blob: 396b329980772ecf1ddce987d50897285f7ff4b4 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000030#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000031#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000032#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000035#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000036#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnerec531232009-12-31 07:33:14 +000038#include "llvm/ADT/DenseMap.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000039#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000040using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000041
Chris Lattner0e5f4992006-12-19 21:40:18 +000042STATISTIC(NumLinear , "Number of insts linearized");
43STATISTIC(NumChanged, "Number of insts reassociated");
44STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000046
Chris Lattner0e5f4992006-12-19 21:40:18 +000047namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000048 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000049 unsigned Rank;
50 Value *Op;
51 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52 };
53 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
55 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000056}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000057
Devang Patel50cacb22008-11-21 21:00:20 +000058#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000059/// PrintOps - Print out the expression identified in the Ops list.
60///
Chris Lattner9f7b7082009-12-31 18:40:32 +000061static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000062 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000063 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000064 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000065 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000066 dbgs() << "[ ";
67 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
68 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000069 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000070}
Devang Patel59500c82008-11-21 20:00:59 +000071#endif
Chris Lattnere5022fe2006-03-04 09:31:13 +000072
Dan Gohman844731a2008-05-13 00:00:25 +000073namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000074 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +000075 DenseMap<BasicBlock*, unsigned> RankMap;
76 DenseMap<AssertingVH<>, unsigned> ValueRankMap;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000077 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000078 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000079 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +000080 Reassociate() : FunctionPass(ID) {
81 initializeReassociatePass(*PassRegistry::getPassRegistry());
82 }
Devang Patel794fd752007-05-01 21:15:47 +000083
Chris Lattner7e708292002-06-25 16:13:24 +000084 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000085
86 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000087 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000088 }
89 private:
Chris Lattner7e708292002-06-25 16:13:24 +000090 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000091 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +000092 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner9f7b7082009-12-31 18:40:32 +000093 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +000094 unsigned Idx = 0);
Chris Lattner9f7b7082009-12-31 18:40:32 +000095 Value *OptimizeExpression(BinaryOperator *I,
96 SmallVectorImpl<ValueEntry> &Ops);
97 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
98 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000099 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000100 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000101 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000102
103 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000104 };
105}
106
Dan Gohman844731a2008-05-13 00:00:25 +0000107char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000108INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000109 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000110
Brian Gaeked0fde302003-11-11 22:41:34 +0000111// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000112FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000113
Chris Lattnere5022fe2006-03-04 09:31:13 +0000114void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000115 Instruction *Op = dyn_cast<Instruction>(V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000116 if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
Reid Spencere4d87aa2006-12-23 06:05:41 +0000117 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000118
Reid Spencere4d87aa2006-12-23 06:05:41 +0000119 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattner69e98e22009-12-31 19:24:52 +0000120
121 ValueRankMap.erase(Op);
122 Op->eraseFromParent();
Chris Lattnere5022fe2006-03-04 09:31:13 +0000123 RemoveDeadBinaryOp(LHS);
124 RemoveDeadBinaryOp(RHS);
125}
126
Chris Lattner9c723192005-05-08 20:57:04 +0000127
128static bool isUnmovableInstruction(Instruction *I) {
129 if (I->getOpcode() == Instruction::PHI ||
130 I->getOpcode() == Instruction::Alloca ||
131 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000132 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000133 (I->getOpcode() == Instruction::Call &&
134 !isa<DbgInfoIntrinsic>(I)) ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000135 I->getOpcode() == Instruction::UDiv ||
136 I->getOpcode() == Instruction::SDiv ||
137 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000138 I->getOpcode() == Instruction::URem ||
139 I->getOpcode() == Instruction::SRem ||
140 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000141 return true;
142 return false;
143}
144
Chris Lattner7e708292002-06-25 16:13:24 +0000145void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000146 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000147
148 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000149 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000150 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000151
Chris Lattner7e708292002-06-25 16:13:24 +0000152 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000153 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000154 E = RPOT.end(); I != E; ++I) {
155 BasicBlock *BB = *I;
156 unsigned BBRank = RankMap[BB] = ++i << 16;
157
158 // Walk the basic block, adding precomputed ranks for any instructions that
159 // we cannot move. This ensures that the ranks for these instructions are
160 // all different in the block.
161 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
162 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000163 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000164 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000165}
166
167unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000168 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000169 if (I == 0) {
170 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
171 return 0; // Otherwise it's a global or constant, rank 0.
172 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000173
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000174 if (unsigned Rank = ValueRankMap[I])
175 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000176
Chris Lattner08b43922005-05-07 04:08:02 +0000177 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
178 // we can reassociate expressions for code motion! Since we do not recurse
179 // for PHI nodes, we cannot have infinite recursion here, because there
180 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000181 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
182 for (unsigned i = 0, e = I->getNumOperands();
183 i != e && Rank != MaxRank; ++i)
184 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000185
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000186 // If this is a not or neg instruction, do not count it for rank. This
187 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000188 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000189 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000190 ++Rank;
191
David Greenea1fa76c2010-01-05 01:27:24 +0000192 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000193 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000194
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000195 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000196}
197
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000198/// isReassociableOp - Return true if V is an instruction of the specified
199/// opcode and if it only has one use.
200static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000201 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000202 cast<Instruction>(V)->getOpcode() == Opcode)
203 return cast<BinaryOperator>(V);
204 return 0;
205}
Chris Lattner4fd56002002-05-08 22:19:27 +0000206
Chris Lattnerf33151a2005-05-08 21:28:52 +0000207/// LowerNegateToMultiply - Replace 0-X with X*-1.
208///
Dale Johannesenf4978e22009-03-19 17:22:53 +0000209static Instruction *LowerNegateToMultiply(Instruction *Neg,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000210 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000211 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000212
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000213 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000214 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000215 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000216 Neg->replaceAllUsesWith(Res);
217 Neg->eraseFromParent();
218 return Res;
219}
220
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000221// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
222// Note that if D is also part of the expression tree that we recurse to
223// linearize it as well. Besides that case, this does not recurse into A,B, or
224// C.
225void Reassociate::LinearizeExpr(BinaryOperator *I) {
226 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
227 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000228 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000229 isReassociableOp(RHS, I->getOpcode()) &&
230 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000231
David Greenea1fa76c2010-01-05 01:27:24 +0000232 DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Chris Lattner4fd56002002-05-08 22:19:27 +0000233
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000234 // Move the RHS instruction to live immediately before I, avoiding breaking
235 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000236 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000237
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000238 // Move operands around to do the linearization.
239 I->setOperand(1, RHS->getOperand(0));
240 RHS->setOperand(0, LHS);
241 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000242
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000243 ++NumLinear;
244 MadeChange = true;
David Greenea1fa76c2010-01-05 01:27:24 +0000245 DEBUG(dbgs() << "Linearized: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000246
247 // If D is part of this expression tree, tail recurse.
248 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
249 LinearizeExpr(I);
250}
251
252
253/// LinearizeExprTree - Given an associative binary expression tree, traverse
254/// all of the uses putting it into canonical form. This forces a left-linear
Dan Gohmanf451cb82010-02-10 16:03:48 +0000255/// form of the expression (((a+b)+c)+d), and collects information about the
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000256/// rank of the non-tree operands.
257///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000258/// NOTE: These intentionally destroys the expression tree operands (turning
259/// them into undef values) to reduce #uses of the values. This means that the
260/// caller MUST use something like RewriteExprTree to put the values back in.
261///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000262void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000263 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000264 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
265 unsigned Opcode = I->getOpcode();
266
267 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
268 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
269 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
270
Chris Lattnerf33151a2005-05-08 21:28:52 +0000271 // If this is a multiply expression tree and it contains internal negations,
272 // transform them into multiplies by -1 so they can be reassociated.
273 if (I->getOpcode() == Instruction::Mul) {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000274 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000275 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000276 LHSBO = isReassociableOp(LHS, Opcode);
277 }
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000278 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000279 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000280 RHSBO = isReassociableOp(RHS, Opcode);
281 }
282 }
283
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000284 if (!LHSBO) {
285 if (!RHSBO) {
286 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
287 // such, just remember these operands and their rank.
288 Ops.push_back(ValueEntry(getRank(LHS), LHS));
289 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000290
291 // Clear the leaves out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000292 I->setOperand(0, UndefValue::get(I->getType()));
293 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000294 return;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000295 }
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000296
297 // Turn X+(Y+Z) -> (Y+Z)+X
298 std::swap(LHSBO, RHSBO);
299 std::swap(LHS, RHS);
300 bool Success = !I->swapOperands();
301 assert(Success && "swapOperands failed");
302 Success = false;
303 MadeChange = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000304 } else if (RHSBO) {
Dan Gohmanf451cb82010-02-10 16:03:48 +0000305 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the RHS is not
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000306 // part of the expression tree.
307 LinearizeExpr(I);
308 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
309 RHS = I->getOperand(1);
310 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000311 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000312
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000313 // Okay, now we know that the LHS is a nested expression and that the RHS is
314 // not. Perform reassociation.
315 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000316
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000317 // Move LHS right before I to make sure that the tree expression dominates all
318 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000319 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000320
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000321 // Linearize the expression tree on the LHS.
322 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000323
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000324 // Remember the RHS operand and its rank.
325 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000326
327 // Clear the RHS leaf out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000328 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000329}
330
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000331// RewriteExprTree - Now that the operands for this expression tree are
332// linearized and optimized, emit them in-order. This function is written to be
333// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000334void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000335 SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000336 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000337 if (i+2 == Ops.size()) {
338 if (I->getOperand(0) != Ops[i].Op ||
339 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000340 Value *OldLHS = I->getOperand(0);
David Greenea1fa76c2010-01-05 01:27:24 +0000341 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000342 I->setOperand(0, Ops[i].Op);
343 I->setOperand(1, Ops[i+1].Op);
David Greenea1fa76c2010-01-05 01:27:24 +0000344 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000345 MadeChange = true;
346 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000347
348 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
349 // delete the extra, now dead, nodes.
350 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000351 }
352 return;
353 }
354 assert(i+2 < Ops.size() && "Ops index out of range!");
355
356 if (I->getOperand(1) != Ops[i].Op) {
David Greenea1fa76c2010-01-05 01:27:24 +0000357 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000358 I->setOperand(1, Ops[i].Op);
David Greenea1fa76c2010-01-05 01:27:24 +0000359 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000360 MadeChange = true;
361 ++NumChanged;
362 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000363
364 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
365 assert(LHS->getOpcode() == I->getOpcode() &&
366 "Improper expression tree!");
367
368 // Compactify the tree instructions together with each other to guarantee
369 // that the expression tree is dominated by all of Ops.
370 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000371 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000372}
373
374
Chris Lattner4fd56002002-05-08 22:19:27 +0000375
Chris Lattnera36e6c82002-05-16 04:37:07 +0000376// NegateValue - Insert instructions before the instruction pointed to by BI,
377// that computes the negative version of the value specified. The negative
378// version of the value is returned, and BI is left pointing at the instruction
379// that should be processed next by the reassociation pass.
380//
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000381static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000382 if (Constant *C = dyn_cast<Constant>(V))
383 return ConstantExpr::getNeg(C);
384
Chris Lattnera36e6c82002-05-16 04:37:07 +0000385 // We are trying to expose opportunity for reassociation. One of the things
386 // that we want to do to achieve this is to push a negation as deep into an
387 // expression chain as possible, to expose the add instructions. In practice,
388 // this means that we turn this:
389 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
390 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
391 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000392 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000393 //
394 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000395 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000396 // Push the negates through the add.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000397 I->setOperand(0, NegateValue(I->getOperand(0), BI));
398 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000399
Chris Lattner2cd85da2005-09-02 06:38:04 +0000400 // We must move the add instruction here, because the neg instructions do
401 // not dominate the old add instruction in general. By moving it, we are
402 // assured that the neg instructions we just inserted dominate the
403 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000404 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000405 I->moveBefore(BI);
406 I->setName(I->getName()+".neg");
407 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000408 }
Chris Lattner35239932009-12-31 20:34:32 +0000409
410 // Okay, we need to materialize a negated version of V with an instruction.
411 // Scan the use lists of V to see if we have one already.
412 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000413 User *U = *UI;
414 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000415
416 // We found one! Now we have to make sure that the definition dominates
417 // this use. We do this by moving it to the entry block (if it is a
418 // non-instruction value) or right after the definition. These negates will
419 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000420 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000421
422 // Verify that the negate is in this function, V might be a constant expr.
423 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
424 continue;
Chris Lattner35239932009-12-31 20:34:32 +0000425
426 BasicBlock::iterator InsertPt;
427 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
428 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
429 InsertPt = II->getNormalDest()->begin();
430 } else {
431 InsertPt = InstInput;
432 ++InsertPt;
433 }
434 while (isa<PHINode>(InsertPt)) ++InsertPt;
435 } else {
436 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
437 }
438 TheNeg->moveBefore(InsertPt);
439 return TheNeg;
440 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000441
442 // Insert a 'neg' instruction that subtracts the value from zero to get the
443 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000444 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000445}
446
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000447/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
448/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000449static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000450 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000451 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000452 return false;
453
454 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000455 // subtract or if this is only used by one.
456 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
457 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000458 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000459 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000460 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000461 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000462 if (Sub->hasOneUse() &&
463 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
464 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000465 return true;
466
467 return false;
468}
469
Chris Lattner08b43922005-05-07 04:08:02 +0000470/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
471/// only used by an add, transform this into (X+(0-Y)) to promote better
472/// reassociation.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000473static Instruction *BreakUpSubtract(Instruction *Sub,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000474 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner90461932010-01-01 00:04:26 +0000475 // Convert a subtract into an add and a neg instruction. This allows sub
476 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000477 //
Chris Lattner90461932010-01-01 00:04:26 +0000478 // Calculate the negative value of Operand 1 of the sub instruction,
479 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000480 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000481 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000482 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000483 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000484 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000485
486 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000487 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000488 Sub->replaceAllUsesWith(New);
489 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000490
David Greenea1fa76c2010-01-05 01:27:24 +0000491 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000492 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000493}
494
Chris Lattner0975ed52005-05-07 04:24:13 +0000495/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
496/// by one, change this into a multiply by a constant to assist with further
497/// reassociation.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000498static Instruction *ConvertShiftToMul(Instruction *Shl,
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000499 DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000500 // If an operand of this shift is a reassociable multiply, or if the shift
501 // is used by a reassociable multiply or add, turn into a multiply.
502 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
503 (Shl->hasOneUse() &&
504 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
505 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000506 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000507 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Chris Lattner22a66c42006-03-14 06:55:18 +0000508
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000509 Instruction *Mul =
510 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000511 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000512 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000513 Shl->replaceAllUsesWith(Mul);
514 Shl->eraseFromParent();
515 return Mul;
516 }
517 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000518}
519
Chris Lattner109d34d2005-05-08 18:59:37 +0000520// Scan backwards and forwards among values with the same rank as element i to
Chris Lattner9506c932010-01-01 01:13:15 +0000521// see if X exists. If X does not exist, return i. This is useful when
522// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000523static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000524 Value *X) {
525 unsigned XRank = Ops[i].Rank;
526 unsigned e = Ops.size();
527 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
528 if (Ops[j].Op == X)
529 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000530 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000531 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
532 if (Ops[j].Op == X)
533 return j;
534 return i;
535}
536
Chris Lattnere5022fe2006-03-04 09:31:13 +0000537/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
538/// and returning the result. Insert the tree before I.
Chris Lattner8d93b252009-12-31 07:48:51 +0000539static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000540 if (Ops.size() == 1) return Ops.back();
541
542 Value *V1 = Ops.back();
543 Ops.pop_back();
544 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000545 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000546}
547
548/// RemoveFactorFromExpression - If V is an expression tree that is a
549/// multiplication sequence, and if this sequence contains a multiply by Factor,
550/// remove Factor from the tree and return the new tree.
551Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
552 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
553 if (!BO) return 0;
554
Chris Lattner9f7b7082009-12-31 18:40:32 +0000555 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000556 LinearizeExprTree(BO, Factors);
557
558 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000559 bool NeedsNegate = false;
560 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000561 if (Factors[i].Op == Factor) {
562 FoundFactor = true;
563 Factors.erase(Factors.begin()+i);
564 break;
565 }
Chris Lattner9506c932010-01-01 01:13:15 +0000566
567 // If this is a negative version of this factor, remove it.
568 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
569 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
570 if (FC1->getValue() == -FC2->getValue()) {
571 FoundFactor = NeedsNegate = true;
572 Factors.erase(Factors.begin()+i);
573 break;
574 }
575 }
576
Chris Lattnere9efecb2006-03-14 16:04:29 +0000577 if (!FoundFactor) {
578 // Make sure to restore the operands to the expression tree.
579 RewriteExprTree(BO, Factors);
580 return 0;
581 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000582
Chris Lattner9506c932010-01-01 01:13:15 +0000583 BasicBlock::iterator InsertPt = BO; ++InsertPt;
584
Chris Lattner1e7558b2009-12-31 19:34:45 +0000585 // If this was just a single multiply, remove the multiply and return the only
586 // remaining operand.
587 if (Factors.size() == 1) {
588 ValueRankMap.erase(BO);
589 BO->eraseFromParent();
Chris Lattner9506c932010-01-01 01:13:15 +0000590 V = Factors[0].Op;
591 } else {
592 RewriteExprTree(BO, Factors);
593 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000594 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000595
Chris Lattner9506c932010-01-01 01:13:15 +0000596 if (NeedsNegate)
597 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
598
599 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000600}
601
Chris Lattnere9efecb2006-03-14 16:04:29 +0000602/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
603/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000604///
605/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000606static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +0000607 SmallVectorImpl<Value*> &Factors,
608 const SmallVectorImpl<ValueEntry> &Ops,
609 bool IsRoot) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000610 BinaryOperator *BO;
Chris Lattner893075f2010-03-05 07:18:54 +0000611 if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000612 !(BO = dyn_cast<BinaryOperator>(V)) ||
613 BO->getOpcode() != Instruction::Mul) {
614 Factors.push_back(V);
615 return;
616 }
617
Chris Lattner893075f2010-03-05 07:18:54 +0000618 // If this value has a single use because it is another input to the add
619 // tree we're reassociating and we dropped its use, it actually has two
620 // uses and we can't factor it.
621 if (!IsRoot) {
622 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
623 if (Ops[i].Op == V) {
624 Factors.push_back(V);
625 return;
626 }
627 }
628
629
Chris Lattnere9efecb2006-03-14 16:04:29 +0000630 // Otherwise, add the LHS and RHS to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000631 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
632 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000633}
634
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000635/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
636/// instruction. This optimizes based on identities. If it can be reduced to
637/// a single Value, it is returned, otherwise the Ops list is mutated as
638/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000639static Value *OptimizeAndOrXor(unsigned Opcode,
640 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000641 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
642 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
643 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
644 // First, check for X and ~X in the operand list.
645 assert(i < Ops.size());
646 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
647 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
648 unsigned FoundX = FindInOperandList(Ops, i, X);
649 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000650 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000651 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000652
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000653 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000654 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000655 }
656 }
657
658 // Next, check for duplicate pairs of values, which we assume are next to
659 // each other, due to our sorting criteria.
660 assert(i < Ops.size());
661 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
662 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000663 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000664 Ops.erase(Ops.begin()+i);
665 --i; --e;
666 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000667 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000668 }
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000669
670 // Drop pairs of values for Xor.
671 assert(Opcode == Instruction::Xor);
672 if (e == 2)
673 return Constant::getNullValue(Ops[0].Op->getType());
674
Chris Lattner90461932010-01-01 00:04:26 +0000675 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000676 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
677 i -= 1; e -= 2;
678 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000679 }
680 }
681 return 0;
682}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000683
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000684/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
685/// optimizes based on identities. If it can be reduced to a single Value, it
686/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000687Value *Reassociate::OptimizeAdd(Instruction *I,
688 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000689 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000690 // can simplify the expression. X+-X == 0. While we're at it, scan for any
691 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +0000692 //
693 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
694 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000695 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000696 Value *TheOp = Ops[i].Op;
697 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000698 // instances of the operand together. Due to our sorting criteria, we know
699 // that these need to be next to each other in the vector.
700 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
701 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +0000702 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000703 do {
704 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +0000705 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000706 } while (i != Ops.size() && Ops[i].Op == TheOp);
707
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000708 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000709 ++NumFactor;
Chris Lattner69e98e22009-12-31 19:24:52 +0000710
711 // Insert a new multiply.
712 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
713 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
714
715 // Now that we have inserted a multiply, optimize it. This allows us to
716 // handle cases that require multiple factoring steps, such as this:
717 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
718 Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
719
720 // If every add operand was a duplicate, return the multiply.
721 if (Ops.empty())
722 return Mul;
723
724 // Otherwise, we had some input that didn't have the dupe, such as
725 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
726 // things being added by this operation.
727 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000728
729 --i;
730 e = Ops.size();
731 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +0000732 }
733
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000734 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000735 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000736 continue;
737
Chris Lattner69e98e22009-12-31 19:24:52 +0000738 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000739 unsigned FoundX = FindInOperandList(Ops, i, X);
740 if (FoundX == i)
741 continue;
742
743 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000744 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000745 return Constant::getNullValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000746
747 Ops.erase(Ops.begin()+i);
748 if (i < FoundX)
749 --FoundX;
750 else
751 --i; // Need to back up an extra one.
752 Ops.erase(Ops.begin()+FoundX);
753 ++NumAnnihil;
754 --i; // Revisit element.
755 e -= 2; // Removed two elements.
756 }
Chris Lattner94285e62009-12-31 18:17:13 +0000757
758 // Scan the operand list, checking to see if there are any common factors
759 // between operands. Consider something like A*A+A*B*C+D. We would like to
760 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
761 // To efficiently find this, we count the number of times a factor occurs
762 // for any ADD operands that are MULs.
763 DenseMap<Value*, unsigned> FactorOccurrences;
764
765 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
766 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +0000767 unsigned MaxOcc = 0;
768 Value *MaxOccVal = 0;
769 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
770 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
771 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
772 continue;
773
Chris Lattner94285e62009-12-31 18:17:13 +0000774 // Compute all of the factors of this added value.
775 SmallVector<Value*, 8> Factors;
Chris Lattner893075f2010-03-05 07:18:54 +0000776 FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
Chris Lattner94285e62009-12-31 18:17:13 +0000777 assert(Factors.size() > 1 && "Bad linearize!");
778
779 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +0000780 SmallPtrSet<Value*, 8> Duplicates;
781 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
782 Value *Factor = Factors[i];
783 if (!Duplicates.insert(Factor)) continue;
784
785 unsigned Occ = ++FactorOccurrences[Factor];
786 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
787
788 // If Factor is a negative constant, add the negated value as a factor
789 // because we can percolate the negate out. Watch for minint, which
790 // cannot be positivified.
791 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
792 if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
793 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
794 assert(!Duplicates.count(Factor) &&
795 "Shouldn't have two constant factors, missed a canonicalize");
796
797 unsigned Occ = ++FactorOccurrences[Factor];
798 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
799 }
Chris Lattner94285e62009-12-31 18:17:13 +0000800 }
801 }
802
803 // If any factor occurred more than one time, we can pull it out.
804 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000805 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +0000806 ++NumFactor;
807
808 // Create a new instruction that uses the MaxOccVal twice. If we don't do
809 // this, we could otherwise run into situations where removing a factor
810 // from an expression will drop a use of maxocc, and this can cause
811 // RemoveFactorFromExpression on successive values to behave differently.
812 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
813 SmallVector<Value*, 4> NewMulOps;
Duncan Sands37f87c72011-01-26 10:08:38 +0000814 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +0000815 // Only try to remove factors from expressions we're allowed to.
816 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
817 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
818 continue;
819
Chris Lattner94285e62009-12-31 18:17:13 +0000820 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands37f87c72011-01-26 10:08:38 +0000821 // The factorized operand may occur several times. Convert them all in
822 // one fell swoop.
823 for (unsigned j = Ops.size(); j != i;) {
824 --j;
825 if (Ops[j].Op == Ops[i].Op) {
826 NewMulOps.push_back(V);
827 Ops.erase(Ops.begin()+j);
828 }
829 }
830 --i;
Chris Lattner94285e62009-12-31 18:17:13 +0000831 }
832 }
833
834 // No need for extra uses anymore.
835 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +0000836
Chris Lattner94285e62009-12-31 18:17:13 +0000837 unsigned NumAddedValues = NewMulOps.size();
838 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +0000839
Chris Lattner69e98e22009-12-31 19:24:52 +0000840 // Now that we have inserted the add tree, optimize it. This allows us to
841 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +0000842 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000843 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +0000844 (void)NumAddedValues;
Chris Lattner69e98e22009-12-31 19:24:52 +0000845 V = ReassociateExpression(cast<BinaryOperator>(V));
846
847 // Create the multiply.
848 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
849
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000850 // Rerun associate on the multiply in case the inner expression turned into
851 // a multiply. We want to make sure that we keep things in canonical form.
852 V2 = ReassociateExpression(cast<BinaryOperator>(V2));
Chris Lattner94285e62009-12-31 18:17:13 +0000853
854 // If every add operand included the factor (e.g. "A*B + A*C"), then the
855 // entire result expression is just the multiply "A*(B+C)".
856 if (Ops.empty())
857 return V2;
858
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000859 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +0000860 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000861 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +0000862 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
863 }
864
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000865 return 0;
866}
Chris Lattnere5022fe2006-03-04 09:31:13 +0000867
868Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000869 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000870 // Now that we have the linearized expression tree, try to optimize it.
871 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000872 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000873 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000874
Chris Lattnere5022fe2006-03-04 09:31:13 +0000875 unsigned Opcode = I->getOpcode();
876
Chris Lattner46900102005-05-08 00:19:31 +0000877 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
878 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
879 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +0000880 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000881 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000882 }
883
884 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000885 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +0000886 switch (Opcode) {
887 default: break;
888 case Instruction::And:
Chris Lattner90461932010-01-01 00:04:26 +0000889 if (CstVal->isZero()) // X & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +0000890 return CstVal;
Chris Lattner90461932010-01-01 00:04:26 +0000891 if (CstVal->isAllOnesValue()) // X & -1 -> X
Chris Lattner8d93b252009-12-31 07:48:51 +0000892 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +0000893 break;
894 case Instruction::Mul:
Chris Lattner90461932010-01-01 00:04:26 +0000895 if (CstVal->isZero()) { // X * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000896 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000897 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000898 }
Chris Lattner8d93b252009-12-31 07:48:51 +0000899
900 if (cast<ConstantInt>(CstVal)->isOne())
Chris Lattner90461932010-01-01 00:04:26 +0000901 Ops.pop_back(); // X * 1 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000902 break;
903 case Instruction::Or:
Chris Lattner90461932010-01-01 00:04:26 +0000904 if (CstVal->isAllOnesValue()) // X | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +0000905 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000906 // FALLTHROUGH!
907 case Instruction::Add:
908 case Instruction::Xor:
Chris Lattner90461932010-01-01 00:04:26 +0000909 if (CstVal->isZero()) // X [|^+] 0 -> X
Chris Lattner46900102005-05-08 00:19:31 +0000910 Ops.pop_back();
911 break;
912 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000913 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000914
Chris Lattnerec531232009-12-31 07:33:14 +0000915 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +0000916 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000917 switch (Opcode) {
918 default: break;
919 case Instruction::And:
920 case Instruction::Or:
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000921 case Instruction::Xor: {
922 unsigned NumOps = Ops.size();
923 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
924 return Result;
925 IterateOptimization |= Ops.size() != NumOps;
Chris Lattner109d34d2005-05-08 18:59:37 +0000926 break;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000927 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000928
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000929 case Instruction::Add: {
930 unsigned NumOps = Ops.size();
Chris Lattner94285e62009-12-31 18:17:13 +0000931 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000932 return Result;
933 IterateOptimization |= Ops.size() != NumOps;
934 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000935
Chris Lattner109d34d2005-05-08 18:59:37 +0000936 break;
937 //case Instruction::Mul:
938 }
939
Jeff Cohen00b168892005-07-27 06:12:32 +0000940 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000941 return OptimizeExpression(I, Ops);
942 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000943}
944
Chris Lattnera36e6c82002-05-16 04:37:07 +0000945
Chris Lattner08b43922005-05-07 04:08:02 +0000946/// ReassociateBB - Inspect all of the instructions in this basic block,
947/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000948void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000949 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
950 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000951 if (BI->getOpcode() == Instruction::Shl &&
952 isa<ConstantInt>(BI->getOperand(1)))
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000953 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
Chris Lattner641f02f2005-05-10 03:39:25 +0000954 MadeChange = true;
955 BI = NI;
956 }
957
Chris Lattner6f156852005-05-08 21:33:47 +0000958 // Reject cases where it is pointless to do this.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000959 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
Duncan Sands1df98592010-02-16 11:11:14 +0000960 BI->getType()->isVectorTy())
Chris Lattner6f156852005-05-08 21:33:47 +0000961 continue; // Floating point ops are not associative.
962
Bob Wilsonfc375d22010-02-04 23:32:37 +0000963 // Do not reassociate boolean (i1) expressions. We want to preserve the
964 // original order of evaluation for short-circuited comparisons that
965 // SimplifyCFG has folded to AND/OR expressions. If the expression
966 // is not further optimized, it is likely to be transformed back to a
967 // short-circuited form for code gen, and the source order may have been
968 // optimized for the most likely conditions.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000969 if (BI->getType()->isIntegerTy(1))
Bob Wilsonfc375d22010-02-04 23:32:37 +0000970 continue;
971
Chris Lattner08b43922005-05-07 04:08:02 +0000972 // If this is a subtract instruction which is not already in negate form,
973 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000974 if (BI->getOpcode() == Instruction::Sub) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000975 if (ShouldBreakUpSubtract(BI)) {
976 BI = BreakUpSubtract(BI, ValueRankMap);
Chris Lattner5f94af02010-01-05 04:55:35 +0000977 // Reset the BBI iterator in case BreakUpSubtract changed the
978 // instruction it points to.
979 BBI = BI;
980 ++BBI;
Chris Lattnerd5b8d922008-02-18 02:18:25 +0000981 MadeChange = true;
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000982 } else if (BinaryOperator::isNeg(BI)) {
Chris Lattnerf33151a2005-05-08 21:28:52 +0000983 // Otherwise, this is a negation. See if the operand is a multiply tree
984 // and if this is not an inner node of a multiply tree.
985 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
986 (!BI->hasOneUse() ||
987 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000988 BI = LowerNegateToMultiply(BI, ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000989 MadeChange = true;
990 }
Chris Lattner08b43922005-05-07 04:08:02 +0000991 }
Chris Lattnerf33151a2005-05-08 21:28:52 +0000992 }
Chris Lattnere4b73042002-10-31 17:12:59 +0000993
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000994 // If this instruction is a commutative binary operator, process it.
995 if (!BI->isAssociative()) continue;
996 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +0000997
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000998 // If this is an interior node of a reassociable tree, ignore it until we
999 // get to the root of the tree, to avoid N^2 analysis.
1000 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1001 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +00001002
Chris Lattner7b4ad942005-09-02 07:07:58 +00001003 // If this is an add tree that is used by a sub instruction, ignore it
1004 // until we process the subtract.
1005 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1006 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1007 continue;
1008
Chris Lattner895b3922006-03-14 07:11:11 +00001009 ReassociateExpression(I);
1010 }
1011}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001012
Chris Lattner69e98e22009-12-31 19:24:52 +00001013Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner895b3922006-03-14 07:11:11 +00001014
Chris Lattner69e98e22009-12-31 19:24:52 +00001015 // First, walk the expression tree, linearizing the tree, collecting the
1016 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001017 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +00001018 LinearizeExprTree(I, Ops);
1019
David Greenea1fa76c2010-01-05 01:27:24 +00001020 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001021
1022 // Now that we have linearized the tree to a list and have gathered all of
1023 // the operands and their ranks, sort the operands by their rank. Use a
1024 // stable_sort so that values with equal ranks will have their relative
1025 // positions maintained (and so the compiler is deterministic). Note that
1026 // this sorts so that the highest ranking values end up at the beginning of
1027 // the vector.
1028 std::stable_sort(Ops.begin(), Ops.end());
1029
1030 // OptimizeExpression - Now that we have the expression tree in a convenient
1031 // sorted form, optimize it globally if possible.
1032 if (Value *V = OptimizeExpression(I, Ops)) {
1033 // This expression tree simplified to something that isn't a tree,
1034 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001035 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001036 I->replaceAllUsesWith(V);
1037 RemoveDeadBinaryOp(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001038 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +00001039 return V;
Chris Lattner895b3922006-03-14 07:11:11 +00001040 }
1041
1042 // We want to sink immediates as deeply as possible except in the case where
1043 // this is a multiply tree used only by an add, and the immediate is a -1.
1044 // In this case we reassociate to put the negation on the outside so that we
1045 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1046 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1047 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1048 isa<ConstantInt>(Ops.back().Op) &&
1049 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001050 ValueEntry Tmp = Ops.pop_back_val();
1051 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001052 }
1053
David Greenea1fa76c2010-01-05 01:27:24 +00001054 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001055
1056 if (Ops.size() == 1) {
1057 // This expression tree simplified to something that isn't a tree,
1058 // eliminate it.
1059 I->replaceAllUsesWith(Ops[0].Op);
1060 RemoveDeadBinaryOp(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001061 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001062 }
Chris Lattner69e98e22009-12-31 19:24:52 +00001063
1064 // Now that we ordered and optimized the expressions, splat them back into
1065 // the expression tree, removing any unneeded nodes.
1066 RewriteExprTree(I, Ops);
1067 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001068}
1069
1070
Chris Lattner7e708292002-06-25 16:13:24 +00001071bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +00001072 // Recalculate the rank map for F
1073 BuildRankMap(F);
1074
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001075 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +00001076 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001077 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +00001078
Chris Lattnerf55e7f52010-01-01 00:01:34 +00001079 // We are done with the rank map.
Chris Lattner4fd56002002-05-08 22:19:27 +00001080 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +00001081 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001082 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001083}
Brian Gaeked0fde302003-11-11 22:41:34 +00001084