blob: 235aaaa6f801deca1d28794031c0e5a0fd284959 [file] [log] [blame]
Chris Lattner6148c022001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner6148c022001-12-03 17:28:42 +00009//
Chris Lattner40bf8b42004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
Chris Lattner40bf8b42004-04-02 20:24:31 +000014// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16// 1. The exit condition for the loop is canonicalized to compare the
17// induction value against the exit value. This turns loops like:
18// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19// 2. Any use outside of the loop of an expression derived from the indvar
20// is changed to compute the derived value outside of the loop, eliminating
21// the dependence on the exit value of the induction variable. If the only
22// purpose of the loop is to compute the exit value of some derived
23// expression, this transformation will make the loop dead.
24//
Chris Lattner6148c022001-12-03 17:28:42 +000025//===----------------------------------------------------------------------===//
26
Chris Lattner0e5f4992006-12-19 21:40:18 +000027#define DEBUG_TYPE "indvars"
Chris Lattner022103b2002-05-07 20:03:00 +000028#include "llvm/Transforms/Scalar.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000029#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/LoopInfo.h"
34#include "llvm/Analysis/LoopPass.h"
35#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000036#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/IR/Type.h"
Chris Lattner455889a2002-02-12 22:39:50 +000043#include "llvm/Support/CFG.h"
Andrew Trick56caa092011-06-28 03:01:46 +000044#include "llvm/Support/CommandLine.h"
Chris Lattneree4f13a2007-01-07 01:14:12 +000045#include "llvm/Support/Debug.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000046#include "llvm/Support/raw_ostream.h"
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +000047#include "llvm/Target/TargetLibraryInfo.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000048#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/SimplifyIndVar.h"
John Criswell47df12d2003-12-18 17:19:19 +000051using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000052
Andrew Trick2fabd462011-06-21 03:22:38 +000053STATISTIC(NumWidened , "Number of indvars widened");
Andrew Trick2fabd462011-06-21 03:22:38 +000054STATISTIC(NumReplaced , "Number of exit values replaced");
55STATISTIC(NumLFTR , "Number of loop exit tests replaced");
Andrew Trick2fabd462011-06-21 03:22:38 +000056STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
Andrew Trick037d1c02011-07-06 20:50:43 +000057STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
Chris Lattner3324e712003-12-22 03:58:44 +000058
Benjamin Kramer0861f572011-11-26 23:01:57 +000059// Trip count verification can be enabled by default under NDEBUG if we
60// implement a strong expression equivalence checker in SCEV. Until then, we
61// use the verify-indvars flag, which may assert in some cases.
62static cl::opt<bool> VerifyIndvars(
63 "verify-indvars", cl::Hidden,
64 cl::desc("Verify the ScalarEvolution result after running indvars"));
Andrew Trick37da4082011-05-04 02:10:13 +000065
Chris Lattner0e5f4992006-12-19 21:40:18 +000066namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000067 class IndVarSimplify : public LoopPass {
Chris Lattner40bf8b42004-04-02 20:24:31 +000068 LoopInfo *LI;
69 ScalarEvolution *SE;
Dan Gohmande53dc02009-06-27 05:16:57 +000070 DominatorTree *DT;
Micah Villmow3574eca2012-10-08 16:38:25 +000071 DataLayout *TD;
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +000072 TargetLibraryInfo *TLI;
Andrew Trick2fabd462011-06-21 03:22:38 +000073
Andrew Trickb12a7542011-03-17 23:51:11 +000074 SmallVector<WeakVH, 16> DeadInsts;
Chris Lattner15cad752003-12-23 07:47:09 +000075 bool Changed;
Chris Lattner3324e712003-12-22 03:58:44 +000076 public:
Devang Patel794fd752007-05-01 21:15:47 +000077
Dan Gohman5668cf72009-07-15 01:26:32 +000078 static char ID; // Pass identification, replacement for typeid
Andrew Trickdb0d6662012-03-22 17:10:11 +000079 IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
Andrew Trick15832f62011-06-28 02:49:20 +000080 Changed(false) {
Owen Anderson081c34b2010-10-19 17:21:58 +000081 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
82 }
Devang Patel794fd752007-05-01 21:15:47 +000083
Dan Gohman5668cf72009-07-15 01:26:32 +000084 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
Dan Gohman60f8a632009-02-17 20:49:49 +000085
Dan Gohman5668cf72009-07-15 01:26:32 +000086 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87 AU.addRequired<DominatorTree>();
88 AU.addRequired<LoopInfo>();
89 AU.addRequired<ScalarEvolution>();
90 AU.addRequiredID(LoopSimplifyID);
91 AU.addRequiredID(LCSSAID);
Dan Gohman5668cf72009-07-15 01:26:32 +000092 AU.addPreserved<ScalarEvolution>();
93 AU.addPreservedID(LoopSimplifyID);
94 AU.addPreservedID(LCSSAID);
Dan Gohman5668cf72009-07-15 01:26:32 +000095 AU.setPreservesCFG();
96 }
Chris Lattner15cad752003-12-23 07:47:09 +000097
Chris Lattner40bf8b42004-04-02 20:24:31 +000098 private:
Andrew Trick037d1c02011-07-06 20:50:43 +000099 virtual void releaseMemory() {
Andrew Trick037d1c02011-07-06 20:50:43 +0000100 DeadInsts.clear();
101 }
102
Andrew Trickb12a7542011-03-17 23:51:11 +0000103 bool isValidRewrite(Value *FromVal, Value *ToVal);
Devang Patel5ee99972007-03-07 06:39:01 +0000104
Andrew Trick1a54bb22011-07-12 00:08:50 +0000105 void HandleFloatingPointIV(Loop *L, PHINode *PH);
106 void RewriteNonIntegerIVs(Loop *L);
107
Andrew Trick4b4bb712011-08-10 03:46:27 +0000108 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
Andrew Trick06988bc2011-08-06 07:00:37 +0000109
Andrew Trick4b4bb712011-08-10 03:46:27 +0000110 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
111
Andrew Trickfc933c02011-07-18 20:32:31 +0000112 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
113 PHINode *IndVar, SCEVExpander &Rewriter);
Dan Gohman81db61a2009-05-12 02:17:14 +0000114
Andrew Trick1a54bb22011-07-12 00:08:50 +0000115 void SinkUnusedInvariants(Loop *L);
Chris Lattner3324e712003-12-22 03:58:44 +0000116 };
Chris Lattner5e761402002-09-10 05:24:05 +0000117}
Chris Lattner394437f2001-12-04 04:32:29 +0000118
Dan Gohman844731a2008-05-13 00:00:25 +0000119char IndVarSimplify::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +0000120INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
Andrew Trick37da4082011-05-04 02:10:13 +0000121 "Induction Variable Simplification", false, false)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000122INITIALIZE_PASS_DEPENDENCY(DominatorTree)
123INITIALIZE_PASS_DEPENDENCY(LoopInfo)
124INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
125INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
126INITIALIZE_PASS_DEPENDENCY(LCSSA)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000127INITIALIZE_PASS_END(IndVarSimplify, "indvars",
Andrew Trick37da4082011-05-04 02:10:13 +0000128 "Induction Variable Simplification", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000129
Daniel Dunbar394f0442008-10-22 23:32:42 +0000130Pass *llvm::createIndVarSimplifyPass() {
Chris Lattner3324e712003-12-22 03:58:44 +0000131 return new IndVarSimplify();
Chris Lattner394437f2001-12-04 04:32:29 +0000132}
133
Andrew Trickb12a7542011-03-17 23:51:11 +0000134/// isValidRewrite - Return true if the SCEV expansion generated by the
135/// rewriter can replace the original value. SCEV guarantees that it
136/// produces the same value, but the way it is produced may be illegal IR.
137/// Ideally, this function will only be called for verification.
138bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
139 // If an SCEV expression subsumed multiple pointers, its expansion could
140 // reassociate the GEP changing the base pointer. This is illegal because the
141 // final address produced by a GEP chain must be inbounds relative to its
142 // underlying object. Otherwise basic alias analysis, among other things,
143 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
144 // producing an expression involving multiple pointers. Until then, we must
145 // bail out here.
146 //
147 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
148 // because it understands lcssa phis while SCEV does not.
149 Value *FromPtr = FromVal;
150 Value *ToPtr = ToVal;
151 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
152 FromPtr = GEP->getPointerOperand();
153 }
154 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
155 ToPtr = GEP->getPointerOperand();
156 }
157 if (FromPtr != FromVal || ToPtr != ToVal) {
158 // Quickly check the common case
159 if (FromPtr == ToPtr)
160 return true;
161
162 // SCEV may have rewritten an expression that produces the GEP's pointer
163 // operand. That's ok as long as the pointer operand has the same base
164 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
165 // base of a recurrence. This handles the case in which SCEV expansion
166 // converts a pointer type recurrence into a nonrecurrent pointer base
167 // indexed by an integer recurrence.
Nadav Rotem16087692011-12-05 06:29:09 +0000168
169 // If the GEP base pointer is a vector of pointers, abort.
170 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
171 return false;
172
Andrew Trickb12a7542011-03-17 23:51:11 +0000173 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
174 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
175 if (FromBase == ToBase)
176 return true;
177
178 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
179 << *FromBase << " != " << *ToBase << "\n");
180
181 return false;
182 }
183 return true;
184}
185
Andrew Trick86c98142011-07-20 05:32:06 +0000186/// Determine the insertion point for this user. By default, insert immediately
187/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
188/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
189/// common dominator for the incoming blocks.
190static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
191 DominatorTree *DT) {
192 PHINode *PHI = dyn_cast<PHINode>(User);
193 if (!PHI)
194 return User;
195
196 Instruction *InsertPt = 0;
197 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
198 if (PHI->getIncomingValue(i) != Def)
199 continue;
200
201 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
202 if (!InsertPt) {
203 InsertPt = InsertBB->getTerminator();
204 continue;
205 }
206 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
207 InsertPt = InsertBB->getTerminator();
208 }
209 assert(InsertPt && "Missing phi operand");
Jay Foad626f52d2011-07-20 08:15:21 +0000210 assert((!isa<Instruction>(Def) ||
211 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
Andrew Trick86c98142011-07-20 05:32:06 +0000212 "def does not dominate all uses");
213 return InsertPt;
214}
215
Andrew Trick1a54bb22011-07-12 00:08:50 +0000216//===----------------------------------------------------------------------===//
217// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
218//===----------------------------------------------------------------------===//
Andrew Trick4dfdf242011-05-03 22:24:10 +0000219
Andrew Trick1a54bb22011-07-12 00:08:50 +0000220/// ConvertToSInt - Convert APF to an integer, if possible.
221static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
222 bool isExact = false;
Andrew Trick1a54bb22011-07-12 00:08:50 +0000223 // See if we can convert this to an int64_t
224 uint64_t UIntVal;
225 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
226 &isExact) != APFloat::opOK || !isExact)
Andrew Trick4dfdf242011-05-03 22:24:10 +0000227 return false;
Andrew Trick1a54bb22011-07-12 00:08:50 +0000228 IntVal = UIntVal;
Andrew Trick4dfdf242011-05-03 22:24:10 +0000229 return true;
230}
231
Andrew Trick1a54bb22011-07-12 00:08:50 +0000232/// HandleFloatingPointIV - If the loop has floating induction variable
233/// then insert corresponding integer induction variable if possible.
234/// For example,
235/// for(double i = 0; i < 10000; ++i)
236/// bar(i)
237/// is converted into
238/// for(int i = 0; i < 10000; ++i)
239/// bar((double)i);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000240///
Andrew Trick1a54bb22011-07-12 00:08:50 +0000241void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
242 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
243 unsigned BackEdge = IncomingEdge^1;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000244
Andrew Trick1a54bb22011-07-12 00:08:50 +0000245 // Check incoming value.
246 ConstantFP *InitValueVal =
247 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000248
Andrew Trick1a54bb22011-07-12 00:08:50 +0000249 int64_t InitValue;
250 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
251 return;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000252
Andrew Trick1a54bb22011-07-12 00:08:50 +0000253 // Check IV increment. Reject this PN if increment operation is not
254 // an add or increment value can not be represented by an integer.
255 BinaryOperator *Incr =
256 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
257 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000258
Andrew Trick1a54bb22011-07-12 00:08:50 +0000259 // If this is not an add of the PHI with a constantfp, or if the constant fp
260 // is not an integer, bail out.
261 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
262 int64_t IncValue;
263 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
264 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
265 return;
266
267 // Check Incr uses. One user is PN and the other user is an exit condition
268 // used by the conditional terminator.
269 Value::use_iterator IncrUse = Incr->use_begin();
270 Instruction *U1 = cast<Instruction>(*IncrUse++);
271 if (IncrUse == Incr->use_end()) return;
272 Instruction *U2 = cast<Instruction>(*IncrUse++);
273 if (IncrUse != Incr->use_end()) return;
274
275 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
276 // only used by a branch, we can't transform it.
277 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
278 if (!Compare)
279 Compare = dyn_cast<FCmpInst>(U2);
280 if (Compare == 0 || !Compare->hasOneUse() ||
281 !isa<BranchInst>(Compare->use_back()))
282 return;
283
284 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
285
286 // We need to verify that the branch actually controls the iteration count
287 // of the loop. If not, the new IV can overflow and no one will notice.
288 // The branch block must be in the loop and one of the successors must be out
289 // of the loop.
290 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
291 if (!L->contains(TheBr->getParent()) ||
292 (L->contains(TheBr->getSuccessor(0)) &&
293 L->contains(TheBr->getSuccessor(1))))
294 return;
295
296
297 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
298 // transform it.
299 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
300 int64_t ExitValue;
301 if (ExitValueVal == 0 ||
302 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
303 return;
304
305 // Find new predicate for integer comparison.
306 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
307 switch (Compare->getPredicate()) {
308 default: return; // Unknown comparison.
309 case CmpInst::FCMP_OEQ:
310 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
311 case CmpInst::FCMP_ONE:
312 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
313 case CmpInst::FCMP_OGT:
314 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
315 case CmpInst::FCMP_OGE:
316 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
317 case CmpInst::FCMP_OLT:
318 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
319 case CmpInst::FCMP_OLE:
320 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000321 }
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000322
Andrew Trick1a54bb22011-07-12 00:08:50 +0000323 // We convert the floating point induction variable to a signed i32 value if
324 // we can. This is only safe if the comparison will not overflow in a way
325 // that won't be trapped by the integer equivalent operations. Check for this
326 // now.
327 // TODO: We could use i64 if it is native and the range requires it.
Dan Gohmanca9b7032010-04-12 21:13:43 +0000328
Andrew Trick1a54bb22011-07-12 00:08:50 +0000329 // The start/stride/exit values must all fit in signed i32.
330 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
331 return;
332
333 // If not actually striding (add x, 0.0), avoid touching the code.
334 if (IncValue == 0)
335 return;
336
337 // Positive and negative strides have different safety conditions.
338 if (IncValue > 0) {
339 // If we have a positive stride, we require the init to be less than the
Andrew Trick94f2c232011-09-13 01:59:32 +0000340 // exit value.
341 if (InitValue >= ExitValue)
Andrew Trick1a54bb22011-07-12 00:08:50 +0000342 return;
343
344 uint32_t Range = uint32_t(ExitValue-InitValue);
Andrew Trick94f2c232011-09-13 01:59:32 +0000345 // Check for infinite loop, either:
346 // while (i <= Exit) or until (i > Exit)
347 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000348 if (++Range == 0) return; // Range overflows.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000349 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000350
Andrew Trick1a54bb22011-07-12 00:08:50 +0000351 unsigned Leftover = Range % uint32_t(IncValue);
352
353 // If this is an equality comparison, we require that the strided value
354 // exactly land on the exit value, otherwise the IV condition will wrap
355 // around and do things the fp IV wouldn't.
356 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
357 Leftover != 0)
358 return;
359
360 // If the stride would wrap around the i32 before exiting, we can't
361 // transform the IV.
362 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
363 return;
364
Chris Lattnerd2440572004-04-15 20:26:22 +0000365 } else {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000366 // If we have a negative stride, we require the init to be greater than the
Andrew Trick94f2c232011-09-13 01:59:32 +0000367 // exit value.
368 if (InitValue <= ExitValue)
Andrew Trick1a54bb22011-07-12 00:08:50 +0000369 return;
370
371 uint32_t Range = uint32_t(InitValue-ExitValue);
Andrew Trick94f2c232011-09-13 01:59:32 +0000372 // Check for infinite loop, either:
373 // while (i >= Exit) or until (i < Exit)
374 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000375 if (++Range == 0) return; // Range overflows.
376 }
377
378 unsigned Leftover = Range % uint32_t(-IncValue);
379
380 // If this is an equality comparison, we require that the strided value
381 // exactly land on the exit value, otherwise the IV condition will wrap
382 // around and do things the fp IV wouldn't.
383 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
384 Leftover != 0)
385 return;
386
387 // If the stride would wrap around the i32 before exiting, we can't
388 // transform the IV.
389 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
390 return;
Chris Lattnerd2440572004-04-15 20:26:22 +0000391 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000392
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000393 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
Chris Lattner40bf8b42004-04-02 20:24:31 +0000394
Andrew Trick1a54bb22011-07-12 00:08:50 +0000395 // Insert new integer induction variable.
396 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
397 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
398 PN->getIncomingBlock(IncomingEdge));
Chris Lattner40bf8b42004-04-02 20:24:31 +0000399
Andrew Trick1a54bb22011-07-12 00:08:50 +0000400 Value *NewAdd =
401 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
402 Incr->getName()+".int", Incr);
403 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
Dan Gohmanc2390b12009-02-12 22:19:27 +0000404
Andrew Trick1a54bb22011-07-12 00:08:50 +0000405 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
406 ConstantInt::get(Int32Ty, ExitValue),
407 Compare->getName());
Dan Gohman81db61a2009-05-12 02:17:14 +0000408
Andrew Trick1a54bb22011-07-12 00:08:50 +0000409 // In the following deletions, PN may become dead and may be deleted.
410 // Use a WeakVH to observe whether this happens.
411 WeakVH WeakPH = PN;
412
413 // Delete the old floating point exit comparison. The branch starts using the
414 // new comparison.
415 NewCompare->takeName(Compare);
416 Compare->replaceAllUsesWith(NewCompare);
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +0000417 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
Andrew Trick1a54bb22011-07-12 00:08:50 +0000418
419 // Delete the old floating point increment.
420 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +0000421 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
Andrew Trick1a54bb22011-07-12 00:08:50 +0000422
423 // If the FP induction variable still has uses, this is because something else
424 // in the loop uses its value. In order to canonicalize the induction
425 // variable, we chose to eliminate the IV and rewrite it in terms of an
426 // int->fp cast.
427 //
428 // We give preference to sitofp over uitofp because it is faster on most
429 // platforms.
430 if (WeakPH) {
431 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
Bill Wendlingb05fdd62011-08-24 20:28:43 +0000432 PN->getParent()->getFirstInsertionPt());
Andrew Trick1a54bb22011-07-12 00:08:50 +0000433 PN->replaceAllUsesWith(Conv);
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +0000434 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
Andrew Trick1a54bb22011-07-12 00:08:50 +0000435 }
Andrew Trick4b4bb712011-08-10 03:46:27 +0000436 Changed = true;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000437}
438
Andrew Trick1a54bb22011-07-12 00:08:50 +0000439void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
440 // First step. Check to see if there are any floating-point recurrences.
441 // If there are, change them into integer recurrences, permitting analysis by
442 // the SCEV routines.
443 //
444 BasicBlock *Header = L->getHeader();
445
446 SmallVector<WeakVH, 8> PHIs;
447 for (BasicBlock::iterator I = Header->begin();
448 PHINode *PN = dyn_cast<PHINode>(I); ++I)
449 PHIs.push_back(PN);
450
451 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
452 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
453 HandleFloatingPointIV(L, PN);
454
455 // If the loop previously had floating-point IV, ScalarEvolution
456 // may not have been able to compute a trip count. Now that we've done some
457 // re-writing, the trip count may be computable.
458 if (Changed)
459 SE->forgetLoop(L);
460}
461
462//===----------------------------------------------------------------------===//
463// RewriteLoopExitValues - Optimize IV users outside the loop.
464// As a side effect, reduces the amount of IV processing within the loop.
465//===----------------------------------------------------------------------===//
466
Chris Lattner40bf8b42004-04-02 20:24:31 +0000467/// RewriteLoopExitValues - Check to see if this loop has a computable
468/// loop-invariant execution count. If so, this means that we can compute the
469/// final value of any expressions that are recurrent in the loop, and
470/// substitute the exit values from the loop into any instructions outside of
471/// the loop that use the final values of the current expressions.
Dan Gohman81db61a2009-05-12 02:17:14 +0000472///
473/// This is mostly redundant with the regular IndVarSimplify activities that
474/// happen later, except that it's more powerful in some cases, because it's
475/// able to brute-force evaluate arbitrary instructions as long as they have
476/// constant operands at the beginning of the loop.
Chris Lattnerf1859892011-01-09 02:16:18 +0000477void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
Dan Gohman81db61a2009-05-12 02:17:14 +0000478 // Verify the input to the pass in already in LCSSA form.
Dan Gohmanbbf81d82010-03-10 19:38:49 +0000479 assert(L->isLCSSAForm(*DT));
Dan Gohman81db61a2009-05-12 02:17:14 +0000480
Devang Patelb7211a22007-08-21 00:31:24 +0000481 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattner9f3d7382007-03-04 03:43:23 +0000482 L->getUniqueExitBlocks(ExitBlocks);
Misha Brukmanfd939082005-04-21 23:48:37 +0000483
Chris Lattner9f3d7382007-03-04 03:43:23 +0000484 // Find all values that are computed inside the loop, but used outside of it.
485 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
486 // the exit blocks of the loop to find them.
487 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
488 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohmancafb8132009-02-17 19:13:57 +0000489
Chris Lattner9f3d7382007-03-04 03:43:23 +0000490 // If there are no PHI nodes in this exit block, then no values defined
491 // inside the loop are used on this path, skip it.
492 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
493 if (!PN) continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000494
Chris Lattner9f3d7382007-03-04 03:43:23 +0000495 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohmancafb8132009-02-17 19:13:57 +0000496
Chris Lattner9f3d7382007-03-04 03:43:23 +0000497 // Iterate over all of the PHI nodes.
498 BasicBlock::iterator BBI = ExitBB->begin();
499 while ((PN = dyn_cast<PHINode>(BBI++))) {
Torok Edwin3790fb02009-05-24 19:36:09 +0000500 if (PN->use_empty())
501 continue; // dead use, don't replace it
Dan Gohman814f2b22010-02-18 21:34:02 +0000502
503 // SCEV only supports integer expressions for now.
504 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
505 continue;
506
Dale Johannesen45a2d7d2010-02-19 07:14:22 +0000507 // It's necessary to tell ScalarEvolution about this explicitly so that
508 // it can walk the def-use list and forget all SCEVs, as it may not be
509 // watching the PHI itself. Once the new exit value is in place, there
510 // may not be a def-use connection between the loop and every instruction
511 // which got a SCEVAddRecExpr for that loop.
512 SE->forgetValue(PN);
513
Chris Lattner9f3d7382007-03-04 03:43:23 +0000514 // Iterate over all of the values in all the PHI nodes.
515 for (unsigned i = 0; i != NumPreds; ++i) {
516 // If the value being merged in is not integer or is not defined
517 // in the loop, skip it.
518 Value *InVal = PN->getIncomingValue(i);
Dan Gohman814f2b22010-02-18 21:34:02 +0000519 if (!isa<Instruction>(InVal))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000520 continue;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000521
Chris Lattner9f3d7382007-03-04 03:43:23 +0000522 // If this pred is for a subloop, not L itself, skip it.
Dan Gohmancafb8132009-02-17 19:13:57 +0000523 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Chris Lattner9f3d7382007-03-04 03:43:23 +0000524 continue; // The Block is in a subloop, skip it.
525
526 // Check that InVal is defined in the loop.
527 Instruction *Inst = cast<Instruction>(InVal);
Dan Gohman92329c72009-12-18 01:24:09 +0000528 if (!L->contains(Inst))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000529 continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000530
Chris Lattner9f3d7382007-03-04 03:43:23 +0000531 // Okay, this instruction has a user outside of the current loop
532 // and varies predictably *inside* the loop. Evaluate the value it
533 // contains when the loop exits, if possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000534 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
Andrew Trick4d4bbaf2013-10-25 21:35:56 +0000535 if (!SE->isLoopInvariant(ExitValue, L) ||
536 !isSafeToExpand(ExitValue, *SE))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000537 continue;
Chris Lattner9caed542007-03-04 01:00:28 +0000538
Arnaud A. de Grandmaisoneb9a42e2013-03-19 20:00:22 +0000539 // Computing the value outside of the loop brings no benefit if :
540 // - it is definitely used inside the loop in a way which can not be
541 // optimized away.
542 // - no use outside of the loop can take advantage of hoisting the
543 // computation out of the loop
544 if (ExitValue->getSCEVType()>=scMulExpr) {
545 unsigned NumHardInternalUses = 0;
546 unsigned NumSoftExternalUses = 0;
547 unsigned NumUses = 0;
548 for (Value::use_iterator IB=Inst->use_begin(), IE=Inst->use_end();
549 IB!=IE && NumUses<=6 ; ++IB) {
550 Instruction *UseInstr = cast<Instruction>(*IB);
551 unsigned Opc = UseInstr->getOpcode();
552 NumUses++;
553 if (L->contains(UseInstr)) {
554 if (Opc == Instruction::Call || Opc == Instruction::Ret)
555 NumHardInternalUses++;
556 } else {
557 if (Opc == Instruction::PHI) {
558 // Do not count the Phi as a use. LCSSA may have inserted
559 // plenty of trivial ones.
560 NumUses--;
561 for (Value::use_iterator PB=UseInstr->use_begin(),
562 PE=UseInstr->use_end();
563 PB!=PE && NumUses<=6 ; ++PB, ++NumUses) {
564 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
565 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
566 NumSoftExternalUses++;
567 }
568 continue;
569 }
570 if (Opc != Instruction::Call && Opc != Instruction::Ret)
571 NumSoftExternalUses++;
572 }
573 }
574 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
575 continue;
576 }
577
Dan Gohman667d7872009-06-26 22:53:46 +0000578 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
Dan Gohmancafb8132009-02-17 19:13:57 +0000579
David Greenef67ef312010-01-05 01:27:06 +0000580 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
Chris Lattnerbdff5482009-08-23 04:37:46 +0000581 << " LoopVal = " << *Inst << "\n");
Chris Lattner9f3d7382007-03-04 03:43:23 +0000582
Andrew Trickb12a7542011-03-17 23:51:11 +0000583 if (!isValidRewrite(Inst, ExitVal)) {
584 DeadInsts.push_back(ExitVal);
585 continue;
586 }
587 Changed = true;
588 ++NumReplaced;
589
Chris Lattner9f3d7382007-03-04 03:43:23 +0000590 PN->setIncomingValue(i, ExitVal);
Dan Gohmancafb8132009-02-17 19:13:57 +0000591
Benjamin Kramer71821262012-10-19 17:53:54 +0000592 // If this instruction is dead now, delete it. Don't do it now to avoid
593 // invalidating iterators.
594 if (isInstructionTriviallyDead(Inst, TLI))
595 DeadInsts.push_back(Inst);
Dan Gohmancafb8132009-02-17 19:13:57 +0000596
Dan Gohman65d1e2b2009-07-14 01:09:02 +0000597 if (NumPreds == 1) {
598 // Completely replace a single-pred PHI. This is safe, because the
599 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
600 // node anymore.
Chris Lattner9f3d7382007-03-04 03:43:23 +0000601 PN->replaceAllUsesWith(ExitVal);
Benjamin Kramer71821262012-10-19 17:53:54 +0000602 PN->eraseFromParent();
Chris Lattnerc9838f22007-03-03 22:48:48 +0000603 }
604 }
Dan Gohman65d1e2b2009-07-14 01:09:02 +0000605 if (NumPreds != 1) {
Dan Gohman667d7872009-06-26 22:53:46 +0000606 // Clone the PHI and delete the original one. This lets IVUsers and
607 // any other maps purge the original user from their records.
Devang Patel50b6e332009-10-27 22:16:29 +0000608 PHINode *NewPN = cast<PHINode>(PN->clone());
Dan Gohman667d7872009-06-26 22:53:46 +0000609 NewPN->takeName(PN);
610 NewPN->insertBefore(PN);
611 PN->replaceAllUsesWith(NewPN);
612 PN->eraseFromParent();
613 }
Chris Lattnerc9838f22007-03-03 22:48:48 +0000614 }
615 }
Dan Gohman472fdf72010-03-20 03:53:53 +0000616
617 // The insertion point instruction may have been deleted; clear it out
618 // so that the rewriter doesn't trip over it later.
619 Rewriter.clearInsertPoint();
Chris Lattner40bf8b42004-04-02 20:24:31 +0000620}
621
Andrew Trick1a54bb22011-07-12 00:08:50 +0000622//===----------------------------------------------------------------------===//
Andrew Trick1a54bb22011-07-12 00:08:50 +0000623// IV Widening - Extend the width of an IV to cover its widest uses.
624//===----------------------------------------------------------------------===//
625
Andrew Trickf85092c2011-05-20 18:25:42 +0000626namespace {
627 // Collect information about induction variables that are used by sign/zero
628 // extend operations. This information is recorded by CollectExtend and
629 // provides the input to WidenIV.
630 struct WideIVInfo {
Andrew Trick513b1f42011-10-15 01:38:14 +0000631 PHINode *NarrowIV;
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000632 Type *WidestNativeType; // Widest integer type created [sz]ext
Andrew Trick4b4bb712011-08-10 03:46:27 +0000633 bool IsSigned; // Was an sext user seen before a zext?
Andrew Trickf85092c2011-05-20 18:25:42 +0000634
Andrew Trick513b1f42011-10-15 01:38:14 +0000635 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
Andrew Trickf85092c2011-05-20 18:25:42 +0000636 };
Andrew Trick4b4bb712011-08-10 03:46:27 +0000637
638 class WideIVVisitor : public IVVisitor {
639 ScalarEvolution *SE;
Micah Villmow3574eca2012-10-08 16:38:25 +0000640 const DataLayout *TD;
Andrew Trick4b4bb712011-08-10 03:46:27 +0000641
642 public:
643 WideIVInfo WI;
644
Andrew Trick513b1f42011-10-15 01:38:14 +0000645 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
Micah Villmow3574eca2012-10-08 16:38:25 +0000646 const DataLayout *TData) :
Andrew Trick513b1f42011-10-15 01:38:14 +0000647 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
Andrew Trick4b4bb712011-08-10 03:46:27 +0000648
649 // Implement the interface used by simplifyUsersOfIV.
650 virtual void visitCast(CastInst *Cast);
651 };
Andrew Trickf85092c2011-05-20 18:25:42 +0000652}
653
Andrew Trick4b4bb712011-08-10 03:46:27 +0000654/// visitCast - Update information about the induction variable that is
Andrew Trickf85092c2011-05-20 18:25:42 +0000655/// extended by this sign or zero extend operation. This is used to determine
656/// the final width of the IV before actually widening it.
Andrew Trick4b4bb712011-08-10 03:46:27 +0000657void WideIVVisitor::visitCast(CastInst *Cast) {
658 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
659 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
660 return;
661
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000662 Type *Ty = Cast->getType();
Andrew Trickf85092c2011-05-20 18:25:42 +0000663 uint64_t Width = SE->getTypeSizeInBits(Ty);
664 if (TD && !TD->isLegalInteger(Width))
665 return;
666
Andrew Trick2fabd462011-06-21 03:22:38 +0000667 if (!WI.WidestNativeType) {
668 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
669 WI.IsSigned = IsSigned;
Andrew Trickf85092c2011-05-20 18:25:42 +0000670 return;
671 }
672
673 // We extend the IV to satisfy the sign of its first user, arbitrarily.
Andrew Trick2fabd462011-06-21 03:22:38 +0000674 if (WI.IsSigned != IsSigned)
Andrew Trickf85092c2011-05-20 18:25:42 +0000675 return;
676
Andrew Trick2fabd462011-06-21 03:22:38 +0000677 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
678 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
Andrew Trickf85092c2011-05-20 18:25:42 +0000679}
680
681namespace {
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000682
683/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
684/// WideIV that computes the same value as the Narrow IV def. This avoids
685/// caching Use* pointers.
686struct NarrowIVDefUse {
687 Instruction *NarrowDef;
688 Instruction *NarrowUse;
689 Instruction *WideDef;
690
691 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
692
693 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
694 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
695};
696
Andrew Trickf85092c2011-05-20 18:25:42 +0000697/// WidenIV - The goal of this transform is to remove sign and zero extends
698/// without creating any new induction variables. To do this, it creates a new
699/// phi of the wider type and redirects all users, either removing extends or
700/// inserting truncs whenever we stop propagating the type.
701///
702class WidenIV {
Andrew Trick2fabd462011-06-21 03:22:38 +0000703 // Parameters
Andrew Trickf85092c2011-05-20 18:25:42 +0000704 PHINode *OrigPhi;
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000705 Type *WideType;
Andrew Trickf85092c2011-05-20 18:25:42 +0000706 bool IsSigned;
707
Andrew Trick2fabd462011-06-21 03:22:38 +0000708 // Context
709 LoopInfo *LI;
710 Loop *L;
Andrew Trickf85092c2011-05-20 18:25:42 +0000711 ScalarEvolution *SE;
Andrew Trick2fabd462011-06-21 03:22:38 +0000712 DominatorTree *DT;
Andrew Trickf85092c2011-05-20 18:25:42 +0000713
Andrew Trick2fabd462011-06-21 03:22:38 +0000714 // Result
Andrew Trickf85092c2011-05-20 18:25:42 +0000715 PHINode *WidePhi;
716 Instruction *WideInc;
717 const SCEV *WideIncExpr;
Andrew Trick2fabd462011-06-21 03:22:38 +0000718 SmallVectorImpl<WeakVH> &DeadInsts;
Andrew Trickf85092c2011-05-20 18:25:42 +0000719
Andrew Trick2fabd462011-06-21 03:22:38 +0000720 SmallPtrSet<Instruction*,16> Widened;
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000721 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
Andrew Trickf85092c2011-05-20 18:25:42 +0000722
723public:
Andrew Trick513b1f42011-10-15 01:38:14 +0000724 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
Andrew Trick2fabd462011-06-21 03:22:38 +0000725 ScalarEvolution *SEv, DominatorTree *DTree,
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000726 SmallVectorImpl<WeakVH> &DI) :
Andrew Trick513b1f42011-10-15 01:38:14 +0000727 OrigPhi(WI.NarrowIV),
Andrew Trick2fabd462011-06-21 03:22:38 +0000728 WideType(WI.WidestNativeType),
729 IsSigned(WI.IsSigned),
Andrew Trickf85092c2011-05-20 18:25:42 +0000730 LI(LInfo),
731 L(LI->getLoopFor(OrigPhi->getParent())),
732 SE(SEv),
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000733 DT(DTree),
Andrew Trickf85092c2011-05-20 18:25:42 +0000734 WidePhi(0),
735 WideInc(0),
Andrew Trick2fabd462011-06-21 03:22:38 +0000736 WideIncExpr(0),
737 DeadInsts(DI) {
Andrew Trickf85092c2011-05-20 18:25:42 +0000738 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
739 }
740
Andrew Trick2fabd462011-06-21 03:22:38 +0000741 PHINode *CreateWideIV(SCEVExpander &Rewriter);
Andrew Trickf85092c2011-05-20 18:25:42 +0000742
743protected:
Andrew Trick909ef7d2011-09-28 01:35:36 +0000744 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
745 Instruction *Use);
746
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000747 Instruction *CloneIVUser(NarrowIVDefUse DU);
Andrew Trickf85092c2011-05-20 18:25:42 +0000748
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000749 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
750
Andrew Trick20151da2011-09-10 01:24:17 +0000751 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
752
Andrew Trickb5c26ef2012-01-20 07:41:13 +0000753 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
Andrew Trick4b029152011-07-02 02:34:25 +0000754
755 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
Andrew Trickf85092c2011-05-20 18:25:42 +0000756};
757} // anonymous namespace
758
Andrew Trick909ef7d2011-09-28 01:35:36 +0000759/// isLoopInvariant - Perform a quick domtree based check for loop invariance
760/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
761/// gratuitous for this purpose.
762static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
763 Instruction *Inst = dyn_cast<Instruction>(V);
764 if (!Inst)
765 return true;
766
767 return DT->properlyDominates(Inst->getParent(), L->getHeader());
768}
769
770Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
771 Instruction *Use) {
772 // Set the debug location and conservative insertion point.
773 IRBuilder<> Builder(Use);
774 // Hoist the insertion point into loop preheaders as far as possible.
775 for (const Loop *L = LI->getLoopFor(Use->getParent());
776 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
777 L = L->getParentLoop())
778 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
779
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000780 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
781 Builder.CreateZExt(NarrowOper, WideType);
Andrew Trickf85092c2011-05-20 18:25:42 +0000782}
783
784/// CloneIVUser - Instantiate a wide operation to replace a narrow
785/// operation. This only needs to handle operations that can evaluation to
786/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000787Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
788 unsigned Opcode = DU.NarrowUse->getOpcode();
Andrew Trickf85092c2011-05-20 18:25:42 +0000789 switch (Opcode) {
790 default:
791 return 0;
792 case Instruction::Add:
793 case Instruction::Mul:
794 case Instruction::UDiv:
795 case Instruction::Sub:
796 case Instruction::And:
797 case Instruction::Or:
798 case Instruction::Xor:
799 case Instruction::Shl:
800 case Instruction::LShr:
801 case Instruction::AShr:
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000802 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
Andrew Trickf85092c2011-05-20 18:25:42 +0000803
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000804 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
805 // anything about the narrow operand yet so must insert a [sz]ext. It is
806 // probably loop invariant and will be folded or hoisted. If it actually
807 // comes from a widened IV, it should be removed during a future call to
808 // WidenIVUse.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000809 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
Andrew Trick909ef7d2011-09-28 01:35:36 +0000810 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000811 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
Andrew Trick909ef7d2011-09-28 01:35:36 +0000812 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000813
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000814 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +0000815 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000816 LHS, RHS,
Andrew Trickf85092c2011-05-20 18:25:42 +0000817 NarrowBO->getName());
Andrew Trick909ef7d2011-09-28 01:35:36 +0000818 IRBuilder<> Builder(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +0000819 Builder.Insert(WideBO);
Andrew Trick6e0ce242011-06-30 19:02:17 +0000820 if (const OverflowingBinaryOperator *OBO =
821 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
822 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
823 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
824 }
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000825 return WideBO;
Andrew Trickf85092c2011-05-20 18:25:42 +0000826 }
Andrew Trickf85092c2011-05-20 18:25:42 +0000827}
828
Andrew Trick20151da2011-09-10 01:24:17 +0000829/// No-wrap operations can transfer sign extension of their result to their
830/// operands. Generate the SCEV value for the widened operation without
831/// actually modifying the IR yet. If the expression after extending the
832/// operands is an AddRec for this loop, return it.
833const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
834 // Handle the common case of add<nsw/nuw>
835 if (DU.NarrowUse->getOpcode() != Instruction::Add)
836 return 0;
837
838 // One operand (NarrowDef) has already been extended to WideDef. Now determine
839 // if extending the other will lead to a recurrence.
840 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
841 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
842
843 const SCEV *ExtendOperExpr = 0;
844 const OverflowingBinaryOperator *OBO =
845 cast<OverflowingBinaryOperator>(DU.NarrowUse);
846 if (IsSigned && OBO->hasNoSignedWrap())
847 ExtendOperExpr = SE->getSignExtendExpr(
848 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
849 else if(!IsSigned && OBO->hasNoUnsignedWrap())
850 ExtendOperExpr = SE->getZeroExtendExpr(
851 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
852 else
853 return 0;
854
Andrew Trickecb35ec2011-11-29 02:16:38 +0000855 // When creating this AddExpr, don't apply the current operations NSW or NUW
856 // flags. This instruction may be guarded by control flow that the no-wrap
857 // behavior depends on. Non-control-equivalent instructions can be mapped to
858 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
859 // semantics to those operations.
Andrew Trick20151da2011-09-10 01:24:17 +0000860 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
Andrew Trickecb35ec2011-11-29 02:16:38 +0000861 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
Andrew Trick20151da2011-09-10 01:24:17 +0000862
863 if (!AddRec || AddRec->getLoop() != L)
864 return 0;
865 return AddRec;
866}
867
Andrew Trick39d78022011-09-09 17:35:10 +0000868/// GetWideRecurrence - Is this instruction potentially interesting from
869/// IVUsers' perspective after widening it's type? In other words, can the
870/// extend be safely hoisted out of the loop with SCEV reducing the value to a
871/// recurrence on the same loop. If so, return the sign or zero extended
872/// recurrence. Otherwise return NULL.
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000873const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
874 if (!SE->isSCEVable(NarrowUse->getType()))
875 return 0;
876
877 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
878 if (SE->getTypeSizeInBits(NarrowExpr->getType())
879 >= SE->getTypeSizeInBits(WideType)) {
880 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
881 // index. So don't follow this use.
882 return 0;
883 }
884
885 const SCEV *WideExpr = IsSigned ?
886 SE->getSignExtendExpr(NarrowExpr, WideType) :
887 SE->getZeroExtendExpr(NarrowExpr, WideType);
888 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
889 if (!AddRec || AddRec->getLoop() != L)
890 return 0;
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000891 return AddRec;
892}
893
Andrew Trickf85092c2011-05-20 18:25:42 +0000894/// WidenIVUse - Determine whether an individual user of the narrow IV can be
895/// widened. If so, return the wide clone of the user.
Andrew Trickb5c26ef2012-01-20 07:41:13 +0000896Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
Andrew Trickcc359d92011-06-29 23:03:57 +0000897
Andrew Trick4b029152011-07-02 02:34:25 +0000898 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000899 if (isa<PHINode>(DU.NarrowUse) &&
900 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
Andrew Trickf85092c2011-05-20 18:25:42 +0000901 return 0;
902
Andrew Trickf85092c2011-05-20 18:25:42 +0000903 // Our raison d'etre! Eliminate sign and zero extension.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000904 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
905 Value *NewDef = DU.WideDef;
906 if (DU.NarrowUse->getType() != WideType) {
907 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000908 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
909 if (CastWidth < IVWidth) {
910 // The cast isn't as wide as the IV, so insert a Trunc.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000911 IRBuilder<> Builder(DU.NarrowUse);
912 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000913 }
914 else {
915 // A wider extend was hidden behind a narrower one. This may induce
916 // another round of IV widening in which the intermediate IV becomes
917 // dead. It should be very rare.
918 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000919 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
920 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
921 NewDef = DU.NarrowUse;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000922 }
923 }
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000924 if (NewDef != DU.NarrowUse) {
925 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
926 << " replaced by " << *DU.WideDef << "\n");
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000927 ++NumElimExt;
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000928 DU.NarrowUse->replaceAllUsesWith(NewDef);
929 DeadInsts.push_back(DU.NarrowUse);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000930 }
Andrew Trick2fabd462011-06-21 03:22:38 +0000931 // Now that the extend is gone, we want to expose it's uses for potential
932 // further simplification. We don't need to directly inform SimplifyIVUsers
933 // of the new users, because their parent IV will be processed later as a
934 // new loop phi. If we preserved IVUsers analysis, we would also want to
935 // push the uses of WideDef here.
Andrew Trickf85092c2011-05-20 18:25:42 +0000936
937 // No further widening is needed. The deceased [sz]ext had done it for us.
938 return 0;
939 }
Andrew Trick4b029152011-07-02 02:34:25 +0000940
941 // Does this user itself evaluate to a recurrence after widening?
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000942 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +0000943 if (!WideAddRec) {
Andrew Trick20151da2011-09-10 01:24:17 +0000944 WideAddRec = GetExtendedOperandRecurrence(DU);
945 }
946 if (!WideAddRec) {
Andrew Trickf85092c2011-05-20 18:25:42 +0000947 // This user does not evaluate to a recurence after widening, so don't
948 // follow it. Instead insert a Trunc to kill off the original use,
949 // eventually isolating the original narrow IV so it can be removed.
Andrew Trick86c98142011-07-20 05:32:06 +0000950 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000951 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
952 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
Andrew Trickf85092c2011-05-20 18:25:42 +0000953 return 0;
954 }
Andrew Trickfc933c02011-07-18 20:32:31 +0000955 // Assume block terminators cannot evaluate to a recurrence. We can't to
Andrew Trick4b029152011-07-02 02:34:25 +0000956 // insert a Trunc after a terminator if there happens to be a critical edge.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000957 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
Andrew Trick4b029152011-07-02 02:34:25 +0000958 "SCEV is not expected to evaluate a block terminator");
Andrew Trickcc359d92011-06-29 23:03:57 +0000959
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000960 // Reuse the IV increment that SCEVExpander created as long as it dominates
961 // NarrowUse.
Andrew Trickf85092c2011-05-20 18:25:42 +0000962 Instruction *WideUse = 0;
Andrew Trick20449412011-10-11 02:28:51 +0000963 if (WideAddRec == WideIncExpr
Andrew Trickb5c26ef2012-01-20 07:41:13 +0000964 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
Andrew Trickf85092c2011-05-20 18:25:42 +0000965 WideUse = WideInc;
Andrew Trickf85092c2011-05-20 18:25:42 +0000966 else {
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000967 WideUse = CloneIVUser(DU);
Andrew Trickf85092c2011-05-20 18:25:42 +0000968 if (!WideUse)
969 return 0;
970 }
Andrew Trick4b029152011-07-02 02:34:25 +0000971 // Evaluation of WideAddRec ensured that the narrow expression could be
972 // extended outside the loop without overflow. This suggests that the wide use
Andrew Trickf85092c2011-05-20 18:25:42 +0000973 // evaluates to the same expression as the extended narrow use, but doesn't
974 // absolutely guarantee it. Hence the following failsafe check. In rare cases
Andrew Trick2fabd462011-06-21 03:22:38 +0000975 // where it fails, we simply throw away the newly created wide use.
Andrew Trickf85092c2011-05-20 18:25:42 +0000976 if (WideAddRec != SE->getSCEV(WideUse)) {
977 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
978 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
979 DeadInsts.push_back(WideUse);
980 return 0;
981 }
982
983 // Returning WideUse pushes it on the worklist.
984 return WideUse;
985}
986
Andrew Trick4b029152011-07-02 02:34:25 +0000987/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
988///
989void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
990 for (Value::use_iterator UI = NarrowDef->use_begin(),
991 UE = NarrowDef->use_end(); UI != UE; ++UI) {
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000992 Instruction *NarrowUse = cast<Instruction>(*UI);
Andrew Trick4b029152011-07-02 02:34:25 +0000993
994 // Handle data flow merges and bizarre phi cycles.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000995 if (!Widened.insert(NarrowUse))
Andrew Trick4b029152011-07-02 02:34:25 +0000996 continue;
997
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000998 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
Andrew Trick4b029152011-07-02 02:34:25 +0000999 }
1000}
1001
Andrew Trickf85092c2011-05-20 18:25:42 +00001002/// CreateWideIV - Process a single induction variable. First use the
1003/// SCEVExpander to create a wide induction variable that evaluates to the same
1004/// recurrence as the original narrow IV. Then use a worklist to forward
Andrew Trick2fabd462011-06-21 03:22:38 +00001005/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
Andrew Trickf85092c2011-05-20 18:25:42 +00001006/// interesting IV users, the narrow IV will be isolated for removal by
1007/// DeleteDeadPHIs.
1008///
1009/// It would be simpler to delete uses as they are processed, but we must avoid
1010/// invalidating SCEV expressions.
1011///
Andrew Trick2fabd462011-06-21 03:22:38 +00001012PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
Andrew Trickf85092c2011-05-20 18:25:42 +00001013 // Is this phi an induction variable?
1014 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1015 if (!AddRec)
Andrew Trick2fabd462011-06-21 03:22:38 +00001016 return NULL;
Andrew Trickf85092c2011-05-20 18:25:42 +00001017
1018 // Widen the induction variable expression.
1019 const SCEV *WideIVExpr = IsSigned ?
1020 SE->getSignExtendExpr(AddRec, WideType) :
1021 SE->getZeroExtendExpr(AddRec, WideType);
1022
1023 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1024 "Expect the new IV expression to preserve its type");
1025
1026 // Can the IV be extended outside the loop without overflow?
1027 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1028 if (!AddRec || AddRec->getLoop() != L)
Andrew Trick2fabd462011-06-21 03:22:38 +00001029 return NULL;
Andrew Trickf85092c2011-05-20 18:25:42 +00001030
Andrew Trick2fabd462011-06-21 03:22:38 +00001031 // An AddRec must have loop-invariant operands. Since this AddRec is
Andrew Trickf85092c2011-05-20 18:25:42 +00001032 // materialized by a loop header phi, the expression cannot have any post-loop
1033 // operands, so they must dominate the loop header.
1034 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1035 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1036 && "Loop header phi recurrence inputs do not dominate the loop");
1037
1038 // The rewriter provides a value for the desired IV expression. This may
1039 // either find an existing phi or materialize a new one. Either way, we
1040 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1041 // of the phi-SCC dominates the loop entry.
1042 Instruction *InsertPt = L->getHeader()->begin();
1043 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1044
1045 // Remembering the WideIV increment generated by SCEVExpander allows
1046 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1047 // employ a general reuse mechanism because the call above is the only call to
1048 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001049 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1050 WideInc =
1051 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1052 WideIncExpr = SE->getSCEV(WideInc);
1053 }
Andrew Trickf85092c2011-05-20 18:25:42 +00001054
1055 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1056 ++NumWidened;
1057
1058 // Traverse the def-use chain using a worklist starting at the original IV.
Andrew Trick4b029152011-07-02 02:34:25 +00001059 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
Andrew Trickf85092c2011-05-20 18:25:42 +00001060
Andrew Trick4b029152011-07-02 02:34:25 +00001061 Widened.insert(OrigPhi);
1062 pushNarrowIVUsers(OrigPhi, WidePhi);
1063
Andrew Trickf85092c2011-05-20 18:25:42 +00001064 while (!NarrowIVUsers.empty()) {
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001065 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
Andrew Trickf85092c2011-05-20 18:25:42 +00001066
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001067 // Process a def-use edge. This may replace the use, so don't hold a
1068 // use_iterator across it.
Andrew Trickb5c26ef2012-01-20 07:41:13 +00001069 Instruction *WideUse = WidenIVUse(DU, Rewriter);
Andrew Trickf85092c2011-05-20 18:25:42 +00001070
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001071 // Follow all def-use edges from the previous narrow use.
Andrew Trick4b029152011-07-02 02:34:25 +00001072 if (WideUse)
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001073 pushNarrowIVUsers(DU.NarrowUse, WideUse);
Andrew Trick4b029152011-07-02 02:34:25 +00001074
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001075 // WidenIVUse may have removed the def-use edge.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001076 if (DU.NarrowDef->use_empty())
1077 DeadInsts.push_back(DU.NarrowDef);
Andrew Trickf85092c2011-05-20 18:25:42 +00001078 }
Andrew Trick2fabd462011-06-21 03:22:38 +00001079 return WidePhi;
Andrew Trickf85092c2011-05-20 18:25:42 +00001080}
1081
Andrew Trick1a54bb22011-07-12 00:08:50 +00001082//===----------------------------------------------------------------------===//
1083// Simplification of IV users based on SCEV evaluation.
1084//===----------------------------------------------------------------------===//
1085
Andrew Trickaeee4612011-05-12 00:04:28 +00001086
Andrew Trick4b4bb712011-08-10 03:46:27 +00001087/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1088/// users. Each successive simplification may push more users which may
Andrew Trick2fabd462011-06-21 03:22:38 +00001089/// themselves be candidates for simplification.
1090///
Andrew Trick4b4bb712011-08-10 03:46:27 +00001091/// Sign/Zero extend elimination is interleaved with IV simplification.
Andrew Trick2fabd462011-06-21 03:22:38 +00001092///
Andrew Trick4b4bb712011-08-10 03:46:27 +00001093void IndVarSimplify::SimplifyAndExtend(Loop *L,
1094 SCEVExpander &Rewriter,
1095 LPPassManager &LPM) {
Andrew Trick513b1f42011-10-15 01:38:14 +00001096 SmallVector<WideIVInfo, 8> WideIVs;
Andrew Trick15832f62011-06-28 02:49:20 +00001097
Andrew Trick2fabd462011-06-21 03:22:38 +00001098 SmallVector<PHINode*, 8> LoopPhis;
1099 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1100 LoopPhis.push_back(cast<PHINode>(I));
1101 }
Andrew Trick15832f62011-06-28 02:49:20 +00001102 // Each round of simplification iterates through the SimplifyIVUsers worklist
1103 // for all current phis, then determines whether any IVs can be
1104 // widened. Widening adds new phis to LoopPhis, inducing another round of
1105 // simplification on the wide IVs.
Andrew Trick2fabd462011-06-21 03:22:38 +00001106 while (!LoopPhis.empty()) {
Andrew Trick15832f62011-06-28 02:49:20 +00001107 // Evaluate as many IV expressions as possible before widening any IVs. This
Andrew Trick99a92f62011-06-28 16:45:04 +00001108 // forces SCEV to set no-wrap flags before evaluating sign/zero
Andrew Trick15832f62011-06-28 02:49:20 +00001109 // extension. The first time SCEV attempts to normalize sign/zero extension,
1110 // the result becomes final. So for the most predictable results, we delay
1111 // evaluation of sign/zero extend evaluation until needed, and avoid running
Andrew Trick4b4bb712011-08-10 03:46:27 +00001112 // other SCEV based analysis prior to SimplifyAndExtend.
Andrew Trick15832f62011-06-28 02:49:20 +00001113 do {
1114 PHINode *CurrIV = LoopPhis.pop_back_val();
Andrew Trick2fabd462011-06-21 03:22:38 +00001115
Andrew Trick15832f62011-06-28 02:49:20 +00001116 // Information about sign/zero extensions of CurrIV.
Andrew Trick513b1f42011-10-15 01:38:14 +00001117 WideIVVisitor WIV(CurrIV, SE, TD);
Andrew Trick2fabd462011-06-21 03:22:38 +00001118
Andrew Trickbddb7f82011-08-10 04:22:26 +00001119 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
Andrew Trick2fabd462011-06-21 03:22:38 +00001120
Andrew Trick4b4bb712011-08-10 03:46:27 +00001121 if (WIV.WI.WidestNativeType) {
Andrew Trick513b1f42011-10-15 01:38:14 +00001122 WideIVs.push_back(WIV.WI);
Andrew Trick2fabd462011-06-21 03:22:38 +00001123 }
Andrew Trick15832f62011-06-28 02:49:20 +00001124 } while(!LoopPhis.empty());
1125
Andrew Trick513b1f42011-10-15 01:38:14 +00001126 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1127 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
Andrew Trick2fabd462011-06-21 03:22:38 +00001128 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1129 Changed = true;
1130 LoopPhis.push_back(WidePhi);
1131 }
1132 }
1133 }
1134}
1135
Andrew Trick1a54bb22011-07-12 00:08:50 +00001136//===----------------------------------------------------------------------===//
1137// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1138//===----------------------------------------------------------------------===//
1139
Andrew Trick39d78022011-09-09 17:35:10 +00001140/// Check for expressions that ScalarEvolution generates to compute
1141/// BackedgeTakenInfo. If these expressions have not been reduced, then
1142/// expanding them may incur additional cost (albeit in the loop preheader).
Andrew Trick5241b792011-07-18 18:21:35 +00001143static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
Andrew Trick86d34102011-12-12 22:46:16 +00001144 SmallPtrSet<const SCEV*, 8> &Processed,
Andrew Trick5241b792011-07-18 18:21:35 +00001145 ScalarEvolution *SE) {
Andrew Trick86d34102011-12-12 22:46:16 +00001146 if (!Processed.insert(S))
1147 return false;
1148
Andrew Trick5241b792011-07-18 18:21:35 +00001149 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1150 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1151 // precise expression, rather than a UDiv from the user's code. If we can't
1152 // find a UDiv in the code with some simple searching, assume the former and
1153 // forego rewriting the loop.
1154 if (isa<SCEVUDivExpr>(S)) {
1155 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1156 if (!OrigCond) return true;
1157 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1158 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1159 if (R != S) {
1160 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1161 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1162 if (L != S)
1163 return true;
1164 }
1165 }
1166
Andrew Trick5241b792011-07-18 18:21:35 +00001167 // Recurse past add expressions, which commonly occur in the
1168 // BackedgeTakenCount. They may already exist in program code, and if not,
1169 // they are not too expensive rematerialize.
1170 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1171 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1172 I != E; ++I) {
Andrew Trick86d34102011-12-12 22:46:16 +00001173 if (isHighCostExpansion(*I, BI, Processed, SE))
Andrew Trick5241b792011-07-18 18:21:35 +00001174 return true;
1175 }
1176 return false;
1177 }
1178
1179 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1180 // the exit condition.
1181 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1182 return true;
1183
Nick Lewycky5fef01d2012-01-28 23:33:44 +00001184 // If we haven't recognized an expensive SCEV pattern, assume it's an
1185 // expression produced by program code.
Andrew Trick5241b792011-07-18 18:21:35 +00001186 return false;
1187}
1188
Andrew Trick1a54bb22011-07-12 00:08:50 +00001189/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1190/// count expression can be safely and cheaply expanded into an instruction
1191/// sequence that can be used by LinearFunctionTestReplace.
Andrew Trickd3714b62011-11-02 17:19:57 +00001192///
1193/// TODO: This fails for pointer-type loop counters with greater than one byte
1194/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1195/// we could skip this check in the case that the LFTR loop counter (chosen by
1196/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1197/// the loop test to an inequality test by checking the target data's alignment
1198/// of element types (given that the initial pointer value originates from or is
1199/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1200/// However, we don't yet have a strong motivation for converting loop tests
1201/// into inequality tests.
Andrew Trick1a54bb22011-07-12 00:08:50 +00001202static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1203 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1204 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1205 BackedgeTakenCount->isZero())
1206 return false;
1207
1208 if (!L->getExitingBlock())
1209 return false;
1210
1211 // Can't rewrite non-branch yet.
1212 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1213 if (!BI)
1214 return false;
1215
Andrew Trick86d34102011-12-12 22:46:16 +00001216 SmallPtrSet<const SCEV*, 8> Processed;
1217 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
Andrew Trick5241b792011-07-18 18:21:35 +00001218 return false;
1219
Andrew Trick1a54bb22011-07-12 00:08:50 +00001220 return true;
1221}
1222
Andrew Trickfc933c02011-07-18 20:32:31 +00001223/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1224/// invariant value to the phi.
1225static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1226 Instruction *IncI = dyn_cast<Instruction>(IncV);
1227 if (!IncI)
1228 return 0;
1229
1230 switch (IncI->getOpcode()) {
1231 case Instruction::Add:
1232 case Instruction::Sub:
1233 break;
1234 case Instruction::GetElementPtr:
1235 // An IV counter must preserve its type.
1236 if (IncI->getNumOperands() == 2)
1237 break;
1238 default:
1239 return 0;
1240 }
1241
1242 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1243 if (Phi && Phi->getParent() == L->getHeader()) {
1244 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1245 return Phi;
1246 return 0;
1247 }
1248 if (IncI->getOpcode() == Instruction::GetElementPtr)
1249 return 0;
1250
1251 // Allow add/sub to be commuted.
1252 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1253 if (Phi && Phi->getParent() == L->getHeader()) {
1254 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1255 return Phi;
1256 }
1257 return 0;
1258}
1259
Andrew Trick4781d8e2012-07-18 04:35:10 +00001260/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1261static ICmpInst *getLoopTest(Loop *L) {
Andrew Trickfc933c02011-07-18 20:32:31 +00001262 assert(L->getExitingBlock() && "expected loop exit");
1263
1264 BasicBlock *LatchBlock = L->getLoopLatch();
1265 // Don't bother with LFTR if the loop is not properly simplified.
1266 if (!LatchBlock)
Andrew Trick4781d8e2012-07-18 04:35:10 +00001267 return 0;
Andrew Trickfc933c02011-07-18 20:32:31 +00001268
1269 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1270 assert(BI && "expected exit branch");
1271
Andrew Trick4781d8e2012-07-18 04:35:10 +00001272 return dyn_cast<ICmpInst>(BI->getCondition());
1273}
1274
1275/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1276/// that the current exit test is already sufficiently canonical.
1277static bool needsLFTR(Loop *L, DominatorTree *DT) {
Andrew Trickfc933c02011-07-18 20:32:31 +00001278 // Do LFTR to simplify the exit condition to an ICMP.
Andrew Trick4781d8e2012-07-18 04:35:10 +00001279 ICmpInst *Cond = getLoopTest(L);
Andrew Trickfc933c02011-07-18 20:32:31 +00001280 if (!Cond)
1281 return true;
1282
1283 // Do LFTR to simplify the exit ICMP to EQ/NE
1284 ICmpInst::Predicate Pred = Cond->getPredicate();
1285 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1286 return true;
1287
1288 // Look for a loop invariant RHS
1289 Value *LHS = Cond->getOperand(0);
1290 Value *RHS = Cond->getOperand(1);
1291 if (!isLoopInvariant(RHS, L, DT)) {
1292 if (!isLoopInvariant(LHS, L, DT))
1293 return true;
1294 std::swap(LHS, RHS);
1295 }
1296 // Look for a simple IV counter LHS
1297 PHINode *Phi = dyn_cast<PHINode>(LHS);
1298 if (!Phi)
1299 Phi = getLoopPhiForCounter(LHS, L, DT);
1300
1301 if (!Phi)
1302 return true;
1303
Jakub Staszakeb51e952012-10-04 19:08:30 +00001304 // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
Jakub Staszak395c1502012-10-03 23:59:47 +00001305 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1306 if (Idx < 0)
1307 return true;
Jakub Staszakeb51e952012-10-04 19:08:30 +00001308
1309 // Do LFTR if the exit condition's IV is *not* a simple counter.
Jakub Staszak395c1502012-10-03 23:59:47 +00001310 Value *IncV = Phi->getIncomingValue(Idx);
Andrew Trickfc933c02011-07-18 20:32:31 +00001311 return Phi != getLoopPhiForCounter(IncV, L, DT);
1312}
1313
Andrew Trick4781d8e2012-07-18 04:35:10 +00001314/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1315/// down to checking that all operands are constant and listing instructions
1316/// that may hide undef.
1317static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
1318 unsigned Depth) {
1319 if (isa<Constant>(V))
1320 return !isa<UndefValue>(V);
1321
1322 if (Depth >= 6)
1323 return false;
1324
1325 // Conservatively handle non-constant non-instructions. For example, Arguments
1326 // may be undef.
1327 Instruction *I = dyn_cast<Instruction>(V);
1328 if (!I)
1329 return false;
1330
1331 // Load and return values may be undef.
1332 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1333 return false;
1334
1335 // Optimistically handle other instructions.
1336 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1337 if (!Visited.insert(*OI))
1338 continue;
1339 if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1340 return false;
1341 }
1342 return true;
1343}
1344
1345/// Return true if the given value is concrete. We must prove that undef can
1346/// never reach it.
1347///
1348/// TODO: If we decide that this is a good approach to checking for undef, we
1349/// may factor it into a common location.
1350static bool hasConcreteDef(Value *V) {
1351 SmallPtrSet<Value*, 8> Visited;
1352 Visited.insert(V);
1353 return hasConcreteDefImpl(V, Visited, 0);
1354}
1355
Andrew Trickfc933c02011-07-18 20:32:31 +00001356/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1357/// be rewritten) loop exit test.
1358static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1359 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1360 Value *IncV = Phi->getIncomingValue(LatchIdx);
1361
1362 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1363 UI != UE; ++UI) {
1364 if (*UI != Cond && *UI != IncV) return false;
1365 }
1366
1367 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1368 UI != UE; ++UI) {
1369 if (*UI != Cond && *UI != Phi) return false;
1370 }
1371 return true;
1372}
1373
1374/// FindLoopCounter - Find an affine IV in canonical form.
1375///
Andrew Trickd3714b62011-11-02 17:19:57 +00001376/// BECount may be an i8* pointer type. The pointer difference is already
1377/// valid count without scaling the address stride, so it remains a pointer
1378/// expression as far as SCEV is concerned.
1379///
Andrew Trick4781d8e2012-07-18 04:35:10 +00001380/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1381///
Andrew Trickfc933c02011-07-18 20:32:31 +00001382/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1383///
1384/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1385/// This is difficult in general for SCEV because of potential overflow. But we
1386/// could at least handle constant BECounts.
1387static PHINode *
1388FindLoopCounter(Loop *L, const SCEV *BECount,
Micah Villmow3574eca2012-10-08 16:38:25 +00001389 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
Andrew Trickfc933c02011-07-18 20:32:31 +00001390 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1391
1392 Value *Cond =
1393 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1394
1395 // Loop over all of the PHI nodes, looking for a simple counter.
1396 PHINode *BestPhi = 0;
1397 const SCEV *BestInit = 0;
1398 BasicBlock *LatchBlock = L->getLoopLatch();
1399 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1400
1401 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1402 PHINode *Phi = cast<PHINode>(I);
1403 if (!SE->isSCEVable(Phi->getType()))
1404 continue;
1405
Andrew Trickd3714b62011-11-02 17:19:57 +00001406 // Avoid comparing an integer IV against a pointer Limit.
1407 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1408 continue;
1409
Andrew Trickfc933c02011-07-18 20:32:31 +00001410 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1411 if (!AR || AR->getLoop() != L || !AR->isAffine())
1412 continue;
1413
1414 // AR may be a pointer type, while BECount is an integer type.
1415 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1416 // AR may not be a narrower type, or we may never exit.
1417 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1418 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1419 continue;
1420
1421 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1422 if (!Step || !Step->isOne())
1423 continue;
1424
1425 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1426 Value *IncV = Phi->getIncomingValue(LatchIdx);
1427 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1428 continue;
1429
Andrew Trick4781d8e2012-07-18 04:35:10 +00001430 // Avoid reusing a potentially undef value to compute other values that may
1431 // have originally had a concrete definition.
1432 if (!hasConcreteDef(Phi)) {
1433 // We explicitly allow unknown phis as long as they are already used by
1434 // the loop test. In this case we assume that performing LFTR could not
1435 // increase the number of undef users.
1436 if (ICmpInst *Cond = getLoopTest(L)) {
1437 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1438 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1439 continue;
1440 }
1441 }
1442 }
Andrew Trickfc933c02011-07-18 20:32:31 +00001443 const SCEV *Init = AR->getStart();
1444
1445 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1446 // Don't force a live loop counter if another IV can be used.
1447 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1448 continue;
1449
1450 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1451 // also prefers integer to pointer IVs.
1452 if (BestInit->isZero() != Init->isZero()) {
1453 if (BestInit->isZero())
1454 continue;
1455 }
1456 // If two IVs both count from zero or both count from nonzero then the
1457 // narrower is likely a dead phi that has been widened. Use the wider phi
1458 // to allow the other to be eliminated.
Andrew Trick7f496a62012-07-18 04:35:13 +00001459 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
Andrew Trickfc933c02011-07-18 20:32:31 +00001460 continue;
1461 }
1462 BestPhi = Phi;
1463 BestInit = Init;
1464 }
1465 return BestPhi;
1466}
1467
Andrew Trickd3714b62011-11-02 17:19:57 +00001468/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1469/// holds the RHS of the new loop test.
1470static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
Chandler Carruthece6c6b2012-11-01 08:07:29 +00001471 SCEVExpander &Rewriter, ScalarEvolution *SE) {
Andrew Trickd3714b62011-11-02 17:19:57 +00001472 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1473 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1474 const SCEV *IVInit = AR->getStart();
1475
1476 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1477 // finds a valid pointer IV. Sign extend BECount in order to materialize a
1478 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1479 // the existing GEPs whenever possible.
1480 if (IndVar->getType()->isPointerTy()
1481 && !IVCount->getType()->isPointerTy()) {
1482
Juergen Ributzkad0841532013-10-24 05:29:56 +00001483 // IVOffset will be the new GEP offset that is interpreted by GEP as a
1484 // signed value. IVCount on the other hand represents the loop trip count,
1485 // which is an unsigned value. FindLoopCounter only allows induction
1486 // variables that have a positive unit stride of one. This means we don't
1487 // have to handle the case of negative offsets (yet) and just need to zero
1488 // extend IVCount.
Andrew Trickd3714b62011-11-02 17:19:57 +00001489 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
Juergen Ributzkad0841532013-10-24 05:29:56 +00001490 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
Andrew Trickd3714b62011-11-02 17:19:57 +00001491
1492 // Expand the code for the iteration count.
1493 assert(SE->isLoopInvariant(IVOffset, L) &&
1494 "Computed iteration count is not loop invariant!");
1495 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1496 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1497
1498 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1499 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1500 // We could handle pointer IVs other than i8*, but we need to compensate for
1501 // gep index scaling. See canExpandBackedgeTakenCount comments.
Matt Arsenault14807bd2013-09-10 19:55:24 +00001502 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
Chandler Carruthece6c6b2012-11-01 08:07:29 +00001503 cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
Andrew Trickd3714b62011-11-02 17:19:57 +00001504 && "unit stride pointer IV must be i8*");
1505
1506 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1507 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1508 }
1509 else {
1510 // In any other case, convert both IVInit and IVCount to integers before
1511 // comparing. This may result in SCEV expension of pointers, but in practice
1512 // SCEV will fold the pointer arithmetic away as such:
1513 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1514 //
1515 // Valid Cases: (1) both integers is most common; (2) both may be pointers
Andrew Trick577ac562013-10-24 00:43:38 +00001516 // for simple memset-style loops.
1517 //
1518 // IVInit integer and IVCount pointer would only occur if a canonical IV
1519 // were generated on top of case #2, which is not expected.
Andrew Trickd3714b62011-11-02 17:19:57 +00001520
1521 const SCEV *IVLimit = 0;
1522 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1523 // For non-zero Start, compute IVCount here.
1524 if (AR->getStart()->isZero())
1525 IVLimit = IVCount;
1526 else {
1527 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1528 const SCEV *IVInit = AR->getStart();
1529
1530 // For integer IVs, truncate the IV before computing IVInit + BECount.
1531 if (SE->getTypeSizeInBits(IVInit->getType())
1532 > SE->getTypeSizeInBits(IVCount->getType()))
1533 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1534
1535 IVLimit = SE->getAddExpr(IVInit, IVCount);
1536 }
1537 // Expand the code for the iteration count.
1538 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1539 IRBuilder<> Builder(BI);
1540 assert(SE->isLoopInvariant(IVLimit, L) &&
1541 "Computed iteration count is not loop invariant!");
1542 // Ensure that we generate the same type as IndVar, or a smaller integer
1543 // type. In the presence of null pointer values, we have an integer type
1544 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1545 Type *LimitTy = IVCount->getType()->isPointerTy() ?
1546 IndVar->getType() : IVCount->getType();
1547 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1548 }
1549}
1550
Andrew Trick1a54bb22011-07-12 00:08:50 +00001551/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1552/// loop to be a canonical != comparison against the incremented loop induction
1553/// variable. This pass is able to rewrite the exit tests of any loop where the
1554/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1555/// is actually a much broader range than just linear tests.
Andrew Trickfc933c02011-07-18 20:32:31 +00001556Value *IndVarSimplify::
Andrew Trick1a54bb22011-07-12 00:08:50 +00001557LinearFunctionTestReplace(Loop *L,
1558 const SCEV *BackedgeTakenCount,
1559 PHINode *IndVar,
1560 SCEVExpander &Rewriter) {
1561 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001562
Andrew Trick807e6c72013-07-12 22:08:44 +00001563 // Initialize CmpIndVar and IVCount to their preincremented values.
1564 Value *CmpIndVar = IndVar;
1565 const SCEV *IVCount = BackedgeTakenCount;
Andrew Trickfc933c02011-07-18 20:32:31 +00001566
Andrew Trickd3714b62011-11-02 17:19:57 +00001567 // If the exiting block is the same as the backedge block, we prefer to
1568 // compare against the post-incremented value, otherwise we must compare
1569 // against the preincremented value.
Andrew Trick1a54bb22011-07-12 00:08:50 +00001570 if (L->getExitingBlock() == L->getLoopLatch()) {
1571 // Add one to the "backedge-taken" count to get the trip count.
Andrew Trick807e6c72013-07-12 22:08:44 +00001572 // This addition may overflow, which is valid as long as the comparison is
1573 // truncated to BackedgeTakenCount->getType().
1574 IVCount = SE->getAddExpr(BackedgeTakenCount,
1575 SE->getConstant(BackedgeTakenCount->getType(), 1));
Andrew Trick1a54bb22011-07-12 00:08:50 +00001576 // The BackedgeTaken expression contains the number of times that the
1577 // backedge branches to the loop header. This is one less than the
1578 // number of times the loop executes, so use the incremented indvar.
1579 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
Andrew Trick1a54bb22011-07-12 00:08:50 +00001580 }
1581
Chandler Carruthece6c6b2012-11-01 08:07:29 +00001582 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
Andrew Trickd3714b62011-11-02 17:19:57 +00001583 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1584 && "genLoopLimit missed a cast");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001585
1586 // Insert a new icmp_ne or icmp_eq instruction before the branch.
Andrew Trickd3714b62011-11-02 17:19:57 +00001587 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
Andrew Trickfc933c02011-07-18 20:32:31 +00001588 ICmpInst::Predicate P;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001589 if (L->contains(BI->getSuccessor(0)))
Andrew Trickfc933c02011-07-18 20:32:31 +00001590 P = ICmpInst::ICMP_NE;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001591 else
Andrew Trickfc933c02011-07-18 20:32:31 +00001592 P = ICmpInst::ICMP_EQ;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001593
1594 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1595 << " LHS:" << *CmpIndVar << '\n'
1596 << " op:\t"
Andrew Trickfc933c02011-07-18 20:32:31 +00001597 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1598 << " RHS:\t" << *ExitCnt << "\n"
Andrew Trickd3714b62011-11-02 17:19:57 +00001599 << " IVCount:\t" << *IVCount << "\n");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001600
Andrew Trick16404cc2013-07-12 22:08:48 +00001601 IRBuilder<> Builder(BI);
1602
Andrew Trick807e6c72013-07-12 22:08:44 +00001603 // LFTR can ignore IV overflow and truncate to the width of
1604 // BECount. This avoids materializing the add(zext(add)) expression.
Andrew Trick16404cc2013-07-12 22:08:48 +00001605 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1606 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1607 if (CmpIndVarSize > ExitCntSize) {
1608 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1609 const SCEV *ARStart = AR->getStart();
1610 const SCEV *ARStep = AR->getStepRecurrence(*SE);
1611 // For constant IVCount, avoid truncation.
1612 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1613 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
1614 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
1615 // Note that the post-inc value of BackedgeTakenCount may have overflowed
1616 // above such that IVCount is now zero.
1617 if (IVCount != BackedgeTakenCount && Count == 0) {
1618 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1619 ++Count;
1620 }
1621 else
1622 Count = Count.zext(CmpIndVarSize);
1623 APInt NewLimit;
1624 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1625 NewLimit = Start - Count;
1626 else
1627 NewLimit = Start + Count;
1628 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
Andrew Trickfc933c02011-07-18 20:32:31 +00001629
Andrew Trick16404cc2013-07-12 22:08:48 +00001630 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n");
1631 } else {
1632 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1633 "lftr.wideiv");
1634 }
1635 }
Andrew Trickfc933c02011-07-18 20:32:31 +00001636 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001637 Value *OrigCond = BI->getCondition();
1638 // It's tempting to use replaceAllUsesWith here to fully replace the old
1639 // comparison, but that's not immediately safe, since users of the old
1640 // comparison may not be dominated by the new comparison. Instead, just
1641 // update the branch to use the new comparison; in the common case this
1642 // will make old comparison dead.
1643 BI->setCondition(Cond);
1644 DeadInsts.push_back(OrigCond);
1645
1646 ++NumLFTR;
1647 Changed = true;
1648 return Cond;
1649}
1650
1651//===----------------------------------------------------------------------===//
1652// SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1653//===----------------------------------------------------------------------===//
1654
1655/// If there's a single exit block, sink any loop-invariant values that
1656/// were defined in the preheader but not used inside the loop into the
1657/// exit block to reduce register pressure in the loop.
1658void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1659 BasicBlock *ExitBlock = L->getExitBlock();
1660 if (!ExitBlock) return;
1661
1662 BasicBlock *Preheader = L->getLoopPreheader();
1663 if (!Preheader) return;
1664
Bill Wendlingb05fdd62011-08-24 20:28:43 +00001665 Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
Andrew Trick1a54bb22011-07-12 00:08:50 +00001666 BasicBlock::iterator I = Preheader->getTerminator();
1667 while (I != Preheader->begin()) {
1668 --I;
1669 // New instructions were inserted at the end of the preheader.
1670 if (isa<PHINode>(I))
1671 break;
1672
1673 // Don't move instructions which might have side effects, since the side
1674 // effects need to complete before instructions inside the loop. Also don't
1675 // move instructions which might read memory, since the loop may modify
1676 // memory. Note that it's okay if the instruction might have undefined
1677 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1678 // block.
1679 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1680 continue;
1681
1682 // Skip debug info intrinsics.
1683 if (isa<DbgInfoIntrinsic>(I))
1684 continue;
1685
Bill Wendling2b188812011-08-26 20:40:15 +00001686 // Skip landingpad instructions.
1687 if (isa<LandingPadInst>(I))
1688 continue;
1689
Eli Friedman8ecde6c2011-10-27 01:33:51 +00001690 // Don't sink alloca: we never want to sink static alloca's out of the
1691 // entry block, and correctly sinking dynamic alloca's requires
1692 // checks for stacksave/stackrestore intrinsics.
1693 // FIXME: Refactor this check somehow?
1694 if (isa<AllocaInst>(I))
1695 continue;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001696
1697 // Determine if there is a use in or before the loop (direct or
1698 // otherwise).
1699 bool UsedInLoop = false;
1700 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1701 UI != UE; ++UI) {
1702 User *U = *UI;
1703 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1704 if (PHINode *P = dyn_cast<PHINode>(U)) {
1705 unsigned i =
1706 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1707 UseBB = P->getIncomingBlock(i);
1708 }
1709 if (UseBB == Preheader || L->contains(UseBB)) {
1710 UsedInLoop = true;
1711 break;
1712 }
1713 }
1714
1715 // If there is, the def must remain in the preheader.
1716 if (UsedInLoop)
1717 continue;
1718
1719 // Otherwise, sink it to the exit block.
1720 Instruction *ToMove = I;
1721 bool Done = false;
1722
1723 if (I != Preheader->begin()) {
1724 // Skip debug info intrinsics.
1725 do {
1726 --I;
1727 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1728
1729 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1730 Done = true;
1731 } else {
1732 Done = true;
1733 }
1734
1735 ToMove->moveBefore(InsertPt);
1736 if (Done) break;
1737 InsertPt = ToMove;
1738 }
1739}
1740
1741//===----------------------------------------------------------------------===//
1742// IndVarSimplify driver. Manage several subpasses of IV simplification.
1743//===----------------------------------------------------------------------===//
1744
Dan Gohmanc2390b12009-02-12 22:19:27 +00001745bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohmana5283822010-06-18 01:35:11 +00001746 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1747 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1748 // canonicalization can be a pessimization without LSR to "clean up"
1749 // afterwards.
1750 // - We depend on having a preheader; in particular,
1751 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1752 // and we're in trouble if we can't find the induction variable even when
1753 // we've manually inserted one.
1754 if (!L->isLoopSimplifyForm())
1755 return false;
1756
Devang Patel5ee99972007-03-07 06:39:01 +00001757 LI = &getAnalysis<LoopInfo>();
1758 SE = &getAnalysis<ScalarEvolution>();
Dan Gohmande53dc02009-06-27 05:16:57 +00001759 DT = &getAnalysis<DominatorTree>();
Micah Villmow3574eca2012-10-08 16:38:25 +00001760 TD = getAnalysisIfAvailable<DataLayout>();
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001761 TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
Andrew Trick37da4082011-05-04 02:10:13 +00001762
Andrew Trickb12a7542011-03-17 23:51:11 +00001763 DeadInsts.clear();
Devang Patel5ee99972007-03-07 06:39:01 +00001764 Changed = false;
Dan Gohman60f8a632009-02-17 20:49:49 +00001765
Dan Gohman2d1be872009-04-16 03:18:22 +00001766 // If there are any floating-point recurrences, attempt to
Dan Gohman60f8a632009-02-17 20:49:49 +00001767 // transform them to use integer recurrences.
1768 RewriteNonIntegerIVs(L);
1769
Dan Gohman0bba49c2009-07-07 17:06:11 +00001770 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
Chris Lattner9caed542007-03-04 01:00:28 +00001771
Dan Gohman667d7872009-06-26 22:53:46 +00001772 // Create a rewriter object which we'll use to transform the code with.
Andrew Trick5e7645b2011-06-28 05:07:32 +00001773 SCEVExpander Rewriter(*SE, "indvars");
Andrew Trick20449412011-10-11 02:28:51 +00001774#ifndef NDEBUG
1775 Rewriter.setDebugType(DEBUG_TYPE);
1776#endif
Andrew Trick156d4602011-06-27 23:17:44 +00001777
1778 // Eliminate redundant IV users.
Andrew Trick15832f62011-06-28 02:49:20 +00001779 //
1780 // Simplification works best when run before other consumers of SCEV. We
1781 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1782 // other expressions involving loop IVs have been evaluated. This helps SCEV
Andrew Trick99a92f62011-06-28 16:45:04 +00001783 // set no-wrap flags before normalizing sign/zero extension.
Andrew Trickdb0d6662012-03-22 17:10:11 +00001784 Rewriter.disableCanonicalMode();
1785 SimplifyAndExtend(L, Rewriter, LPM);
Andrew Trick37da4082011-05-04 02:10:13 +00001786
Chris Lattner40bf8b42004-04-02 20:24:31 +00001787 // Check to see if this loop has a computable loop-invariant execution count.
1788 // If so, this means that we can compute the final value of any expressions
1789 // that are recurrent in the loop, and substitute the exit values from the
1790 // loop into any instructions outside of the loop that use the final values of
1791 // the current expressions.
Chris Lattner3dec1f22002-05-10 15:38:35 +00001792 //
Dan Gohman46bdfb02009-02-24 18:55:53 +00001793 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
Dan Gohman454d26d2010-02-22 04:11:59 +00001794 RewriteLoopExitValues(L, Rewriter);
Chris Lattner6148c022001-12-03 17:28:42 +00001795
Andrew Trick6f684b02011-07-16 01:06:48 +00001796 // Eliminate redundant IV cycles.
Andrew Trickdb0d6662012-03-22 17:10:11 +00001797 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
Andrew Trick037d1c02011-07-06 20:50:43 +00001798
Dan Gohmanc2390b12009-02-12 22:19:27 +00001799 // If we have a trip count expression, rewrite the loop's exit condition
1800 // using it. We can currently only handle loops with a single exit.
Andrew Trickc5480c62012-03-24 00:51:17 +00001801 if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1802 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1803 if (IndVar) {
1804 // Check preconditions for proper SCEVExpander operation. SCEV does not
1805 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1806 // pass that uses the SCEVExpander must do it. This does not work well for
1807 // loop passes because SCEVExpander makes assumptions about all loops, while
1808 // LoopPassManager only forces the current loop to be simplified.
1809 //
1810 // FIXME: SCEV expansion has no way to bail out, so the caller must
1811 // explicitly check any assumptions made by SCEV. Brittle.
1812 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1813 if (!AR || AR->getLoop()->getLoopPreheader())
1814 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1815 Rewriter);
1816 }
Chris Lattnerfcb81f52004-04-22 14:59:40 +00001817 }
Andrew Trickb12a7542011-03-17 23:51:11 +00001818 // Clear the rewriter cache, because values that are in the rewriter's cache
1819 // can be deleted in the loop below, causing the AssertingVH in the cache to
1820 // trigger.
1821 Rewriter.clear();
1822
1823 // Now that we're done iterating through lists, clean up any instructions
1824 // which are now dead.
1825 while (!DeadInsts.empty())
1826 if (Instruction *Inst =
1827 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001828 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
Andrew Trickb12a7542011-03-17 23:51:11 +00001829
Dan Gohman667d7872009-06-26 22:53:46 +00001830 // The Rewriter may not be used from this point on.
Torok Edwin3d431382009-05-24 20:08:21 +00001831
Dan Gohman81db61a2009-05-12 02:17:14 +00001832 // Loop-invariant instructions in the preheader that aren't used in the
1833 // loop may be sunk below the loop to reduce register pressure.
Dan Gohman667d7872009-06-26 22:53:46 +00001834 SinkUnusedInvariants(L);
Dan Gohman81db61a2009-05-12 02:17:14 +00001835
Dan Gohman81db61a2009-05-12 02:17:14 +00001836 // Clean up dead instructions.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001837 Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
Dan Gohman81db61a2009-05-12 02:17:14 +00001838 // Check a post-condition.
Andrew Trickf6a0dba2011-07-18 18:44:20 +00001839 assert(L->isLCSSAForm(*DT) &&
1840 "Indvars did not leave the loop in lcssa form!");
1841
1842 // Verify that LFTR, and any other change have not interfered with SCEV's
1843 // ability to compute trip count.
1844#ifndef NDEBUG
Andrew Trickdb0d6662012-03-22 17:10:11 +00001845 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
Andrew Trickf6a0dba2011-07-18 18:44:20 +00001846 SE->forgetLoop(L);
1847 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1848 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1849 SE->getTypeSizeInBits(NewBECount->getType()))
1850 NewBECount = SE->getTruncateOrNoop(NewBECount,
1851 BackedgeTakenCount->getType());
1852 else
1853 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1854 NewBECount->getType());
1855 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1856 }
1857#endif
1858
Devang Patel5ee99972007-03-07 06:39:01 +00001859 return Changed;
Chris Lattner6148c022001-12-03 17:28:42 +00001860}