blob: ccd25d8fb50170d6d89f1c83edd1be9e48ea25ef [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation makes the following changes to each loop with an
15// identifiable induction variable:
16// 1. All loops are transformed to have a SINGLE canonical induction variable
17// which starts at zero and steps by one.
18// 2. The canonical induction variable is guaranteed to be the first PHI node
19// in the loop header block.
20// 3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24// 1. The exit condition for the loop is canonicalized to compare the
25// induction value against the exit value. This turns loops like:
26// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27// 2. Any use outside of the loop of an expression derived from the indvar
28// is changed to compute the derived value outside of the loop, eliminating
29// the dependence on the exit value of the induction variable. If the only
30// purpose of the loop is to compute the exit value of some derived
31// expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed. Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "indvars"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/BasicBlock.h"
43#include "llvm/Constants.h"
44#include "llvm/Instructions.h"
45#include "llvm/Type.h"
46#include "llvm/Analysis/ScalarEvolutionExpander.h"
47#include "llvm/Analysis/LoopInfo.h"
48#include "llvm/Analysis/LoopPass.h"
49#include "llvm/Support/CFG.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/GetElementPtrTypeIterator.h"
53#include "llvm/Transforms/Utils/Local.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/ADT/SmallVector.h"
Dan Gohmancacd2012009-02-12 22:19:27 +000056#include "llvm/ADT/SetVector.h"
Chris Lattnerb25465e2008-11-16 07:17:51 +000057#include "llvm/ADT/SmallPtrSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058#include "llvm/ADT/Statistic.h"
59using namespace llvm;
60
61STATISTIC(NumRemoved , "Number of aux indvars removed");
62STATISTIC(NumPointer , "Number of pointer indvars promoted");
63STATISTIC(NumInserted, "Number of canonical indvars added");
64STATISTIC(NumReplaced, "Number of exit values replaced");
65STATISTIC(NumLFTR , "Number of loop exit tests replaced");
66
67namespace {
68 class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
69 LoopInfo *LI;
70 ScalarEvolution *SE;
71 bool Changed;
72 public:
73
74 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000075 IndVarSimplify() : LoopPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076
77 bool runOnLoop(Loop *L, LPPassManager &LPM);
78 bool doInitialization(Loop *L, LPPassManager &LPM);
79 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Devang Patele6a8d482007-09-10 18:08:23 +000080 AU.addRequired<ScalarEvolution>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081 AU.addRequiredID(LCSSAID);
82 AU.addRequiredID(LoopSimplifyID);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083 AU.addRequired<LoopInfo>();
84 AU.addPreservedID(LoopSimplifyID);
85 AU.addPreservedID(LCSSAID);
86 AU.setPreservesCFG();
87 }
88
89 private:
90
91 void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
Chris Lattnerb25465e2008-11-16 07:17:51 +000092 SmallPtrSet<Instruction*, 16> &DeadInsts);
Dan Gohmancacd2012009-02-12 22:19:27 +000093 void LinearFunctionTestReplace(Loop *L, SCEVHandle IterationCount, Value *IndVar,
94 BasicBlock *ExitingBlock,
95 BranchInst *BI,
96 SCEVExpander &Rewriter);
Dan Gohmand8dc3bb2008-08-05 22:34:21 +000097 void RewriteLoopExitValues(Loop *L, SCEV *IterationCount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000098
Chris Lattnerb25465e2008-11-16 07:17:51 +000099 void DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts);
Devang Patelbda43802008-09-09 21:41:07 +0000100
Devang Patelc8dac622008-11-17 21:32:02 +0000101 void HandleFloatingPointIV(Loop *L, PHINode *PH,
102 SmallPtrSet<Instruction*, 16> &DeadInsts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104}
105
Dan Gohman089efff2008-05-13 00:00:25 +0000106char IndVarSimplify::ID = 0;
107static RegisterPass<IndVarSimplify>
108X("indvars", "Canonicalize Induction Variables");
109
Daniel Dunbar163555a2008-10-22 23:32:42 +0000110Pass *llvm::createIndVarSimplifyPass() {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000111 return new IndVarSimplify();
112}
113
114/// DeleteTriviallyDeadInstructions - If any of the instructions is the
115/// specified set are trivially dead, delete them and see if this makes any of
116/// their operands subsequently dead.
117void IndVarSimplify::
Chris Lattnerb25465e2008-11-16 07:17:51 +0000118DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119 while (!Insts.empty()) {
120 Instruction *I = *Insts.begin();
Chris Lattnerb25465e2008-11-16 07:17:51 +0000121 Insts.erase(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000122 if (isInstructionTriviallyDead(I)) {
123 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
124 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
125 Insts.insert(U);
126 SE->deleteValueFromRecords(I);
127 DOUT << "INDVARS: Deleting: " << *I;
128 I->eraseFromParent();
129 Changed = true;
130 }
131 }
132}
133
134
135/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
136/// recurrence. If so, change it into an integer recurrence, permitting
137/// analysis by the SCEV routines.
138void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
139 BasicBlock *Preheader,
Chris Lattnerb25465e2008-11-16 07:17:51 +0000140 SmallPtrSet<Instruction*, 16> &DeadInsts) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
142 unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
143 unsigned BackedgeIdx = PreheaderIdx^1;
144 if (GetElementPtrInst *GEPI =
145 dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
146 if (GEPI->getOperand(0) == PN) {
147 assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
148 DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
149
150 // Okay, we found a pointer recurrence. Transform this pointer
151 // recurrence into an integer recurrence. Compute the value that gets
152 // added to the pointer at every iteration.
153 Value *AddedVal = GEPI->getOperand(1);
154
155 // Insert a new integer PHI node into the top of the block.
Gabor Greifd6da1d02008-04-06 20:25:17 +0000156 PHINode *NewPhi = PHINode::Create(AddedVal->getType(),
157 PN->getName()+".rec", PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000158 NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
159
160 // Create the new add instruction.
Gabor Greifa645dd32008-05-16 19:29:10 +0000161 Value *NewAdd = BinaryOperator::CreateAdd(NewPhi, AddedVal,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 GEPI->getName()+".rec", GEPI);
163 NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
164
165 // Update the existing GEP to use the recurrence.
166 GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
167
168 // Update the GEP to use the new recurrence we just inserted.
169 GEPI->setOperand(1, NewAdd);
170
171 // If the incoming value is a constant expr GEP, try peeling out the array
172 // 0 index if possible to make things simpler.
173 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
174 if (CE->getOpcode() == Instruction::GetElementPtr) {
175 unsigned NumOps = CE->getNumOperands();
176 assert(NumOps > 1 && "CE folding didn't work!");
177 if (CE->getOperand(NumOps-1)->isNullValue()) {
178 // Check to make sure the last index really is an array index.
179 gep_type_iterator GTI = gep_type_begin(CE);
180 for (unsigned i = 1, e = CE->getNumOperands()-1;
181 i != e; ++i, ++GTI)
182 /*empty*/;
183 if (isa<SequentialType>(*GTI)) {
184 // Pull the last index out of the constant expr GEP.
185 SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
186 Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
187 &CEIdxs[0],
188 CEIdxs.size());
David Greene393be882007-09-04 15:46:09 +0000189 Value *Idx[2];
190 Idx[0] = Constant::getNullValue(Type::Int32Ty);
191 Idx[1] = NewAdd;
Gabor Greifd6da1d02008-04-06 20:25:17 +0000192 GetElementPtrInst *NGEPI = GetElementPtrInst::Create(
David Greene393be882007-09-04 15:46:09 +0000193 NCE, Idx, Idx + 2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000194 GEPI->getName(), GEPI);
195 SE->deleteValueFromRecords(GEPI);
196 GEPI->replaceAllUsesWith(NGEPI);
197 GEPI->eraseFromParent();
198 GEPI = NGEPI;
199 }
200 }
201 }
202
203
204 // Finally, if there are any other users of the PHI node, we must
205 // insert a new GEP instruction that uses the pre-incremented version
206 // of the induction amount.
207 if (!PN->use_empty()) {
208 BasicBlock::iterator InsertPos = PN; ++InsertPos;
209 while (isa<PHINode>(InsertPos)) ++InsertPos;
210 Value *PreInc =
Gabor Greifd6da1d02008-04-06 20:25:17 +0000211 GetElementPtrInst::Create(PN->getIncomingValue(PreheaderIdx),
212 NewPhi, "", InsertPos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 PreInc->takeName(PN);
214 PN->replaceAllUsesWith(PreInc);
215 }
216
217 // Delete the old PHI for sure, and the GEP if its otherwise unused.
218 DeadInsts.insert(PN);
219
220 ++NumPointer;
221 Changed = true;
222 }
223}
224
225/// LinearFunctionTestReplace - This method rewrites the exit condition of the
226/// loop to be a canonical != comparison against the incremented loop induction
227/// variable. This pass is able to rewrite the exit tests of any loop where the
228/// SCEV analysis can determine a loop-invariant trip count of the loop, which
229/// is actually a much broader range than just linear tests.
Dan Gohmancacd2012009-02-12 22:19:27 +0000230void IndVarSimplify::LinearFunctionTestReplace(Loop *L,
231 SCEVHandle IterationCount,
232 Value *IndVar,
233 BasicBlock *ExitingBlock,
234 BranchInst *BI,
235 SCEVExpander &Rewriter) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236 // If the exiting block is not the same as the backedge block, we must compare
237 // against the preincremented value, otherwise we prefer to compare against
238 // the post-incremented value.
Dan Gohmancacd2012009-02-12 22:19:27 +0000239 Value *CmpIndVar;
240 if (ExitingBlock == L->getLoopLatch()) {
241 // What ScalarEvolution calls the "iteration count" is actually the
242 // number of times the branch is taken. Add one to get the number
243 // of times the branch is executed. If this addition may overflow,
244 // we have to be more pessimistic and cast the induction variable
245 // before doing the add.
246 SCEVHandle Zero = SE->getIntegerSCEV(0, IterationCount->getType());
247 SCEVHandle N =
248 SE->getAddExpr(IterationCount,
249 SE->getIntegerSCEV(1, IterationCount->getType()));
250 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
251 SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
252 // No overflow. Cast the sum.
253 IterationCount = SE->getTruncateOrZeroExtend(N, IndVar->getType());
254 } else {
255 // Potential overflow. Cast before doing the add.
256 IterationCount = SE->getTruncateOrZeroExtend(IterationCount,
257 IndVar->getType());
258 IterationCount =
259 SE->getAddExpr(IterationCount,
260 SE->getIntegerSCEV(1, IndVar->getType()));
261 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000262
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000263 // The IterationCount expression contains the number of times that the
264 // backedge actually branches to the loop header. This is one less than the
265 // number of times the loop executes, so add one to it.
Dan Gohmancacd2012009-02-12 22:19:27 +0000266 CmpIndVar = L->getCanonicalInductionVariableIncrement();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000267 } else {
268 // We have to use the preincremented value...
Dan Gohmancacd2012009-02-12 22:19:27 +0000269 IterationCount = SE->getTruncateOrZeroExtend(IterationCount,
270 IndVar->getType());
271 CmpIndVar = IndVar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000272 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273
274 // Expand the code for the iteration count into the preheader of the loop.
275 BasicBlock *Preheader = L->getLoopPreheader();
Dan Gohmancacd2012009-02-12 22:19:27 +0000276 Value *ExitCnt = Rewriter.expandCodeFor(IterationCount,
277 Preheader->getTerminator());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278
279 // Insert a new icmp_ne or icmp_eq instruction before the branch.
280 ICmpInst::Predicate Opcode;
281 if (L->contains(BI->getSuccessor(0)))
282 Opcode = ICmpInst::ICMP_NE;
283 else
284 Opcode = ICmpInst::ICMP_EQ;
285
Dan Gohmancacd2012009-02-12 22:19:27 +0000286 DOUT << "INDVARS: Rewriting loop exit condition to:\n"
287 << " LHS:" << *CmpIndVar // includes a newline
288 << " op:\t"
289 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "=") << "\n"
290 << " RHS:\t" << *IterationCount << "\n";
291
292 Value *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000293 BI->setCondition(Cond);
294 ++NumLFTR;
295 Changed = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000296}
297
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000298/// RewriteLoopExitValues - Check to see if this loop has a computable
299/// loop-invariant execution count. If so, this means that we can compute the
300/// final value of any expressions that are recurrent in the loop, and
301/// substitute the exit values from the loop into any instructions outside of
302/// the loop that use the final values of the current expressions.
Dan Gohmand8dc3bb2008-08-05 22:34:21 +0000303void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEV *IterationCount) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000304 BasicBlock *Preheader = L->getLoopPreheader();
305
306 // Scan all of the instructions in the loop, looking at those that have
307 // extra-loop users and which are recurrences.
308 SCEVExpander Rewriter(*SE, *LI);
309
310 // We insert the code into the preheader of the loop if the loop contains
311 // multiple exit blocks, or in the exit block if there is exactly one.
312 BasicBlock *BlockToInsertInto;
Devang Patel02451fa2007-08-21 00:31:24 +0000313 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000314 L->getUniqueExitBlocks(ExitBlocks);
315 if (ExitBlocks.size() == 1)
316 BlockToInsertInto = ExitBlocks[0];
317 else
318 BlockToInsertInto = Preheader;
Dan Gohman514277c2008-05-23 21:05:58 +0000319 BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000320
Dan Gohmand8dc3bb2008-08-05 22:34:21 +0000321 bool HasConstantItCount = isa<SCEVConstant>(IterationCount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000322
Chris Lattnerb25465e2008-11-16 07:17:51 +0000323 SmallPtrSet<Instruction*, 16> InstructionsToDelete;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000324 std::map<Instruction*, Value*> ExitValues;
325
326 // Find all values that are computed inside the loop, but used outside of it.
327 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
328 // the exit blocks of the loop to find them.
329 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
330 BasicBlock *ExitBB = ExitBlocks[i];
331
332 // If there are no PHI nodes in this exit block, then no values defined
333 // inside the loop are used on this path, skip it.
334 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
335 if (!PN) continue;
336
337 unsigned NumPreds = PN->getNumIncomingValues();
338
339 // Iterate over all of the PHI nodes.
340 BasicBlock::iterator BBI = ExitBB->begin();
341 while ((PN = dyn_cast<PHINode>(BBI++))) {
342
343 // Iterate over all of the values in all the PHI nodes.
344 for (unsigned i = 0; i != NumPreds; ++i) {
345 // If the value being merged in is not integer or is not defined
346 // in the loop, skip it.
347 Value *InVal = PN->getIncomingValue(i);
348 if (!isa<Instruction>(InVal) ||
349 // SCEV only supports integer expressions for now.
350 !isa<IntegerType>(InVal->getType()))
351 continue;
352
353 // If this pred is for a subloop, not L itself, skip it.
354 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
355 continue; // The Block is in a subloop, skip it.
356
357 // Check that InVal is defined in the loop.
358 Instruction *Inst = cast<Instruction>(InVal);
359 if (!L->contains(Inst->getParent()))
360 continue;
361
362 // We require that this value either have a computable evolution or that
363 // the loop have a constant iteration count. In the case where the loop
364 // has a constant iteration count, we can sometimes force evaluation of
365 // the exit value through brute force.
366 SCEVHandle SH = SE->getSCEV(Inst);
367 if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
368 continue; // Cannot get exit evolution for the loop value.
369
370 // Okay, this instruction has a user outside of the current loop
371 // and varies predictably *inside* the loop. Evaluate the value it
372 // contains when the loop exits, if possible.
373 SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
374 if (isa<SCEVCouldNotCompute>(ExitValue) ||
375 !ExitValue->isLoopInvariant(L))
376 continue;
377
378 Changed = true;
379 ++NumReplaced;
380
381 // See if we already computed the exit value for the instruction, if so,
382 // just reuse it.
383 Value *&ExitVal = ExitValues[Inst];
384 if (!ExitVal)
385 ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt);
386
387 DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
388 << " LoopVal = " << *Inst << "\n";
389
390 PN->setIncomingValue(i, ExitVal);
391
392 // If this instruction is dead now, schedule it to be removed.
393 if (Inst->use_empty())
394 InstructionsToDelete.insert(Inst);
395
396 // See if this is a single-entry LCSSA PHI node. If so, we can (and
397 // have to) remove
398 // the PHI entirely. This is safe, because the NewVal won't be variant
399 // in the loop, so we don't need an LCSSA phi node anymore.
400 if (NumPreds == 1) {
401 SE->deleteValueFromRecords(PN);
402 PN->replaceAllUsesWith(ExitVal);
403 PN->eraseFromParent();
404 break;
405 }
406 }
407 }
408 }
409
410 DeleteTriviallyDeadInstructions(InstructionsToDelete);
411}
412
413bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) {
414
415 Changed = false;
416 // First step. Check to see if there are any trivial GEP pointer recurrences.
417 // If there are, change them into integer recurrences, permitting analysis by
418 // the SCEV routines.
419 //
420 BasicBlock *Header = L->getHeader();
421 BasicBlock *Preheader = L->getLoopPreheader();
422 SE = &LPM.getAnalysis<ScalarEvolution>();
423
Chris Lattnerb25465e2008-11-16 07:17:51 +0000424 SmallPtrSet<Instruction*, 16> DeadInsts;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000425 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
426 PHINode *PN = cast<PHINode>(I);
427 if (isa<PointerType>(PN->getType()))
428 EliminatePointerRecurrence(PN, Preheader, DeadInsts);
Devang Patelc8dac622008-11-17 21:32:02 +0000429 else
430 HandleFloatingPointIV(L, PN, DeadInsts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000431 }
432
433 if (!DeadInsts.empty())
434 DeleteTriviallyDeadInstructions(DeadInsts);
435
436 return Changed;
437}
438
Dan Gohmancacd2012009-02-12 22:19:27 +0000439/// getEffectiveIndvarType - Determine the widest type that the
440/// induction-variable PHINode Phi is cast to.
441///
442static const Type *getEffectiveIndvarType(const PHINode *Phi) {
443 const Type *Ty = Phi->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000444
Dan Gohmancacd2012009-02-12 22:19:27 +0000445 for (Value::use_const_iterator UI = Phi->use_begin(), UE = Phi->use_end();
446 UI != UE; ++UI) {
447 const Type *CandidateType = NULL;
448 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(UI))
449 CandidateType = ZI->getDestTy();
450 else if (const SExtInst *SI = dyn_cast<SExtInst>(UI))
451 CandidateType = SI->getDestTy();
452 if (CandidateType &&
453 CandidateType->getPrimitiveSizeInBits() >
454 Ty->getPrimitiveSizeInBits())
455 Ty = CandidateType;
456 }
457
458 return Ty;
459}
460
461/// isOrigIVAlwaysNonNegative - Analyze the original induction variable
462/// in the loop to determine whether it would ever have a negative
463/// value.
464///
465/// TODO: This duplicates a fair amount of ScalarEvolution logic.
466/// Perhaps this can be merged with ScalarEvolution::getIterationCount.
467///
468static bool isOrigIVAlwaysNonNegative(const Loop *L,
469 const Instruction *OrigCond) {
470 // Verify that the loop is sane and find the exit condition.
471 const ICmpInst *Cmp = dyn_cast<ICmpInst>(OrigCond);
472 if (!Cmp) return false;
473
474 // For now, analyze only SLT loops for signed overflow.
475 if (Cmp->getPredicate() != ICmpInst::ICMP_SLT) return false;
476
477 // Get the increment instruction. Look past SExtInsts if we will
478 // be able to prove that the original induction variable doesn't
479 // undergo signed overflow.
480 const Value *OrigIncrVal = Cmp->getOperand(0);
481 const Value *IncrVal = OrigIncrVal;
482 if (SExtInst *SI = dyn_cast<SExtInst>(Cmp->getOperand(0))) {
483 if (!isa<ConstantInt>(Cmp->getOperand(1)) ||
484 !cast<ConstantInt>(Cmp->getOperand(1))->getValue()
485 .isSignedIntN(IncrVal->getType()->getPrimitiveSizeInBits()))
486 return false;
487 IncrVal = SI->getOperand(0);
488 }
489
490 // For now, only analyze induction variables that have simple increments.
491 const BinaryOperator *IncrOp = dyn_cast<BinaryOperator>(IncrVal);
492 if (!IncrOp ||
493 IncrOp->getOpcode() != Instruction::Add ||
494 !isa<ConstantInt>(IncrOp->getOperand(1)) ||
495 !cast<ConstantInt>(IncrOp->getOperand(1))->equalsInt(1))
496 return false;
497
498 // Make sure the PHI looks like a normal IV.
499 const PHINode *PN = dyn_cast<PHINode>(IncrOp->getOperand(0));
500 if (!PN || PN->getNumIncomingValues() != 2)
501 return false;
502 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
503 unsigned BackEdge = !IncomingEdge;
504 if (!L->contains(PN->getIncomingBlock(BackEdge)) ||
505 PN->getIncomingValue(BackEdge) != IncrOp)
506 return false;
507
508 // For now, only analyze loops with a constant start value, so that
509 // we can easily determine if the start value is non-negative and
510 // not a maximum value which would wrap on the first iteration.
511 const Value *InitialVal = PN->getIncomingValue(IncomingEdge);
512 if (!isa<ConstantInt>(InitialVal) ||
513 cast<ConstantInt>(InitialVal)->getValue().isNegative() ||
514 cast<ConstantInt>(InitialVal)->getValue().isMaxSignedValue())
515 return false;
516
517 // The original induction variable will start at some non-negative
518 // non-max value, it counts up by one, and the loop iterates only
519 // while it remans less than (signed) some value in the same type.
520 // As such, it will always be non-negative.
521 return true;
522}
523
524bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000525 LI = &getAnalysis<LoopInfo>();
526 SE = &getAnalysis<ScalarEvolution>();
527
528 Changed = false;
Dan Gohmancacd2012009-02-12 22:19:27 +0000529 BasicBlock *Header = L->getHeader();
530 BasicBlock *ExitingBlock = L->getExitingBlock();
Chris Lattnerb25465e2008-11-16 07:17:51 +0000531 SmallPtrSet<Instruction*, 16> DeadInsts;
Dan Gohmancacd2012009-02-12 22:19:27 +0000532
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000533 // Verify the input to the pass in already in LCSSA form.
534 assert(L->isLCSSAForm());
535
536 // Check to see if this loop has a computable loop-invariant execution count.
537 // If so, this means that we can compute the final value of any expressions
538 // that are recurrent in the loop, and substitute the exit values from the
539 // loop into any instructions outside of the loop that use the final values of
540 // the current expressions.
541 //
542 SCEVHandle IterationCount = SE->getIterationCount(L);
543 if (!isa<SCEVCouldNotCompute>(IterationCount))
Dan Gohmand8dc3bb2008-08-05 22:34:21 +0000544 RewriteLoopExitValues(L, IterationCount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000545
546 // Next, analyze all of the induction variables in the loop, canonicalizing
547 // auxillary induction variables.
548 std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
549
550 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
551 PHINode *PN = cast<PHINode>(I);
552 if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
553 SCEVHandle SCEV = SE->getSCEV(PN);
554 if (SCEV->hasComputableLoopEvolution(L))
555 // FIXME: It is an extremely bad idea to indvar substitute anything more
556 // complex than affine induction variables. Doing so will put expensive
557 // polynomial evaluations inside of the loop, and the str reduction pass
558 // currently can only reduce affine polynomials. For now just disable
559 // indvar subst on anything more complex than an affine addrec.
560 if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
561 if (AR->isAffine())
562 IndVars.push_back(std::make_pair(PN, SCEV));
563 }
564 }
565
Dan Gohmancacd2012009-02-12 22:19:27 +0000566 // Compute the type of the largest recurrence expression, and collect
567 // the set of the types of the other recurrence expressions.
568 const Type *LargestType = 0;
569 SmallSetVector<const Type *, 4> SizesToInsert;
570 if (!isa<SCEVCouldNotCompute>(IterationCount)) {
571 LargestType = IterationCount->getType();
572 SizesToInsert.insert(IterationCount->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000573 }
Dan Gohmancacd2012009-02-12 22:19:27 +0000574 for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
575 const PHINode *PN = IndVars[i].first;
576 SizesToInsert.insert(PN->getType());
577 const Type *EffTy = getEffectiveIndvarType(PN);
578 SizesToInsert.insert(EffTy);
579 if (!LargestType ||
580 EffTy->getPrimitiveSizeInBits() >
581 LargestType->getPrimitiveSizeInBits())
582 LargestType = EffTy;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000583 }
584
585 // Create a rewriter object which we'll use to transform the code with.
586 SCEVExpander Rewriter(*SE, *LI);
587
588 // Now that we know the largest of of the induction variables in this loop,
589 // insert a canonical induction variable of the largest size.
Dan Gohmancacd2012009-02-12 22:19:27 +0000590 Value *IndVar = 0;
591 if (!SizesToInsert.empty()) {
592 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
593 ++NumInserted;
594 Changed = true;
595 DOUT << "INDVARS: New CanIV: " << *IndVar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000596 }
597
Dan Gohmancacd2012009-02-12 22:19:27 +0000598 // If we have a trip count expression, rewrite the loop's exit condition
599 // using it. We can currently only handle loops with a single exit.
600 bool OrigIVAlwaysNonNegative = false;
601 if (!isa<SCEVCouldNotCompute>(IterationCount) && ExitingBlock)
602 // Can't rewrite non-branch yet.
603 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
604 if (Instruction *OrigCond = dyn_cast<Instruction>(BI->getCondition())) {
605 // Determine if the OrigIV will ever have a non-zero sign bit.
606 OrigIVAlwaysNonNegative = isOrigIVAlwaysNonNegative(L, OrigCond);
607
608 // We'll be replacing the original condition, so it'll be dead.
609 DeadInsts.insert(OrigCond);
610 }
611
612 LinearFunctionTestReplace(L, IterationCount, IndVar,
613 ExitingBlock, BI, Rewriter);
614 }
615
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000616 // Now that we have a canonical induction variable, we can rewrite any
617 // recurrences in terms of the induction variable. Start with the auxillary
618 // induction variables, and recursively rewrite any of their uses.
Dan Gohman514277c2008-05-23 21:05:58 +0000619 BasicBlock::iterator InsertPt = Header->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000620
621 // If there were induction variables of other sizes, cast the primary
622 // induction variable to the right size for them, avoiding the need for the
623 // code evaluation methods to insert induction variables of different sizes.
Dan Gohmancacd2012009-02-12 22:19:27 +0000624 for (unsigned i = 0, e = SizesToInsert.size(); i != e; ++i) {
625 const Type *Ty = SizesToInsert[i];
626 if (Ty != LargestType) {
627 Instruction *New = new TruncInst(IndVar, Ty, "indvar", InsertPt);
628 Rewriter.addInsertedValue(New, SE->getSCEV(New));
629 DOUT << "INDVARS: Made trunc IV for type " << *Ty << ": "
630 << *New << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000631 }
632 }
633
634 // Rewrite all induction variables in terms of the canonical induction
635 // variable.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000636 while (!IndVars.empty()) {
637 PHINode *PN = IndVars.back().first;
638 Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt);
639 DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN
640 << " into = " << *NewVal << "\n";
641 NewVal->takeName(PN);
642
Dan Gohmancacd2012009-02-12 22:19:27 +0000643 /// If the new canonical induction variable is wider than the original,
644 /// and the original has uses that are casts to wider types, see if the
645 /// truncate and extend can be omitted.
646 if (isa<TruncInst>(NewVal))
647 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
648 UI != UE; ++UI)
649 if (isa<ZExtInst>(UI) ||
650 (isa<SExtInst>(UI) && OrigIVAlwaysNonNegative)) {
651 Value *TruncIndVar = IndVar;
652 if (TruncIndVar->getType() != UI->getType())
653 TruncIndVar = new TruncInst(IndVar, UI->getType(), "truncindvar",
654 InsertPt);
655 UI->replaceAllUsesWith(TruncIndVar);
656 if (Instruction *DeadUse = dyn_cast<Instruction>(*UI))
657 DeadInsts.insert(DeadUse);
658 }
659
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000660 // Replace the old PHI Node with the inserted computation.
661 PN->replaceAllUsesWith(NewVal);
662 DeadInsts.insert(PN);
663 IndVars.pop_back();
664 ++NumRemoved;
665 Changed = true;
666 }
667
668#if 0
669 // Now replace all derived expressions in the loop body with simpler
670 // expressions.
Dan Gohman4d2e8ae2008-06-22 20:18:58 +0000671 for (LoopInfo::block_iterator I = L->block_begin(), E = L->block_end();
672 I != E; ++I) {
673 BasicBlock *BB = *I;
674 if (LI->getLoopFor(BB) == L) { // Not in a subloop...
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000675 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
676 if (I->getType()->isInteger() && // Is an integer instruction
677 !I->use_empty() &&
678 !Rewriter.isInsertedInstruction(I)) {
679 SCEVHandle SH = SE->getSCEV(I);
680 Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
681 if (V != I) {
682 if (isa<Instruction>(V))
683 V->takeName(I);
684 I->replaceAllUsesWith(V);
685 DeadInsts.insert(I);
686 ++NumRemoved;
687 Changed = true;
688 }
689 }
690 }
Dan Gohman4d2e8ae2008-06-22 20:18:58 +0000691 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000692#endif
693
694 DeleteTriviallyDeadInstructions(DeadInsts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000695 assert(L->isLCSSAForm());
696 return Changed;
697}
Devang Patelbda43802008-09-09 21:41:07 +0000698
Devang Patelb8ccf572008-11-18 00:40:02 +0000699/// Return true if it is OK to use SIToFPInst for an inducation variable
700/// with given inital and exit values.
701static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
702 uint64_t intIV, uint64_t intEV) {
703
704 if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
705 return true;
706
707 // If the iteration range can be handled by SIToFPInst then use it.
708 APInt Max = APInt::getSignedMaxValue(32);
Bill Wendlingb9a5a682008-11-18 10:57:27 +0000709 if (Max.getZExtValue() > static_cast<uint64_t>(abs(intEV - intIV)))
Devang Patelb8ccf572008-11-18 00:40:02 +0000710 return true;
711
712 return false;
713}
714
715/// convertToInt - Convert APF to an integer, if possible.
Devang Patele2ba01d2008-11-17 23:27:13 +0000716static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
717
718 bool isExact = false;
Evan Cheng30e65f62008-11-26 01:11:57 +0000719 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
720 return false;
Devang Patele2ba01d2008-11-17 23:27:13 +0000721 if (APF.convertToInteger(intVal, 32, APF.isNegative(),
722 APFloat::rmTowardZero, &isExact)
723 != APFloat::opOK)
724 return false;
725 if (!isExact)
726 return false;
727 return true;
728
729}
730
Devang Patel7ca23c92008-11-03 18:32:19 +0000731/// HandleFloatingPointIV - If the loop has floating induction variable
732/// then insert corresponding integer induction variable if possible.
Devang Patelc8dac622008-11-17 21:32:02 +0000733/// For example,
734/// for(double i = 0; i < 10000; ++i)
735/// bar(i)
736/// is converted into
737/// for(int i = 0; i < 10000; ++i)
738/// bar((double)i);
739///
740void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH,
741 SmallPtrSet<Instruction*, 16> &DeadInsts) {
Devang Patel7ca23c92008-11-03 18:32:19 +0000742
Devang Patelc8dac622008-11-17 21:32:02 +0000743 unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
744 unsigned BackEdge = IncomingEdge^1;
745
746 // Check incoming value.
Devang Patele2ba01d2008-11-17 23:27:13 +0000747 ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
748 if (!InitValue) return;
749 uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
750 if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
751 return;
752
753 // Check IV increment. Reject this PH if increement operation is not
754 // an add or increment value can not be represented by an integer.
Devang Patelc8dac622008-11-17 21:32:02 +0000755 BinaryOperator *Incr =
756 dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
757 if (!Incr) return;
758 if (Incr->getOpcode() != Instruction::Add) return;
759 ConstantFP *IncrValue = NULL;
760 unsigned IncrVIndex = 1;
761 if (Incr->getOperand(1) == PH)
762 IncrVIndex = 0;
763 IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
764 if (!IncrValue) return;
Devang Patele2ba01d2008-11-17 23:27:13 +0000765 uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
766 if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
767 return;
Devang Patelc8dac622008-11-17 21:32:02 +0000768
Devang Patele2ba01d2008-11-17 23:27:13 +0000769 // Check Incr uses. One user is PH and the other users is exit condition used
770 // by the conditional terminator.
Devang Patelc8dac622008-11-17 21:32:02 +0000771 Value::use_iterator IncrUse = Incr->use_begin();
772 Instruction *U1 = cast<Instruction>(IncrUse++);
773 if (IncrUse == Incr->use_end()) return;
774 Instruction *U2 = cast<Instruction>(IncrUse++);
775 if (IncrUse != Incr->use_end()) return;
776
777 // Find exit condition.
778 FCmpInst *EC = dyn_cast<FCmpInst>(U1);
779 if (!EC)
780 EC = dyn_cast<FCmpInst>(U2);
781 if (!EC) return;
782
783 if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
784 if (!BI->isConditional()) return;
785 if (BI->getCondition() != EC) return;
Devang Patel7ca23c92008-11-03 18:32:19 +0000786 }
Devang Patel7ca23c92008-11-03 18:32:19 +0000787
Devang Patele2ba01d2008-11-17 23:27:13 +0000788 // Find exit value. If exit value can not be represented as an interger then
789 // do not handle this floating point PH.
Devang Patelc8dac622008-11-17 21:32:02 +0000790 ConstantFP *EV = NULL;
791 unsigned EVIndex = 1;
792 if (EC->getOperand(1) == Incr)
793 EVIndex = 0;
794 EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
795 if (!EV) return;
Devang Patelc8dac622008-11-17 21:32:02 +0000796 uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
Devang Patele2ba01d2008-11-17 23:27:13 +0000797 if (!convertToInt(EV->getValueAPF(), &intEV))
Devang Patelc8dac622008-11-17 21:32:02 +0000798 return;
Devang Patelc8dac622008-11-17 21:32:02 +0000799
800 // Find new predicate for integer comparison.
801 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
802 switch (EC->getPredicate()) {
803 case CmpInst::FCMP_OEQ:
804 case CmpInst::FCMP_UEQ:
805 NewPred = CmpInst::ICMP_EQ;
806 break;
807 case CmpInst::FCMP_OGT:
808 case CmpInst::FCMP_UGT:
809 NewPred = CmpInst::ICMP_UGT;
810 break;
811 case CmpInst::FCMP_OGE:
812 case CmpInst::FCMP_UGE:
813 NewPred = CmpInst::ICMP_UGE;
814 break;
815 case CmpInst::FCMP_OLT:
816 case CmpInst::FCMP_ULT:
817 NewPred = CmpInst::ICMP_ULT;
818 break;
819 case CmpInst::FCMP_OLE:
820 case CmpInst::FCMP_ULE:
821 NewPred = CmpInst::ICMP_ULE;
822 break;
823 default:
824 break;
Devang Patel7ca23c92008-11-03 18:32:19 +0000825 }
Devang Patelc8dac622008-11-17 21:32:02 +0000826 if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
827
828 // Insert new integer induction variable.
829 PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
830 PH->getName()+".int", PH);
Devang Patele2ba01d2008-11-17 23:27:13 +0000831 NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue),
Devang Patelc8dac622008-11-17 21:32:02 +0000832 PH->getIncomingBlock(IncomingEdge));
833
834 Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
Devang Patele2ba01d2008-11-17 23:27:13 +0000835 ConstantInt::get(Type::Int32Ty,
836 newIncrValue),
Devang Patelc8dac622008-11-17 21:32:02 +0000837 Incr->getName()+".int", Incr);
838 NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
839
840 ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV);
841 Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(BackEdge) : NewEV);
842 Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(BackEdge));
843 ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
844 EC->getParent()->getTerminator());
845
846 // Delete old, floating point, exit comparision instruction.
847 EC->replaceAllUsesWith(NewEC);
848 DeadInsts.insert(EC);
849
850 // Delete old, floating point, increment instruction.
851 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
852 DeadInsts.insert(Incr);
853
Devang Patelb8ccf572008-11-18 00:40:02 +0000854 // Replace floating induction variable. Give SIToFPInst preference over
855 // UIToFPInst because it is faster on platforms that are widely used.
856 if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
Devang Patele2ba01d2008-11-17 23:27:13 +0000857 SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
858 PH->getParent()->getFirstNonPHI());
859 PH->replaceAllUsesWith(Conv);
860 } else {
861 UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
862 PH->getParent()->getFirstNonPHI());
863 PH->replaceAllUsesWith(Conv);
864 }
Devang Patelc8dac622008-11-17 21:32:02 +0000865 DeadInsts.insert(PH);
Devang Patel7ca23c92008-11-03 18:32:19 +0000866}
867