blob: 52610cfaa4c9464a9a4e5445cec5975be475e60a [file] [log] [blame]
Chris Lattnerfe718932008-01-06 01:10:31 +00001//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
Chris Lattner6cefb772008-01-05 22:25:12 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattnerfe718932008-01-06 01:10:31 +000010// This file implements the CodeGenDAGPatterns class, which is used to read and
Chris Lattner6cefb772008-01-05 22:25:12 +000011// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner93c7e412008-01-05 23:37:52 +000015#include "CodeGenDAGPatterns.h"
Chris Lattner6cefb772008-01-05 22:25:12 +000016#include "Record.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Support/Debug.h"
Chris Lattner6cefb772008-01-05 22:25:12 +000019#include "llvm/Support/Streams.h"
Chris Lattner6cefb772008-01-05 22:25:12 +000020#include <set>
21using namespace llvm;
22
23//===----------------------------------------------------------------------===//
24// Helpers for working with extended types.
25
26/// FilterVTs - Filter a list of VT's according to a predicate.
27///
28template<typename T>
29static std::vector<MVT::ValueType>
30FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
31 std::vector<MVT::ValueType> Result;
32 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
33 if (Filter(InVTs[i]))
34 Result.push_back(InVTs[i]);
35 return Result;
36}
37
38template<typename T>
39static std::vector<unsigned char>
40FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
41 std::vector<unsigned char> Result;
42 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
43 if (Filter((MVT::ValueType)InVTs[i]))
44 Result.push_back(InVTs[i]);
45 return Result;
46}
47
48static std::vector<unsigned char>
49ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
50 std::vector<unsigned char> Result;
51 for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
52 Result.push_back(InVTs[i]);
53 return Result;
54}
55
56static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
57 const std::vector<unsigned char> &RHS) {
58 if (LHS.size() > RHS.size()) return false;
59 for (unsigned i = 0, e = LHS.size(); i != e; ++i)
60 if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
61 return false;
62 return true;
63}
64
65/// isExtIntegerVT - Return true if the specified extended value type vector
66/// contains isInt or an integer value type.
67namespace llvm {
68namespace MVT {
69bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
70 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
71 return EVTs[0] == isInt || !(FilterEVTs(EVTs, isInteger).empty());
72}
73
74/// isExtFloatingPointVT - Return true if the specified extended value type
75/// vector contains isFP or a FP value type.
76bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
77 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
78 return EVTs[0] == isFP || !(FilterEVTs(EVTs, isFloatingPoint).empty());
79}
80} // end namespace MVT.
81} // end namespace llvm.
82
83//===----------------------------------------------------------------------===//
84// SDTypeConstraint implementation
85//
86
87SDTypeConstraint::SDTypeConstraint(Record *R) {
88 OperandNo = R->getValueAsInt("OperandNum");
89
90 if (R->isSubClassOf("SDTCisVT")) {
91 ConstraintType = SDTCisVT;
92 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
93 } else if (R->isSubClassOf("SDTCisPtrTy")) {
94 ConstraintType = SDTCisPtrTy;
95 } else if (R->isSubClassOf("SDTCisInt")) {
96 ConstraintType = SDTCisInt;
97 } else if (R->isSubClassOf("SDTCisFP")) {
98 ConstraintType = SDTCisFP;
99 } else if (R->isSubClassOf("SDTCisSameAs")) {
100 ConstraintType = SDTCisSameAs;
101 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
102 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
103 ConstraintType = SDTCisVTSmallerThanOp;
104 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
105 R->getValueAsInt("OtherOperandNum");
106 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
107 ConstraintType = SDTCisOpSmallerThanOp;
108 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
109 R->getValueAsInt("BigOperandNum");
110 } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
111 ConstraintType = SDTCisIntVectorOfSameSize;
112 x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
113 R->getValueAsInt("OtherOpNum");
114 } else {
115 cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
116 exit(1);
117 }
118}
119
120/// getOperandNum - Return the node corresponding to operand #OpNo in tree
121/// N, which has NumResults results.
122TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
123 TreePatternNode *N,
124 unsigned NumResults) const {
125 assert(NumResults <= 1 &&
126 "We only work with nodes with zero or one result so far!");
127
128 if (OpNo >= (NumResults + N->getNumChildren())) {
129 cerr << "Invalid operand number " << OpNo << " ";
130 N->dump();
131 cerr << '\n';
132 exit(1);
133 }
134
135 if (OpNo < NumResults)
136 return N; // FIXME: need value #
137 else
138 return N->getChild(OpNo-NumResults);
139}
140
141/// ApplyTypeConstraint - Given a node in a pattern, apply this type
142/// constraint to the nodes operands. This returns true if it makes a
143/// change, false otherwise. If a type contradiction is found, throw an
144/// exception.
145bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
146 const SDNodeInfo &NodeInfo,
147 TreePattern &TP) const {
148 unsigned NumResults = NodeInfo.getNumResults();
149 assert(NumResults <= 1 &&
150 "We only work with nodes with zero or one result so far!");
151
152 // Check that the number of operands is sane. Negative operands -> varargs.
153 if (NodeInfo.getNumOperands() >= 0) {
154 if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
155 TP.error(N->getOperator()->getName() + " node requires exactly " +
156 itostr(NodeInfo.getNumOperands()) + " operands!");
157 }
158
159 const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo();
160
161 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
162
163 switch (ConstraintType) {
164 default: assert(0 && "Unknown constraint type!");
165 case SDTCisVT:
166 // Operand must be a particular type.
167 return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
168 case SDTCisPtrTy: {
169 // Operand must be same as target pointer type.
170 return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
171 }
172 case SDTCisInt: {
173 // If there is only one integer type supported, this must be it.
174 std::vector<MVT::ValueType> IntVTs =
175 FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
176
177 // If we found exactly one supported integer type, apply it.
178 if (IntVTs.size() == 1)
179 return NodeToApply->UpdateNodeType(IntVTs[0], TP);
180 return NodeToApply->UpdateNodeType(MVT::isInt, TP);
181 }
182 case SDTCisFP: {
183 // If there is only one FP type supported, this must be it.
184 std::vector<MVT::ValueType> FPVTs =
185 FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
186
187 // If we found exactly one supported FP type, apply it.
188 if (FPVTs.size() == 1)
189 return NodeToApply->UpdateNodeType(FPVTs[0], TP);
190 return NodeToApply->UpdateNodeType(MVT::isFP, TP);
191 }
192 case SDTCisSameAs: {
193 TreePatternNode *OtherNode =
194 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
195 return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
196 OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
197 }
198 case SDTCisVTSmallerThanOp: {
199 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
200 // have an integer type that is smaller than the VT.
201 if (!NodeToApply->isLeaf() ||
202 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
203 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
204 ->isSubClassOf("ValueType"))
205 TP.error(N->getOperator()->getName() + " expects a VT operand!");
206 MVT::ValueType VT =
207 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
208 if (!MVT::isInteger(VT))
209 TP.error(N->getOperator()->getName() + " VT operand must be integer!");
210
211 TreePatternNode *OtherNode =
212 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
213
214 // It must be integer.
215 bool MadeChange = false;
216 MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
217
218 // This code only handles nodes that have one type set. Assert here so
219 // that we can change this if we ever need to deal with multiple value
220 // types at this point.
221 assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
222 if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
223 OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
224 return false;
225 }
226 case SDTCisOpSmallerThanOp: {
227 TreePatternNode *BigOperand =
228 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
229
230 // Both operands must be integer or FP, but we don't care which.
231 bool MadeChange = false;
232
233 // This code does not currently handle nodes which have multiple types,
234 // where some types are integer, and some are fp. Assert that this is not
235 // the case.
236 assert(!(MVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
237 MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
238 !(MVT::isExtIntegerInVTs(BigOperand->getExtTypes()) &&
239 MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
240 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
241 if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes()))
242 MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
243 else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
244 MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
245 if (MVT::isExtIntegerInVTs(BigOperand->getExtTypes()))
246 MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
247 else if (MVT::isExtFloatingPointInVTs(BigOperand->getExtTypes()))
248 MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
249
250 std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
251
252 if (MVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) {
253 VTs = FilterVTs(VTs, MVT::isInteger);
254 } else if (MVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
255 VTs = FilterVTs(VTs, MVT::isFloatingPoint);
256 } else {
257 VTs.clear();
258 }
259
260 switch (VTs.size()) {
261 default: // Too many VT's to pick from.
262 case 0: break; // No info yet.
263 case 1:
264 // Only one VT of this flavor. Cannot ever satisify the constraints.
265 return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
266 case 2:
267 // If we have exactly two possible types, the little operand must be the
268 // small one, the big operand should be the big one. Common with
269 // float/double for example.
270 assert(VTs[0] < VTs[1] && "Should be sorted!");
271 MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
272 MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
273 break;
274 }
275 return MadeChange;
276 }
277 case SDTCisIntVectorOfSameSize: {
278 TreePatternNode *OtherOperand =
279 getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
280 N, NumResults);
281 if (OtherOperand->hasTypeSet()) {
282 if (!MVT::isVector(OtherOperand->getTypeNum(0)))
283 TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
284 MVT::ValueType IVT = OtherOperand->getTypeNum(0);
285 IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
286 return NodeToApply->UpdateNodeType(IVT, TP);
287 }
288 return false;
289 }
290 }
291 return false;
292}
293
294//===----------------------------------------------------------------------===//
295// SDNodeInfo implementation
296//
297SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
298 EnumName = R->getValueAsString("Opcode");
299 SDClassName = R->getValueAsString("SDClass");
300 Record *TypeProfile = R->getValueAsDef("TypeProfile");
301 NumResults = TypeProfile->getValueAsInt("NumResults");
302 NumOperands = TypeProfile->getValueAsInt("NumOperands");
303
304 // Parse the properties.
305 Properties = 0;
306 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
307 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
308 if (PropList[i]->getName() == "SDNPCommutative") {
309 Properties |= 1 << SDNPCommutative;
310 } else if (PropList[i]->getName() == "SDNPAssociative") {
311 Properties |= 1 << SDNPAssociative;
312 } else if (PropList[i]->getName() == "SDNPHasChain") {
313 Properties |= 1 << SDNPHasChain;
314 } else if (PropList[i]->getName() == "SDNPOutFlag") {
315 Properties |= 1 << SDNPOutFlag;
316 } else if (PropList[i]->getName() == "SDNPInFlag") {
317 Properties |= 1 << SDNPInFlag;
318 } else if (PropList[i]->getName() == "SDNPOptInFlag") {
319 Properties |= 1 << SDNPOptInFlag;
320 } else {
321 cerr << "Unknown SD Node property '" << PropList[i]->getName()
322 << "' on node '" << R->getName() << "'!\n";
323 exit(1);
324 }
325 }
326
327
328 // Parse the type constraints.
329 std::vector<Record*> ConstraintList =
330 TypeProfile->getValueAsListOfDefs("Constraints");
331 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
332}
333
334//===----------------------------------------------------------------------===//
335// TreePatternNode implementation
336//
337
338TreePatternNode::~TreePatternNode() {
339#if 0 // FIXME: implement refcounted tree nodes!
340 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
341 delete getChild(i);
342#endif
343}
344
345/// UpdateNodeType - Set the node type of N to VT if VT contains
346/// information. If N already contains a conflicting type, then throw an
347/// exception. This returns true if any information was updated.
348///
349bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
350 TreePattern &TP) {
351 assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
352
353 if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
354 return false;
355 if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
356 setTypes(ExtVTs);
357 return true;
358 }
359
360 if (getExtTypeNum(0) == MVT::iPTR) {
361 if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
362 return false;
363 if (MVT::isExtIntegerInVTs(ExtVTs)) {
364 std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
365 if (FVTs.size()) {
366 setTypes(ExtVTs);
367 return true;
368 }
369 }
370 }
371
372 if (ExtVTs[0] == MVT::isInt && MVT::isExtIntegerInVTs(getExtTypes())) {
373 assert(hasTypeSet() && "should be handled above!");
374 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
375 if (getExtTypes() == FVTs)
376 return false;
377 setTypes(FVTs);
378 return true;
379 }
380 if (ExtVTs[0] == MVT::iPTR && MVT::isExtIntegerInVTs(getExtTypes())) {
381 //assert(hasTypeSet() && "should be handled above!");
382 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
383 if (getExtTypes() == FVTs)
384 return false;
385 if (FVTs.size()) {
386 setTypes(FVTs);
387 return true;
388 }
389 }
390 if (ExtVTs[0] == MVT::isFP && MVT::isExtFloatingPointInVTs(getExtTypes())) {
391 assert(hasTypeSet() && "should be handled above!");
392 std::vector<unsigned char> FVTs =
393 FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
394 if (getExtTypes() == FVTs)
395 return false;
396 setTypes(FVTs);
397 return true;
398 }
399
400 // If we know this is an int or fp type, and we are told it is a specific one,
401 // take the advice.
402 //
403 // Similarly, we should probably set the type here to the intersection of
404 // {isInt|isFP} and ExtVTs
405 if ((getExtTypeNum(0) == MVT::isInt && MVT::isExtIntegerInVTs(ExtVTs)) ||
406 (getExtTypeNum(0) == MVT::isFP && MVT::isExtFloatingPointInVTs(ExtVTs))){
407 setTypes(ExtVTs);
408 return true;
409 }
410 if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
411 setTypes(ExtVTs);
412 return true;
413 }
414
415 if (isLeaf()) {
416 dump();
417 cerr << " ";
418 TP.error("Type inference contradiction found in node!");
419 } else {
420 TP.error("Type inference contradiction found in node " +
421 getOperator()->getName() + "!");
422 }
423 return true; // unreachable
424}
425
426
427void TreePatternNode::print(std::ostream &OS) const {
428 if (isLeaf()) {
429 OS << *getLeafValue();
430 } else {
431 OS << "(" << getOperator()->getName();
432 }
433
434 // FIXME: At some point we should handle printing all the value types for
435 // nodes that are multiply typed.
436 switch (getExtTypeNum(0)) {
437 case MVT::Other: OS << ":Other"; break;
438 case MVT::isInt: OS << ":isInt"; break;
439 case MVT::isFP : OS << ":isFP"; break;
440 case MVT::isUnknown: ; /*OS << ":?";*/ break;
441 case MVT::iPTR: OS << ":iPTR"; break;
442 default: {
443 std::string VTName = llvm::getName(getTypeNum(0));
444 // Strip off MVT:: prefix if present.
445 if (VTName.substr(0,5) == "MVT::")
446 VTName = VTName.substr(5);
447 OS << ":" << VTName;
448 break;
449 }
450 }
451
452 if (!isLeaf()) {
453 if (getNumChildren() != 0) {
454 OS << " ";
455 getChild(0)->print(OS);
456 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
457 OS << ", ";
458 getChild(i)->print(OS);
459 }
460 }
461 OS << ")";
462 }
463
464 if (!PredicateFn.empty())
465 OS << "<<P:" << PredicateFn << ">>";
466 if (TransformFn)
467 OS << "<<X:" << TransformFn->getName() << ">>";
468 if (!getName().empty())
469 OS << ":$" << getName();
470
471}
472void TreePatternNode::dump() const {
473 print(*cerr.stream());
474}
475
476/// isIsomorphicTo - Return true if this node is recursively isomorphic to
477/// the specified node. For this comparison, all of the state of the node
478/// is considered, except for the assigned name. Nodes with differing names
479/// that are otherwise identical are considered isomorphic.
480bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
481 if (N == this) return true;
482 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
483 getPredicateFn() != N->getPredicateFn() ||
484 getTransformFn() != N->getTransformFn())
485 return false;
486
487 if (isLeaf()) {
488 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
489 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
490 return DI->getDef() == NDI->getDef();
491 return getLeafValue() == N->getLeafValue();
492 }
493
494 if (N->getOperator() != getOperator() ||
495 N->getNumChildren() != getNumChildren()) return false;
496 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
497 if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
498 return false;
499 return true;
500}
501
502/// clone - Make a copy of this tree and all of its children.
503///
504TreePatternNode *TreePatternNode::clone() const {
505 TreePatternNode *New;
506 if (isLeaf()) {
507 New = new TreePatternNode(getLeafValue());
508 } else {
509 std::vector<TreePatternNode*> CChildren;
510 CChildren.reserve(Children.size());
511 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
512 CChildren.push_back(getChild(i)->clone());
513 New = new TreePatternNode(getOperator(), CChildren);
514 }
515 New->setName(getName());
516 New->setTypes(getExtTypes());
517 New->setPredicateFn(getPredicateFn());
518 New->setTransformFn(getTransformFn());
519 return New;
520}
521
522/// SubstituteFormalArguments - Replace the formal arguments in this tree
523/// with actual values specified by ArgMap.
524void TreePatternNode::
525SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
526 if (isLeaf()) return;
527
528 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
529 TreePatternNode *Child = getChild(i);
530 if (Child->isLeaf()) {
531 Init *Val = Child->getLeafValue();
532 if (dynamic_cast<DefInit*>(Val) &&
533 static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
534 // We found a use of a formal argument, replace it with its value.
535 Child = ArgMap[Child->getName()];
536 assert(Child && "Couldn't find formal argument!");
537 setChild(i, Child);
538 }
539 } else {
540 getChild(i)->SubstituteFormalArguments(ArgMap);
541 }
542 }
543}
544
545
546/// InlinePatternFragments - If this pattern refers to any pattern
547/// fragments, inline them into place, giving us a pattern without any
548/// PatFrag references.
549TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
550 if (isLeaf()) return this; // nothing to do.
551 Record *Op = getOperator();
552
553 if (!Op->isSubClassOf("PatFrag")) {
554 // Just recursively inline children nodes.
555 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
556 setChild(i, getChild(i)->InlinePatternFragments(TP));
557 return this;
558 }
559
560 // Otherwise, we found a reference to a fragment. First, look up its
561 // TreePattern record.
562 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
563
564 // Verify that we are passing the right number of operands.
565 if (Frag->getNumArgs() != Children.size())
566 TP.error("'" + Op->getName() + "' fragment requires " +
567 utostr(Frag->getNumArgs()) + " operands!");
568
569 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
570
571 // Resolve formal arguments to their actual value.
572 if (Frag->getNumArgs()) {
573 // Compute the map of formal to actual arguments.
574 std::map<std::string, TreePatternNode*> ArgMap;
575 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
576 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
577
578 FragTree->SubstituteFormalArguments(ArgMap);
579 }
580
581 FragTree->setName(getName());
582 FragTree->UpdateNodeType(getExtTypes(), TP);
583
584 // Get a new copy of this fragment to stitch into here.
585 //delete this; // FIXME: implement refcounting!
586 return FragTree;
587}
588
589/// getImplicitType - Check to see if the specified record has an implicit
590/// type which should be applied to it. This infer the type of register
591/// references from the register file information, for example.
592///
593static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
594 TreePattern &TP) {
595 // Some common return values
596 std::vector<unsigned char> Unknown(1, MVT::isUnknown);
597 std::vector<unsigned char> Other(1, MVT::Other);
598
599 // Check to see if this is a register or a register class...
600 if (R->isSubClassOf("RegisterClass")) {
601 if (NotRegisters)
602 return Unknown;
603 const CodeGenRegisterClass &RC =
604 TP.getDAGPatterns().getTargetInfo().getRegisterClass(R);
605 return ConvertVTs(RC.getValueTypes());
606 } else if (R->isSubClassOf("PatFrag")) {
607 // Pattern fragment types will be resolved when they are inlined.
608 return Unknown;
609 } else if (R->isSubClassOf("Register")) {
610 if (NotRegisters)
611 return Unknown;
612 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
613 return T.getRegisterVTs(R);
614 } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
615 // Using a VTSDNode or CondCodeSDNode.
616 return Other;
617 } else if (R->isSubClassOf("ComplexPattern")) {
618 if (NotRegisters)
619 return Unknown;
620 std::vector<unsigned char>
621 ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType());
622 return ComplexPat;
623 } else if (R->getName() == "ptr_rc") {
624 Other[0] = MVT::iPTR;
625 return Other;
626 } else if (R->getName() == "node" || R->getName() == "srcvalue" ||
627 R->getName() == "zero_reg") {
628 // Placeholder.
629 return Unknown;
630 }
631
632 TP.error("Unknown node flavor used in pattern: " + R->getName());
633 return Other;
634}
635
Chris Lattnere67bde52008-01-06 05:36:50 +0000636
637/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
638/// CodeGenIntrinsic information for it, otherwise return a null pointer.
639const CodeGenIntrinsic *TreePatternNode::
640getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
641 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
642 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
643 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
644 return 0;
645
646 unsigned IID =
647 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
648 return &CDP.getIntrinsicInfo(IID);
649}
650
651
Chris Lattner6cefb772008-01-05 22:25:12 +0000652/// ApplyTypeConstraints - Apply all of the type constraints relevent to
653/// this node and its children in the tree. This returns true if it makes a
654/// change, false otherwise. If a type contradiction is found, throw an
655/// exception.
656bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
Chris Lattnerfe718932008-01-06 01:10:31 +0000657 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
Chris Lattner6cefb772008-01-05 22:25:12 +0000658 if (isLeaf()) {
659 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
660 // If it's a regclass or something else known, include the type.
661 return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
662 } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
663 // Int inits are always integers. :)
664 bool MadeChange = UpdateNodeType(MVT::isInt, TP);
665
666 if (hasTypeSet()) {
667 // At some point, it may make sense for this tree pattern to have
668 // multiple types. Assert here that it does not, so we revisit this
669 // code when appropriate.
670 assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
671 MVT::ValueType VT = getTypeNum(0);
672 for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
673 assert(getTypeNum(i) == VT && "TreePattern has too many types!");
674
675 VT = getTypeNum(0);
676 if (VT != MVT::iPTR) {
677 unsigned Size = MVT::getSizeInBits(VT);
678 // Make sure that the value is representable for this type.
679 if (Size < 32) {
680 int Val = (II->getValue() << (32-Size)) >> (32-Size);
681 if (Val != II->getValue())
682 TP.error("Sign-extended integer value '" + itostr(II->getValue())+
683 "' is out of range for type '" +
684 getEnumName(getTypeNum(0)) + "'!");
685 }
686 }
687 }
688
689 return MadeChange;
690 }
691 return false;
692 }
693
694 // special handling for set, which isn't really an SDNode.
695 if (getOperator()->getName() == "set") {
696 assert (getNumChildren() >= 2 && "Missing RHS of a set?");
697 unsigned NC = getNumChildren();
698 bool MadeChange = false;
699 for (unsigned i = 0; i < NC-1; ++i) {
700 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
701 MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters);
702
703 // Types of operands must match.
704 MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(),
705 TP);
706 MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(),
707 TP);
708 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
709 }
710 return MadeChange;
711 } else if (getOperator()->getName() == "implicit" ||
712 getOperator()->getName() == "parallel") {
713 bool MadeChange = false;
714 for (unsigned i = 0; i < getNumChildren(); ++i)
715 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
716 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
717 return MadeChange;
Chris Lattnere67bde52008-01-06 05:36:50 +0000718 } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
Chris Lattner6cefb772008-01-05 22:25:12 +0000719 bool MadeChange = false;
720
721 // Apply the result type to the node.
Chris Lattnere67bde52008-01-06 05:36:50 +0000722 MadeChange = UpdateNodeType(Int->ArgVTs[0], TP);
Chris Lattner6cefb772008-01-05 22:25:12 +0000723
Chris Lattnere67bde52008-01-06 05:36:50 +0000724 if (getNumChildren() != Int->ArgVTs.size())
725 TP.error("Intrinsic '" + Int->Name + "' expects " +
726 utostr(Int->ArgVTs.size()-1) + " operands, not " +
Chris Lattner6cefb772008-01-05 22:25:12 +0000727 utostr(getNumChildren()-1) + " operands!");
728
729 // Apply type info to the intrinsic ID.
730 MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
731
732 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
Chris Lattnere67bde52008-01-06 05:36:50 +0000733 MVT::ValueType OpVT = Int->ArgVTs[i];
Chris Lattner6cefb772008-01-05 22:25:12 +0000734 MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
735 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
736 }
737 return MadeChange;
738 } else if (getOperator()->isSubClassOf("SDNode")) {
739 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
740
741 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
742 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
743 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
744 // Branch, etc. do not produce results and top-level forms in instr pattern
745 // must have void types.
746 if (NI.getNumResults() == 0)
747 MadeChange |= UpdateNodeType(MVT::isVoid, TP);
748
749 // If this is a vector_shuffle operation, apply types to the build_vector
750 // operation. The types of the integers don't matter, but this ensures they
751 // won't get checked.
752 if (getOperator()->getName() == "vector_shuffle" &&
753 getChild(2)->getOperator()->getName() == "build_vector") {
754 TreePatternNode *BV = getChild(2);
755 const std::vector<MVT::ValueType> &LegalVTs
756 = CDP.getTargetInfo().getLegalValueTypes();
757 MVT::ValueType LegalIntVT = MVT::Other;
758 for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
759 if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
760 LegalIntVT = LegalVTs[i];
761 break;
762 }
763 assert(LegalIntVT != MVT::Other && "No legal integer VT?");
764
765 for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
766 MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
767 }
768 return MadeChange;
769 } else if (getOperator()->isSubClassOf("Instruction")) {
770 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
771 bool MadeChange = false;
772 unsigned NumResults = Inst.getNumResults();
773
774 assert(NumResults <= 1 &&
775 "Only supports zero or one result instrs!");
776
777 CodeGenInstruction &InstInfo =
778 CDP.getTargetInfo().getInstruction(getOperator()->getName());
779 // Apply the result type to the node
780 if (NumResults == 0 || InstInfo.NumDefs == 0) {
781 MadeChange = UpdateNodeType(MVT::isVoid, TP);
782 } else {
783 Record *ResultNode = Inst.getResult(0);
784
785 if (ResultNode->getName() == "ptr_rc") {
786 std::vector<unsigned char> VT;
787 VT.push_back(MVT::iPTR);
788 MadeChange = UpdateNodeType(VT, TP);
789 } else {
790 assert(ResultNode->isSubClassOf("RegisterClass") &&
791 "Operands should be register classes!");
792
793 const CodeGenRegisterClass &RC =
794 CDP.getTargetInfo().getRegisterClass(ResultNode);
795 MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
796 }
797 }
798
799 unsigned ChildNo = 0;
800 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
801 Record *OperandNode = Inst.getOperand(i);
802
803 // If the instruction expects a predicate or optional def operand, we
804 // codegen this by setting the operand to it's default value if it has a
805 // non-empty DefaultOps field.
806 if ((OperandNode->isSubClassOf("PredicateOperand") ||
807 OperandNode->isSubClassOf("OptionalDefOperand")) &&
808 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
809 continue;
810
811 // Verify that we didn't run out of provided operands.
812 if (ChildNo >= getNumChildren())
813 TP.error("Instruction '" + getOperator()->getName() +
814 "' expects more operands than were provided.");
815
816 MVT::ValueType VT;
817 TreePatternNode *Child = getChild(ChildNo++);
818 if (OperandNode->isSubClassOf("RegisterClass")) {
819 const CodeGenRegisterClass &RC =
820 CDP.getTargetInfo().getRegisterClass(OperandNode);
821 MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
822 } else if (OperandNode->isSubClassOf("Operand")) {
823 VT = getValueType(OperandNode->getValueAsDef("Type"));
824 MadeChange |= Child->UpdateNodeType(VT, TP);
825 } else if (OperandNode->getName() == "ptr_rc") {
826 MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
827 } else {
828 assert(0 && "Unknown operand type!");
829 abort();
830 }
831 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
832 }
833
834 if (ChildNo != getNumChildren())
835 TP.error("Instruction '" + getOperator()->getName() +
836 "' was provided too many operands!");
837
838 return MadeChange;
839 } else {
840 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
841
842 // Node transforms always take one operand.
843 if (getNumChildren() != 1)
844 TP.error("Node transform '" + getOperator()->getName() +
845 "' requires one operand!");
846
847 // If either the output or input of the xform does not have exact
848 // type info. We assume they must be the same. Otherwise, it is perfectly
849 // legal to transform from one type to a completely different type.
850 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
851 bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
852 MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
853 return MadeChange;
854 }
855 return false;
856 }
857}
858
859/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
860/// RHS of a commutative operation, not the on LHS.
861static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
862 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
863 return true;
864 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
865 return true;
866 return false;
867}
868
869
870/// canPatternMatch - If it is impossible for this pattern to match on this
871/// target, fill in Reason and return false. Otherwise, return true. This is
872/// used as a santity check for .td files (to prevent people from writing stuff
873/// that can never possibly work), and to prevent the pattern permuter from
874/// generating stuff that is useless.
875bool TreePatternNode::canPatternMatch(std::string &Reason,
Chris Lattnerfe718932008-01-06 01:10:31 +0000876 CodeGenDAGPatterns &CDP){
Chris Lattner6cefb772008-01-05 22:25:12 +0000877 if (isLeaf()) return true;
878
879 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
880 if (!getChild(i)->canPatternMatch(Reason, CDP))
881 return false;
882
883 // If this is an intrinsic, handle cases that would make it not match. For
884 // example, if an operand is required to be an immediate.
885 if (getOperator()->isSubClassOf("Intrinsic")) {
886 // TODO:
887 return true;
888 }
889
890 // If this node is a commutative operator, check that the LHS isn't an
891 // immediate.
892 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
893 if (NodeInfo.hasProperty(SDNPCommutative)) {
894 // Scan all of the operands of the node and make sure that only the last one
895 // is a constant node, unless the RHS also is.
896 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
897 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
898 if (OnlyOnRHSOfCommutative(getChild(i))) {
899 Reason="Immediate value must be on the RHS of commutative operators!";
900 return false;
901 }
902 }
903 }
904
905 return true;
906}
907
908//===----------------------------------------------------------------------===//
909// TreePattern implementation
910//
911
912TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
Chris Lattnerfe718932008-01-06 01:10:31 +0000913 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
Chris Lattner6cefb772008-01-05 22:25:12 +0000914 isInputPattern = isInput;
915 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
916 Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
917}
918
919TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
Chris Lattnerfe718932008-01-06 01:10:31 +0000920 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
Chris Lattner6cefb772008-01-05 22:25:12 +0000921 isInputPattern = isInput;
922 Trees.push_back(ParseTreePattern(Pat));
923}
924
925TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
Chris Lattnerfe718932008-01-06 01:10:31 +0000926 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
Chris Lattner6cefb772008-01-05 22:25:12 +0000927 isInputPattern = isInput;
928 Trees.push_back(Pat);
929}
930
931
932
933void TreePattern::error(const std::string &Msg) const {
934 dump();
935 throw "In " + TheRecord->getName() + ": " + Msg;
936}
937
938TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
939 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
940 if (!OpDef) error("Pattern has unexpected operator type!");
941 Record *Operator = OpDef->getDef();
942
943 if (Operator->isSubClassOf("ValueType")) {
944 // If the operator is a ValueType, then this must be "type cast" of a leaf
945 // node.
946 if (Dag->getNumArgs() != 1)
947 error("Type cast only takes one operand!");
948
949 Init *Arg = Dag->getArg(0);
950 TreePatternNode *New;
951 if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
952 Record *R = DI->getDef();
953 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
954 Dag->setArg(0, new DagInit(DI,
955 std::vector<std::pair<Init*, std::string> >()));
956 return ParseTreePattern(Dag);
957 }
958 New = new TreePatternNode(DI);
959 } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
960 New = ParseTreePattern(DI);
961 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
962 New = new TreePatternNode(II);
963 if (!Dag->getArgName(0).empty())
964 error("Constant int argument should not have a name!");
965 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
966 // Turn this into an IntInit.
967 Init *II = BI->convertInitializerTo(new IntRecTy());
968 if (II == 0 || !dynamic_cast<IntInit*>(II))
969 error("Bits value must be constants!");
970
971 New = new TreePatternNode(dynamic_cast<IntInit*>(II));
972 if (!Dag->getArgName(0).empty())
973 error("Constant int argument should not have a name!");
974 } else {
975 Arg->dump();
976 error("Unknown leaf value for tree pattern!");
977 return 0;
978 }
979
980 // Apply the type cast.
981 New->UpdateNodeType(getValueType(Operator), *this);
982 New->setName(Dag->getArgName(0));
983 return New;
984 }
985
986 // Verify that this is something that makes sense for an operator.
987 if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
988 !Operator->isSubClassOf("Instruction") &&
989 !Operator->isSubClassOf("SDNodeXForm") &&
990 !Operator->isSubClassOf("Intrinsic") &&
991 Operator->getName() != "set" &&
992 Operator->getName() != "implicit" &&
993 Operator->getName() != "parallel")
994 error("Unrecognized node '" + Operator->getName() + "'!");
995
996 // Check to see if this is something that is illegal in an input pattern.
997 if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
998 Operator->isSubClassOf("SDNodeXForm")))
999 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1000
1001 std::vector<TreePatternNode*> Children;
1002
1003 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
1004 Init *Arg = Dag->getArg(i);
1005 if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
1006 Children.push_back(ParseTreePattern(DI));
1007 if (Children.back()->getName().empty())
1008 Children.back()->setName(Dag->getArgName(i));
1009 } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
1010 Record *R = DefI->getDef();
1011 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1012 // TreePatternNode if its own.
1013 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
1014 Dag->setArg(i, new DagInit(DefI,
1015 std::vector<std::pair<Init*, std::string> >()));
1016 --i; // Revisit this node...
1017 } else {
1018 TreePatternNode *Node = new TreePatternNode(DefI);
1019 Node->setName(Dag->getArgName(i));
1020 Children.push_back(Node);
1021
1022 // Input argument?
1023 if (R->getName() == "node") {
1024 if (Dag->getArgName(i).empty())
1025 error("'node' argument requires a name to match with operand list");
1026 Args.push_back(Dag->getArgName(i));
1027 }
1028 }
1029 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
1030 TreePatternNode *Node = new TreePatternNode(II);
1031 if (!Dag->getArgName(i).empty())
1032 error("Constant int argument should not have a name!");
1033 Children.push_back(Node);
1034 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
1035 // Turn this into an IntInit.
1036 Init *II = BI->convertInitializerTo(new IntRecTy());
1037 if (II == 0 || !dynamic_cast<IntInit*>(II))
1038 error("Bits value must be constants!");
1039
1040 TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
1041 if (!Dag->getArgName(i).empty())
1042 error("Constant int argument should not have a name!");
1043 Children.push_back(Node);
1044 } else {
1045 cerr << '"';
1046 Arg->dump();
1047 cerr << "\": ";
1048 error("Unknown leaf value for tree pattern!");
1049 }
1050 }
1051
1052 // If the operator is an intrinsic, then this is just syntactic sugar for for
1053 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1054 // convert the intrinsic name to a number.
1055 if (Operator->isSubClassOf("Intrinsic")) {
1056 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1057 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1058
1059 // If this intrinsic returns void, it must have side-effects and thus a
1060 // chain.
1061 if (Int.ArgVTs[0] == MVT::isVoid) {
1062 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1063 } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
1064 // Has side-effects, requires chain.
1065 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1066 } else {
1067 // Otherwise, no chain.
1068 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1069 }
1070
1071 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
1072 Children.insert(Children.begin(), IIDNode);
1073 }
1074
1075 return new TreePatternNode(Operator, Children);
1076}
1077
1078/// InferAllTypes - Infer/propagate as many types throughout the expression
1079/// patterns as possible. Return true if all types are infered, false
1080/// otherwise. Throw an exception if a type contradiction is found.
1081bool TreePattern::InferAllTypes() {
1082 bool MadeChange = true;
1083 while (MadeChange) {
1084 MadeChange = false;
1085 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1086 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1087 }
1088
1089 bool HasUnresolvedTypes = false;
1090 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1091 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1092 return !HasUnresolvedTypes;
1093}
1094
1095void TreePattern::print(std::ostream &OS) const {
1096 OS << getRecord()->getName();
1097 if (!Args.empty()) {
1098 OS << "(" << Args[0];
1099 for (unsigned i = 1, e = Args.size(); i != e; ++i)
1100 OS << ", " << Args[i];
1101 OS << ")";
1102 }
1103 OS << ": ";
1104
1105 if (Trees.size() > 1)
1106 OS << "[\n";
1107 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1108 OS << "\t";
1109 Trees[i]->print(OS);
1110 OS << "\n";
1111 }
1112
1113 if (Trees.size() > 1)
1114 OS << "]\n";
1115}
1116
1117void TreePattern::dump() const { print(*cerr.stream()); }
1118
1119//===----------------------------------------------------------------------===//
Chris Lattnerfe718932008-01-06 01:10:31 +00001120// CodeGenDAGPatterns implementation
Chris Lattner6cefb772008-01-05 22:25:12 +00001121//
1122
1123// FIXME: REMOVE OSTREAM ARGUMENT
Chris Lattnerfe718932008-01-06 01:10:31 +00001124CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001125 Intrinsics = LoadIntrinsics(Records);
1126 ParseNodeInfo();
Chris Lattner443e3f92008-01-05 22:54:53 +00001127 ParseNodeTransforms();
Chris Lattner6cefb772008-01-05 22:25:12 +00001128 ParseComplexPatterns();
Chris Lattnerdc32f982008-01-05 22:43:57 +00001129 ParsePatternFragments();
Chris Lattner6cefb772008-01-05 22:25:12 +00001130 ParseDefaultOperands();
1131 ParseInstructions();
1132 ParsePatterns();
1133
1134 // Generate variants. For example, commutative patterns can match
1135 // multiple ways. Add them to PatternsToMatch as well.
1136 GenerateVariants();
1137}
1138
Chris Lattnerfe718932008-01-06 01:10:31 +00001139CodeGenDAGPatterns::~CodeGenDAGPatterns() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001140 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1141 E = PatternFragments.end(); I != E; ++I)
1142 delete I->second;
1143}
1144
1145
Chris Lattnerfe718932008-01-06 01:10:31 +00001146Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
Chris Lattner6cefb772008-01-05 22:25:12 +00001147 Record *N = Records.getDef(Name);
1148 if (!N || !N->isSubClassOf("SDNode")) {
1149 cerr << "Error getting SDNode '" << Name << "'!\n";
1150 exit(1);
1151 }
1152 return N;
1153}
1154
1155// Parse all of the SDNode definitions for the target, populating SDNodes.
Chris Lattnerfe718932008-01-06 01:10:31 +00001156void CodeGenDAGPatterns::ParseNodeInfo() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001157 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
1158 while (!Nodes.empty()) {
1159 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
1160 Nodes.pop_back();
1161 }
1162
1163 // Get the buildin intrinsic nodes.
1164 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
1165 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
1166 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
1167}
1168
1169/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1170/// map, and emit them to the file as functions.
Chris Lattnerfe718932008-01-06 01:10:31 +00001171void CodeGenDAGPatterns::ParseNodeTransforms() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001172 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
1173 while (!Xforms.empty()) {
1174 Record *XFormNode = Xforms.back();
1175 Record *SDNode = XFormNode->getValueAsDef("Opcode");
1176 std::string Code = XFormNode->getValueAsCode("XFormFunction");
Chris Lattner443e3f92008-01-05 22:54:53 +00001177 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
Chris Lattner6cefb772008-01-05 22:25:12 +00001178
1179 Xforms.pop_back();
1180 }
1181}
1182
Chris Lattnerfe718932008-01-06 01:10:31 +00001183void CodeGenDAGPatterns::ParseComplexPatterns() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001184 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
1185 while (!AMs.empty()) {
1186 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
1187 AMs.pop_back();
1188 }
1189}
1190
1191
1192/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
1193/// file, building up the PatternFragments map. After we've collected them all,
1194/// inline fragments together as necessary, so that there are no references left
1195/// inside a pattern fragment to a pattern fragment.
1196///
Chris Lattnerfe718932008-01-06 01:10:31 +00001197void CodeGenDAGPatterns::ParsePatternFragments() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001198 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
1199
Chris Lattnerdc32f982008-01-05 22:43:57 +00001200 // First step, parse all of the fragments.
Chris Lattner6cefb772008-01-05 22:25:12 +00001201 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
1202 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
1203 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
1204 PatternFragments[Fragments[i]] = P;
1205
Chris Lattnerdc32f982008-01-05 22:43:57 +00001206 // Validate the argument list, converting it to set, to discard duplicates.
Chris Lattner6cefb772008-01-05 22:25:12 +00001207 std::vector<std::string> &Args = P->getArgList();
Chris Lattnerdc32f982008-01-05 22:43:57 +00001208 std::set<std::string> OperandsSet(Args.begin(), Args.end());
Chris Lattner6cefb772008-01-05 22:25:12 +00001209
Chris Lattnerdc32f982008-01-05 22:43:57 +00001210 if (OperandsSet.count(""))
Chris Lattner6cefb772008-01-05 22:25:12 +00001211 P->error("Cannot have unnamed 'node' values in pattern fragment!");
1212
1213 // Parse the operands list.
1214 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
1215 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
1216 // Special cases: ops == outs == ins. Different names are used to
1217 // improve readibility.
1218 if (!OpsOp ||
1219 (OpsOp->getDef()->getName() != "ops" &&
1220 OpsOp->getDef()->getName() != "outs" &&
1221 OpsOp->getDef()->getName() != "ins"))
1222 P->error("Operands list should start with '(ops ... '!");
1223
1224 // Copy over the arguments.
1225 Args.clear();
1226 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
1227 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
1228 static_cast<DefInit*>(OpsList->getArg(j))->
1229 getDef()->getName() != "node")
1230 P->error("Operands list should all be 'node' values.");
1231 if (OpsList->getArgName(j).empty())
1232 P->error("Operands list should have names for each operand!");
Chris Lattnerdc32f982008-01-05 22:43:57 +00001233 if (!OperandsSet.count(OpsList->getArgName(j)))
Chris Lattner6cefb772008-01-05 22:25:12 +00001234 P->error("'" + OpsList->getArgName(j) +
1235 "' does not occur in pattern or was multiply specified!");
Chris Lattnerdc32f982008-01-05 22:43:57 +00001236 OperandsSet.erase(OpsList->getArgName(j));
Chris Lattner6cefb772008-01-05 22:25:12 +00001237 Args.push_back(OpsList->getArgName(j));
1238 }
1239
Chris Lattnerdc32f982008-01-05 22:43:57 +00001240 if (!OperandsSet.empty())
Chris Lattner6cefb772008-01-05 22:25:12 +00001241 P->error("Operands list does not contain an entry for operand '" +
Chris Lattnerdc32f982008-01-05 22:43:57 +00001242 *OperandsSet.begin() + "'!");
Chris Lattner6cefb772008-01-05 22:25:12 +00001243
Chris Lattnerdc32f982008-01-05 22:43:57 +00001244 // If there is a code init for this fragment, keep track of the fact that
1245 // this fragment uses it.
Chris Lattner6cefb772008-01-05 22:25:12 +00001246 std::string Code = Fragments[i]->getValueAsCode("Predicate");
Chris Lattnerdc32f982008-01-05 22:43:57 +00001247 if (!Code.empty())
Chris Lattner6cefb772008-01-05 22:25:12 +00001248 P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
Chris Lattner6cefb772008-01-05 22:25:12 +00001249
1250 // If there is a node transformation corresponding to this, keep track of
1251 // it.
1252 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
1253 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
1254 P->getOnlyTree()->setTransformFn(Transform);
1255 }
1256
Chris Lattner6cefb772008-01-05 22:25:12 +00001257 // Now that we've parsed all of the tree fragments, do a closure on them so
1258 // that there are not references to PatFrags left inside of them.
1259 for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
1260 E = PatternFragments.end(); I != E; ++I) {
1261 TreePattern *ThePat = I->second;
1262 ThePat->InlinePatternFragments();
1263
1264 // Infer as many types as possible. Don't worry about it if we don't infer
1265 // all of them, some may depend on the inputs of the pattern.
1266 try {
1267 ThePat->InferAllTypes();
1268 } catch (...) {
1269 // If this pattern fragment is not supported by this target (no types can
1270 // satisfy its constraints), just ignore it. If the bogus pattern is
1271 // actually used by instructions, the type consistency error will be
1272 // reported there.
1273 }
1274
1275 // If debugging, print out the pattern fragment result.
1276 DEBUG(ThePat->dump());
1277 }
1278}
1279
Chris Lattnerfe718932008-01-06 01:10:31 +00001280void CodeGenDAGPatterns::ParseDefaultOperands() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001281 std::vector<Record*> DefaultOps[2];
1282 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand");
1283 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand");
1284
1285 // Find some SDNode.
1286 assert(!SDNodes.empty() && "No SDNodes parsed?");
1287 Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
1288
1289 for (unsigned iter = 0; iter != 2; ++iter) {
1290 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) {
1291 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps");
1292
1293 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
1294 // SomeSDnode so that we can parse this.
1295 std::vector<std::pair<Init*, std::string> > Ops;
1296 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
1297 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
1298 DefaultInfo->getArgName(op)));
1299 DagInit *DI = new DagInit(SomeSDNode, Ops);
1300
1301 // Create a TreePattern to parse this.
1302 TreePattern P(DefaultOps[iter][i], DI, false, *this);
1303 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
1304
1305 // Copy the operands over into a DAGDefaultOperand.
1306 DAGDefaultOperand DefaultOpInfo;
1307
1308 TreePatternNode *T = P.getTree(0);
1309 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
1310 TreePatternNode *TPN = T->getChild(op);
1311 while (TPN->ApplyTypeConstraints(P, false))
1312 /* Resolve all types */;
1313
1314 if (TPN->ContainsUnresolvedType())
1315 if (iter == 0)
1316 throw "Value #" + utostr(i) + " of PredicateOperand '" +
1317 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1318 else
1319 throw "Value #" + utostr(i) + " of OptionalDefOperand '" +
1320 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!";
1321
1322 DefaultOpInfo.DefaultOps.push_back(TPN);
1323 }
1324
1325 // Insert it into the DefaultOperands map so we can find it later.
1326 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo;
1327 }
1328 }
1329}
1330
1331/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
1332/// instruction input. Return true if this is a real use.
1333static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
1334 std::map<std::string, TreePatternNode*> &InstInputs,
1335 std::vector<Record*> &InstImpInputs) {
1336 // No name -> not interesting.
1337 if (Pat->getName().empty()) {
1338 if (Pat->isLeaf()) {
1339 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1340 if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
1341 I->error("Input " + DI->getDef()->getName() + " must be named!");
1342 else if (DI && DI->getDef()->isSubClassOf("Register"))
1343 InstImpInputs.push_back(DI->getDef());
1344 ;
1345 }
1346 return false;
1347 }
1348
1349 Record *Rec;
1350 if (Pat->isLeaf()) {
1351 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
1352 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
1353 Rec = DI->getDef();
1354 } else {
1355 assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
1356 Rec = Pat->getOperator();
1357 }
1358
1359 // SRCVALUE nodes are ignored.
1360 if (Rec->getName() == "srcvalue")
1361 return false;
1362
1363 TreePatternNode *&Slot = InstInputs[Pat->getName()];
1364 if (!Slot) {
1365 Slot = Pat;
1366 } else {
1367 Record *SlotRec;
1368 if (Slot->isLeaf()) {
1369 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
1370 } else {
1371 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
1372 SlotRec = Slot->getOperator();
1373 }
1374
1375 // Ensure that the inputs agree if we've already seen this input.
1376 if (Rec != SlotRec)
1377 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1378 if (Slot->getExtTypes() != Pat->getExtTypes())
1379 I->error("All $" + Pat->getName() + " inputs must agree with each other");
1380 }
1381 return true;
1382}
1383
1384/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
1385/// part of "I", the instruction), computing the set of inputs and outputs of
1386/// the pattern. Report errors if we see anything naughty.
Chris Lattnerfe718932008-01-06 01:10:31 +00001387void CodeGenDAGPatterns::
Chris Lattner6cefb772008-01-05 22:25:12 +00001388FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
1389 std::map<std::string, TreePatternNode*> &InstInputs,
1390 std::map<std::string, TreePatternNode*>&InstResults,
1391 std::vector<Record*> &InstImpInputs,
1392 std::vector<Record*> &InstImpResults) {
1393 if (Pat->isLeaf()) {
1394 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1395 if (!isUse && Pat->getTransformFn())
1396 I->error("Cannot specify a transform function for a non-input value!");
1397 return;
1398 } else if (Pat->getOperator()->getName() == "implicit") {
1399 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1400 TreePatternNode *Dest = Pat->getChild(i);
1401 if (!Dest->isLeaf())
1402 I->error("implicitly defined value should be a register!");
1403
1404 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1405 if (!Val || !Val->getDef()->isSubClassOf("Register"))
1406 I->error("implicitly defined value should be a register!");
1407 InstImpResults.push_back(Val->getDef());
1408 }
1409 return;
1410 } else if (Pat->getOperator()->getName() != "set") {
1411 // If this is not a set, verify that the children nodes are not void typed,
1412 // and recurse.
1413 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
1414 if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
1415 I->error("Cannot have void nodes inside of patterns!");
1416 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
1417 InstImpInputs, InstImpResults);
1418 }
1419
1420 // If this is a non-leaf node with no children, treat it basically as if
1421 // it were a leaf. This handles nodes like (imm).
1422 bool isUse = false;
1423 if (Pat->getNumChildren() == 0)
1424 isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
1425
1426 if (!isUse && Pat->getTransformFn())
1427 I->error("Cannot specify a transform function for a non-input value!");
1428 return;
1429 }
1430
1431 // Otherwise, this is a set, validate and collect instruction results.
1432 if (Pat->getNumChildren() == 0)
1433 I->error("set requires operands!");
1434
1435 if (Pat->getTransformFn())
1436 I->error("Cannot specify a transform function on a set node!");
1437
1438 // Check the set destinations.
1439 unsigned NumDests = Pat->getNumChildren()-1;
1440 for (unsigned i = 0; i != NumDests; ++i) {
1441 TreePatternNode *Dest = Pat->getChild(i);
1442 if (!Dest->isLeaf())
1443 I->error("set destination should be a register!");
1444
1445 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
1446 if (!Val)
1447 I->error("set destination should be a register!");
1448
1449 if (Val->getDef()->isSubClassOf("RegisterClass") ||
1450 Val->getDef()->getName() == "ptr_rc") {
1451 if (Dest->getName().empty())
1452 I->error("set destination must have a name!");
1453 if (InstResults.count(Dest->getName()))
1454 I->error("cannot set '" + Dest->getName() +"' multiple times");
1455 InstResults[Dest->getName()] = Dest;
1456 } else if (Val->getDef()->isSubClassOf("Register")) {
1457 InstImpResults.push_back(Val->getDef());
1458 } else {
1459 I->error("set destination should be a register!");
1460 }
1461 }
1462
1463 // Verify and collect info from the computation.
1464 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
1465 InstInputs, InstResults,
1466 InstImpInputs, InstImpResults);
1467}
1468
1469/// ParseInstructions - Parse all of the instructions, inlining and resolving
1470/// any fragments involved. This populates the Instructions list with fully
1471/// resolved instructions.
Chris Lattnerfe718932008-01-06 01:10:31 +00001472void CodeGenDAGPatterns::ParseInstructions() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001473 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
1474
1475 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
1476 ListInit *LI = 0;
1477
1478 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
1479 LI = Instrs[i]->getValueAsListInit("Pattern");
1480
1481 // If there is no pattern, only collect minimal information about the
1482 // instruction for its operand list. We have to assume that there is one
1483 // result, as we have no detailed info.
1484 if (!LI || LI->getSize() == 0) {
1485 std::vector<Record*> Results;
1486 std::vector<Record*> Operands;
1487
1488 CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
1489
1490 if (InstInfo.OperandList.size() != 0) {
1491 if (InstInfo.NumDefs == 0) {
1492 // These produce no results
1493 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
1494 Operands.push_back(InstInfo.OperandList[j].Rec);
1495 } else {
1496 // Assume the first operand is the result.
1497 Results.push_back(InstInfo.OperandList[0].Rec);
1498
1499 // The rest are inputs.
1500 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
1501 Operands.push_back(InstInfo.OperandList[j].Rec);
1502 }
1503 }
1504
1505 // Create and insert the instruction.
1506 std::vector<Record*> ImpResults;
1507 std::vector<Record*> ImpOperands;
1508 Instructions.insert(std::make_pair(Instrs[i],
1509 DAGInstruction(0, Results, Operands, ImpResults,
1510 ImpOperands)));
1511 continue; // no pattern.
1512 }
1513
1514 // Parse the instruction.
1515 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
1516 // Inline pattern fragments into it.
1517 I->InlinePatternFragments();
1518
1519 // Infer as many types as possible. If we cannot infer all of them, we can
1520 // never do anything with this instruction pattern: report it to the user.
1521 if (!I->InferAllTypes())
1522 I->error("Could not infer all types in pattern!");
1523
1524 // InstInputs - Keep track of all of the inputs of the instruction, along
1525 // with the record they are declared as.
1526 std::map<std::string, TreePatternNode*> InstInputs;
1527
1528 // InstResults - Keep track of all the virtual registers that are 'set'
1529 // in the instruction, including what reg class they are.
1530 std::map<std::string, TreePatternNode*> InstResults;
1531
1532 std::vector<Record*> InstImpInputs;
1533 std::vector<Record*> InstImpResults;
1534
1535 // Verify that the top-level forms in the instruction are of void type, and
1536 // fill in the InstResults map.
1537 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
1538 TreePatternNode *Pat = I->getTree(j);
1539 if (Pat->getExtTypeNum(0) != MVT::isVoid)
1540 I->error("Top-level forms in instruction pattern should have"
1541 " void types");
1542
1543 // Find inputs and outputs, and verify the structure of the uses/defs.
1544 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
1545 InstImpInputs, InstImpResults);
1546 }
1547
1548 // Now that we have inputs and outputs of the pattern, inspect the operands
1549 // list for the instruction. This determines the order that operands are
1550 // added to the machine instruction the node corresponds to.
1551 unsigned NumResults = InstResults.size();
1552
1553 // Parse the operands list from the (ops) list, validating it.
1554 assert(I->getArgList().empty() && "Args list should still be empty here!");
1555 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
1556
1557 // Check that all of the results occur first in the list.
1558 std::vector<Record*> Results;
1559 TreePatternNode *Res0Node = NULL;
1560 for (unsigned i = 0; i != NumResults; ++i) {
1561 if (i == CGI.OperandList.size())
1562 I->error("'" + InstResults.begin()->first +
1563 "' set but does not appear in operand list!");
1564 const std::string &OpName = CGI.OperandList[i].Name;
1565
1566 // Check that it exists in InstResults.
1567 TreePatternNode *RNode = InstResults[OpName];
1568 if (RNode == 0)
1569 I->error("Operand $" + OpName + " does not exist in operand list!");
1570
1571 if (i == 0)
1572 Res0Node = RNode;
1573 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
1574 if (R == 0)
1575 I->error("Operand $" + OpName + " should be a set destination: all "
1576 "outputs must occur before inputs in operand list!");
1577
1578 if (CGI.OperandList[i].Rec != R)
1579 I->error("Operand $" + OpName + " class mismatch!");
1580
1581 // Remember the return type.
1582 Results.push_back(CGI.OperandList[i].Rec);
1583
1584 // Okay, this one checks out.
1585 InstResults.erase(OpName);
1586 }
1587
1588 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
1589 // the copy while we're checking the inputs.
1590 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
1591
1592 std::vector<TreePatternNode*> ResultNodeOperands;
1593 std::vector<Record*> Operands;
1594 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
1595 CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
1596 const std::string &OpName = Op.Name;
1597 if (OpName.empty())
1598 I->error("Operand #" + utostr(i) + " in operands list has no name!");
1599
1600 if (!InstInputsCheck.count(OpName)) {
1601 // If this is an predicate operand or optional def operand with an
1602 // DefaultOps set filled in, we can ignore this. When we codegen it,
1603 // we will do so as always executed.
1604 if (Op.Rec->isSubClassOf("PredicateOperand") ||
1605 Op.Rec->isSubClassOf("OptionalDefOperand")) {
1606 // Does it have a non-empty DefaultOps field? If so, ignore this
1607 // operand.
1608 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
1609 continue;
1610 }
1611 I->error("Operand $" + OpName +
1612 " does not appear in the instruction pattern");
1613 }
1614 TreePatternNode *InVal = InstInputsCheck[OpName];
1615 InstInputsCheck.erase(OpName); // It occurred, remove from map.
1616
1617 if (InVal->isLeaf() &&
1618 dynamic_cast<DefInit*>(InVal->getLeafValue())) {
1619 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
1620 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
1621 I->error("Operand $" + OpName + "'s register class disagrees"
1622 " between the operand and pattern");
1623 }
1624 Operands.push_back(Op.Rec);
1625
1626 // Construct the result for the dest-pattern operand list.
1627 TreePatternNode *OpNode = InVal->clone();
1628
1629 // No predicate is useful on the result.
1630 OpNode->setPredicateFn("");
1631
1632 // Promote the xform function to be an explicit node if set.
1633 if (Record *Xform = OpNode->getTransformFn()) {
1634 OpNode->setTransformFn(0);
1635 std::vector<TreePatternNode*> Children;
1636 Children.push_back(OpNode);
1637 OpNode = new TreePatternNode(Xform, Children);
1638 }
1639
1640 ResultNodeOperands.push_back(OpNode);
1641 }
1642
1643 if (!InstInputsCheck.empty())
1644 I->error("Input operand $" + InstInputsCheck.begin()->first +
1645 " occurs in pattern but not in operands list!");
1646
1647 TreePatternNode *ResultPattern =
1648 new TreePatternNode(I->getRecord(), ResultNodeOperands);
1649 // Copy fully inferred output node type to instruction result pattern.
1650 if (NumResults > 0)
1651 ResultPattern->setTypes(Res0Node->getExtTypes());
1652
1653 // Create and insert the instruction.
1654 // FIXME: InstImpResults and InstImpInputs should not be part of
1655 // DAGInstruction.
1656 DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
1657 Instructions.insert(std::make_pair(I->getRecord(), TheInst));
1658
1659 // Use a temporary tree pattern to infer all types and make sure that the
1660 // constructed result is correct. This depends on the instruction already
1661 // being inserted into the Instructions map.
1662 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
1663 Temp.InferAllTypes();
1664
1665 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
1666 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
1667
1668 DEBUG(I->dump());
1669 }
1670
1671 // If we can, convert the instructions to be patterns that are matched!
1672 for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
1673 E = Instructions.end(); II != E; ++II) {
1674 DAGInstruction &TheInst = II->second;
Chris Lattnerf1ab4f12008-01-06 01:52:22 +00001675 const TreePattern *I = TheInst.getPattern();
Chris Lattner6cefb772008-01-05 22:25:12 +00001676 if (I == 0) continue; // No pattern.
1677
1678 // FIXME: Assume only the first tree is the pattern. The others are clobber
1679 // nodes.
1680 TreePatternNode *Pattern = I->getTree(0);
1681 TreePatternNode *SrcPattern;
1682 if (Pattern->getOperator()->getName() == "set") {
1683 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
1684 } else{
1685 // Not a set (store or something?)
1686 SrcPattern = Pattern;
1687 }
1688
1689 std::string Reason;
1690 if (!SrcPattern->canPatternMatch(Reason, *this))
1691 I->error("Instruction can never match: " + Reason);
1692
1693 Record *Instr = II->first;
1694 TreePatternNode *DstPattern = TheInst.getResultPattern();
1695 PatternsToMatch.
1696 push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
1697 SrcPattern, DstPattern, TheInst.getImpResults(),
1698 Instr->getValueAsInt("AddedComplexity")));
1699 }
1700}
1701
Chris Lattnerfe718932008-01-06 01:10:31 +00001702void CodeGenDAGPatterns::ParsePatterns() {
Chris Lattner6cefb772008-01-05 22:25:12 +00001703 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
1704
1705 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
1706 DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
1707 DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator());
1708 Record *Operator = OpDef->getDef();
1709 TreePattern *Pattern;
1710 if (Operator->getName() != "parallel")
1711 Pattern = new TreePattern(Patterns[i], Tree, true, *this);
1712 else {
1713 std::vector<Init*> Values;
1714 for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j)
1715 Values.push_back(Tree->getArg(j));
1716 ListInit *LI = new ListInit(Values);
1717 Pattern = new TreePattern(Patterns[i], LI, true, *this);
1718 }
1719
1720 // Inline pattern fragments into it.
1721 Pattern->InlinePatternFragments();
1722
1723 ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
1724 if (LI->getSize() == 0) continue; // no pattern.
1725
1726 // Parse the instruction.
1727 TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
1728
1729 // Inline pattern fragments into it.
1730 Result->InlinePatternFragments();
1731
1732 if (Result->getNumTrees() != 1)
1733 Result->error("Cannot handle instructions producing instructions "
1734 "with temporaries yet!");
1735
1736 bool IterateInference;
1737 bool InferredAllPatternTypes, InferredAllResultTypes;
1738 do {
1739 // Infer as many types as possible. If we cannot infer all of them, we
1740 // can never do anything with this pattern: report it to the user.
1741 InferredAllPatternTypes = Pattern->InferAllTypes();
1742
1743 // Infer as many types as possible. If we cannot infer all of them, we
1744 // can never do anything with this pattern: report it to the user.
1745 InferredAllResultTypes = Result->InferAllTypes();
1746
1747 // Apply the type of the result to the source pattern. This helps us
1748 // resolve cases where the input type is known to be a pointer type (which
1749 // is considered resolved), but the result knows it needs to be 32- or
1750 // 64-bits. Infer the other way for good measure.
1751 IterateInference = Pattern->getTree(0)->
1752 UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result);
1753 IterateInference |= Result->getTree(0)->
1754 UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result);
1755 } while (IterateInference);
1756
1757 // Verify that we inferred enough types that we can do something with the
1758 // pattern and result. If these fire the user has to add type casts.
1759 if (!InferredAllPatternTypes)
1760 Pattern->error("Could not infer all types in pattern!");
1761 if (!InferredAllResultTypes)
1762 Result->error("Could not infer all types in pattern result!");
1763
1764 // Validate that the input pattern is correct.
1765 std::map<std::string, TreePatternNode*> InstInputs;
1766 std::map<std::string, TreePatternNode*> InstResults;
1767 std::vector<Record*> InstImpInputs;
1768 std::vector<Record*> InstImpResults;
1769 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
1770 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
1771 InstInputs, InstResults,
1772 InstImpInputs, InstImpResults);
1773
1774 // Promote the xform function to be an explicit node if set.
1775 TreePatternNode *DstPattern = Result->getOnlyTree();
1776 std::vector<TreePatternNode*> ResultNodeOperands;
1777 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
1778 TreePatternNode *OpNode = DstPattern->getChild(ii);
1779 if (Record *Xform = OpNode->getTransformFn()) {
1780 OpNode->setTransformFn(0);
1781 std::vector<TreePatternNode*> Children;
1782 Children.push_back(OpNode);
1783 OpNode = new TreePatternNode(Xform, Children);
1784 }
1785 ResultNodeOperands.push_back(OpNode);
1786 }
1787 DstPattern = Result->getOnlyTree();
1788 if (!DstPattern->isLeaf())
1789 DstPattern = new TreePatternNode(DstPattern->getOperator(),
1790 ResultNodeOperands);
1791 DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
1792 TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
1793 Temp.InferAllTypes();
1794
1795 std::string Reason;
1796 if (!Pattern->getTree(0)->canPatternMatch(Reason, *this))
1797 Pattern->error("Pattern can never match: " + Reason);
1798
1799 PatternsToMatch.
1800 push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
1801 Pattern->getTree(0),
1802 Temp.getOnlyTree(), InstImpResults,
1803 Patterns[i]->getValueAsInt("AddedComplexity")));
1804 }
1805}
1806
1807/// CombineChildVariants - Given a bunch of permutations of each child of the
1808/// 'operator' node, put them together in all possible ways.
1809static void CombineChildVariants(TreePatternNode *Orig,
1810 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
1811 std::vector<TreePatternNode*> &OutVariants,
Chris Lattnerfe718932008-01-06 01:10:31 +00001812 CodeGenDAGPatterns &CDP) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001813 // Make sure that each operand has at least one variant to choose from.
1814 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1815 if (ChildVariants[i].empty())
1816 return;
1817
1818 // The end result is an all-pairs construction of the resultant pattern.
1819 std::vector<unsigned> Idxs;
1820 Idxs.resize(ChildVariants.size());
1821 bool NotDone = true;
1822 while (NotDone) {
1823 // Create the variant and add it to the output list.
1824 std::vector<TreePatternNode*> NewChildren;
1825 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
1826 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
1827 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
1828
1829 // Copy over properties.
1830 R->setName(Orig->getName());
1831 R->setPredicateFn(Orig->getPredicateFn());
1832 R->setTransformFn(Orig->getTransformFn());
1833 R->setTypes(Orig->getExtTypes());
1834
1835 // If this pattern cannot every match, do not include it as a variant.
1836 std::string ErrString;
1837 if (!R->canPatternMatch(ErrString, CDP)) {
1838 delete R;
1839 } else {
1840 bool AlreadyExists = false;
1841
1842 // Scan to see if this pattern has already been emitted. We can get
1843 // duplication due to things like commuting:
1844 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
1845 // which are the same pattern. Ignore the dups.
1846 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
1847 if (R->isIsomorphicTo(OutVariants[i])) {
1848 AlreadyExists = true;
1849 break;
1850 }
1851
1852 if (AlreadyExists)
1853 delete R;
1854 else
1855 OutVariants.push_back(R);
1856 }
1857
1858 // Increment indices to the next permutation.
1859 NotDone = false;
1860 // Look for something we can increment without causing a wrap-around.
1861 for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
1862 if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
1863 NotDone = true; // Found something to increment.
1864 break;
1865 }
1866 Idxs[IdxsIdx] = 0;
1867 }
1868 }
1869}
1870
1871/// CombineChildVariants - A helper function for binary operators.
1872///
1873static void CombineChildVariants(TreePatternNode *Orig,
1874 const std::vector<TreePatternNode*> &LHS,
1875 const std::vector<TreePatternNode*> &RHS,
1876 std::vector<TreePatternNode*> &OutVariants,
Chris Lattnerfe718932008-01-06 01:10:31 +00001877 CodeGenDAGPatterns &CDP) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001878 std::vector<std::vector<TreePatternNode*> > ChildVariants;
1879 ChildVariants.push_back(LHS);
1880 ChildVariants.push_back(RHS);
1881 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP);
1882}
1883
1884
1885static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
1886 std::vector<TreePatternNode *> &Children) {
1887 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
1888 Record *Operator = N->getOperator();
1889
1890 // Only permit raw nodes.
1891 if (!N->getName().empty() || !N->getPredicateFn().empty() ||
1892 N->getTransformFn()) {
1893 Children.push_back(N);
1894 return;
1895 }
1896
1897 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
1898 Children.push_back(N->getChild(0));
1899 else
1900 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
1901
1902 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
1903 Children.push_back(N->getChild(1));
1904 else
1905 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
1906}
1907
1908/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
1909/// the (potentially recursive) pattern by using algebraic laws.
1910///
1911static void GenerateVariantsOf(TreePatternNode *N,
1912 std::vector<TreePatternNode*> &OutVariants,
Chris Lattnerfe718932008-01-06 01:10:31 +00001913 CodeGenDAGPatterns &CDP) {
Chris Lattner6cefb772008-01-05 22:25:12 +00001914 // We cannot permute leaves.
1915 if (N->isLeaf()) {
1916 OutVariants.push_back(N);
1917 return;
1918 }
1919
1920 // Look up interesting info about the node.
1921 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
1922
1923 // If this node is associative, reassociate.
1924 if (NodeInfo.hasProperty(SDNPAssociative)) {
1925 // Reassociate by pulling together all of the linked operators
1926 std::vector<TreePatternNode*> MaximalChildren;
1927 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
1928
1929 // Only handle child sizes of 3. Otherwise we'll end up trying too many
1930 // permutations.
1931 if (MaximalChildren.size() == 3) {
1932 // Find the variants of all of our maximal children.
1933 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
1934 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP);
1935 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP);
1936 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP);
1937
1938 // There are only two ways we can permute the tree:
1939 // (A op B) op C and A op (B op C)
1940 // Within these forms, we can also permute A/B/C.
1941
1942 // Generate legal pair permutations of A/B/C.
1943 std::vector<TreePatternNode*> ABVariants;
1944 std::vector<TreePatternNode*> BAVariants;
1945 std::vector<TreePatternNode*> ACVariants;
1946 std::vector<TreePatternNode*> CAVariants;
1947 std::vector<TreePatternNode*> BCVariants;
1948 std::vector<TreePatternNode*> CBVariants;
1949 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP);
1950 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP);
1951 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP);
1952 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP);
1953 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP);
1954 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP);
1955
1956 // Combine those into the result: (x op x) op x
1957 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP);
1958 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP);
1959 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP);
1960 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP);
1961 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP);
1962 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP);
1963
1964 // Combine those into the result: x op (x op x)
1965 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP);
1966 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP);
1967 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP);
1968 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP);
1969 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP);
1970 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP);
1971 return;
1972 }
1973 }
1974
1975 // Compute permutations of all children.
1976 std::vector<std::vector<TreePatternNode*> > ChildVariants;
1977 ChildVariants.resize(N->getNumChildren());
1978 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1979 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP);
1980
1981 // Build all permutations based on how the children were formed.
1982 CombineChildVariants(N, ChildVariants, OutVariants, CDP);
1983
1984 // If this node is commutative, consider the commuted order.
1985 if (NodeInfo.hasProperty(SDNPCommutative)) {
1986 assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
1987 // Don't count children which are actually register references.
1988 unsigned NC = 0;
1989 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1990 TreePatternNode *Child = N->getChild(i);
1991 if (Child->isLeaf())
1992 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
1993 Record *RR = DI->getDef();
1994 if (RR->isSubClassOf("Register"))
1995 continue;
1996 }
1997 NC++;
1998 }
1999 // Consider the commuted order.
2000 if (NC == 2)
2001 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
2002 OutVariants, CDP);
2003 }
2004}
2005
2006
2007// GenerateVariants - Generate variants. For example, commutative patterns can
2008// match multiple ways. Add them to PatternsToMatch as well.
Chris Lattnerfe718932008-01-06 01:10:31 +00002009void CodeGenDAGPatterns::GenerateVariants() {
Chris Lattner6cefb772008-01-05 22:25:12 +00002010 DOUT << "Generating instruction variants.\n";
2011
2012 // Loop over all of the patterns we've collected, checking to see if we can
2013 // generate variants of the instruction, through the exploitation of
2014 // identities. This permits the target to provide agressive matching without
2015 // the .td file having to contain tons of variants of instructions.
2016 //
2017 // Note that this loop adds new patterns to the PatternsToMatch list, but we
2018 // intentionally do not reconsider these. Any variants of added patterns have
2019 // already been added.
2020 //
2021 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
2022 std::vector<TreePatternNode*> Variants;
2023 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
2024
2025 assert(!Variants.empty() && "Must create at least original variant!");
2026 Variants.erase(Variants.begin()); // Remove the original pattern.
2027
2028 if (Variants.empty()) // No variants for this pattern.
2029 continue;
2030
2031 DOUT << "FOUND VARIANTS OF: ";
2032 DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
2033 DOUT << "\n";
2034
2035 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
2036 TreePatternNode *Variant = Variants[v];
2037
2038 DOUT << " VAR#" << v << ": ";
2039 DEBUG(Variant->dump());
2040 DOUT << "\n";
2041
2042 // Scan to see if an instruction or explicit pattern already matches this.
2043 bool AlreadyExists = false;
2044 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
2045 // Check to see if this variant already exists.
2046 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
2047 DOUT << " *** ALREADY EXISTS, ignoring variant.\n";
2048 AlreadyExists = true;
2049 break;
2050 }
2051 }
2052 // If we already have it, ignore the variant.
2053 if (AlreadyExists) continue;
2054
2055 // Otherwise, add it to the list of patterns we have.
2056 PatternsToMatch.
2057 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
2058 Variant, PatternsToMatch[i].getDstPattern(),
2059 PatternsToMatch[i].getDstRegs(),
2060 PatternsToMatch[i].getAddedComplexity()));
2061 }
2062
2063 DOUT << "\n";
2064 }
2065}
2066