef HAVE_RINTF
+  Optimizations["rint"] = &UnaryDoubleFP;
+#endif
+#ifdef HAVE_NEARBYINTF
+  Optimizations["nearbyint"] = &UnaryDoubleFP;
+#endif
+  
+  // Integer Optimizations
+  Optimizations["ffs"] = &FFS;
+  Optimizations["ffsl"] = &FFS;
+  Optimizations["ffsll"] = &FFS;
+  Optimizations["isdigit"] = &IsDigit;
+  Optimizations["isascii"] = &IsAscii;
+  Optimizations["toascii"] = &ToAscii;
+  
+  // Formatting and IO Optimizations
+  Optimizations["sprintf"] = &SPrintF;
+  Optimizations["printf"] = &PrintF;
+  Optimizations["fwrite"] = &FWrite;
+  Optimizations["fputs"] = &FPuts;
+  Optimizations["fprintf"] = &FPrintF;
+}
+
+
+/// runOnFunction - Top level algorithm.
+///
+bool SimplifyLibCalls::runOnFunction(Function &F) {
+  if (Optimizations.empty())
+    InitOptimizations();
+  
+  const TargetData &TD = getAnalysis<TargetData>();
+  
+  IRBuilder Builder;
+
+  bool Changed = false;
+  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
+      // Ignore non-calls.
+      CallInst *CI = dyn_cast<CallInst>(I++);
+      if (!CI) continue;
+      
+      // Ignore indirect calls and calls to non-external functions.
+      Function *Callee = CI->getCalledFunction();
+      if (Callee == 0 || !Callee->isDeclaration() ||
+          !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
+        continue;
+      
+      // Ignore unknown calls.
+      const char *CalleeName = Callee->getNameStart();
+      StringMap<LibCallOptimization*>::iterator OMI =
+        Optimizations.find(CalleeName, CalleeName+Callee->getNameLen());
+      if (OMI == Optimizations.end()) continue;
+      
+      // Set the builder to the instruction after the call.
+      Builder.SetInsertPoint(BB, I);
+      
+      // Try to optimize this call.
+      Value *Result = OMI->second->OptimizeCall(CI, TD, Builder);
+      if (Result == 0) continue;
+
+      // Something changed!
+      Changed = true;
+      ++NumSimplified;
+      
+      // Inspect the instruction after the call (which was potentially just
+      // added) next.
+      I = CI; ++I;
+      
+      if (CI != Result && !CI->use_empty()) {
+        CI->replaceAllUsesWith(Result);
+        if (!Result->hasName())
+          Result->takeName(CI);
+      }
+      CI->eraseFromParent();
+    }
+  }
+  return Changed;
+}
+
+
+// TODO:
+//   Additional cases that we need to add to this file:
+//
+// cbrt:
+//   * cbrt(expN(X))  -> expN(x/3)
+//   * cbrt(sqrt(x))  -> pow(x,1/6)
+//   * cbrt(sqrt(x))  -> pow(x,1/9)
+//
+// cos, cosf, cosl:
+//   * cos(-x)  -> cos(x)
+//
+// exp, expf, expl:
+//   * exp(log(x))  -> x
+//
+// log, logf, logl:
+//   * log(exp(x))   -> x
+//   * log(x**y)     -> y*log(x)
+//   * log(exp(y))   -> y*log(e)
+//   * log(exp2(y))  -> y*log(2)
+//   * log(exp10(y)) -> y*log(10)
+//   * log(sqrt(x))  -> 0.5*log(x)
+//   * log(pow(x,y)) -> y*log(x)
+//
+// lround, lroundf, lroundl:
+//   * lround(cnst) -> cnst'
+//
+// memcmp:
+//   * memcmp(x,y,l)   -> cnst
+//      (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
+//
+// memmove:
+//   * memmove(d,s,l,a) -> memcpy(d,s,l,a)
+//       (if s is a global constant array)
+//
+// pow, powf, powl:
+//   * pow(exp(x),y)  -> exp(x*y)
+//   * pow(sqrt(x),y) -> pow(x,y*0.5)
+//   * pow(pow(x,y),z)-> pow(x,y*z)
+//
+// puts:
+//   * puts("") -> putchar("\n")
+//
+// round, roundf, roundl:
+//   * round(cnst) -> cnst'
+//
+// signbit:
+//   * signbit(cnst) -> cnst'
+//   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
+//
+// sqrt, sqrtf, sqrtl:
+//   * sqrt(expN(x))  -> expN(x*0.5)
+//   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
+//   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
+//
+// stpcpy:
+//   * stpcpy(str, "literal") ->
+//           llvm.memcpy(str,"literal",strlen("literal")+1,1)
+// strrchr:
+//   * strrchr(s,c) -> reverse_offset_of_in(c,s)
+//      (if c is a constant integer and s is a constant string)
+//   * strrchr(s1,0) -> strchr(s1,0)
+//
+// strncat:
+//   * strncat(x,y,0) -> x
+//   * strncat(x,y,0) -> x (if strlen(y) = 0)
+//   * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y))
+//
+// strncpy:
+//   * strncpy(d,s,0) -> d
+//   * strncpy(d,s,l) -> memcpy(d,s,l,1)
+//      (if s and l are constants)
+//
+// strpbrk:
+//   * strpbrk(s,a) -> offset_in_for(s,a)
+//      (if s and a are both constant strings)
+//   * strpbrk(s,"") -> 0
+//   * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
+//
+// strspn, strcspn:
+//   * strspn(s,a)   -> const_int (if both args are constant)
+//   * strspn("",a)  -> 0
+//   * strspn(s,"")  -> 0
+//   * strcspn(s,a)  -> const_int (if both args are constant)
+//   * strcspn("",a) -> 0
+//   * strcspn(s,"") -> strlen(a)
+//
+// strstr:
+//   * strstr(x,x)  -> x
+//   * strstr(s1,s2) -> offset_of_s2_in(s1)
+//       (if s1 and s2 are constant strings)
+//
+// tan, tanf, tanl:
+//   * tan(atan(x)) -> x
+//
+// trunc, truncf, truncl:
+//   * trunc(cnst) -> cnst'
+//
+//