blob: 911f7356059da362221e40aec85b2049034cdf15 [file] [log] [blame]
Chris Lattneree99d152008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner6c2a5502008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattneree99d152008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner6c2a5502008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Andersone7749782009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattneree99d152008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Chris Lattnerd4fe5402008-12-01 04:48:07 +000019#include "llvm/Analysis/ConstantFolding.h"
Chris Lattnerd980e342008-04-21 02:57:57 +000020#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattneree23b832008-04-20 22:39:42 +000021#include "llvm/Transforms/Utils/Local.h"
Chris Lattnercad6e472009-10-10 09:05:58 +000022#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattnerd4fe5402008-12-01 04:48:07 +000023#include "llvm/Target/TargetData.h"
Chris Lattner5b1d7822009-05-04 02:28:08 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
Chris Lattneree99d152008-04-20 20:35:01 +000029#include "llvm/Support/CommandLine.h"
Chris Lattner6c2a5502008-04-20 21:13:06 +000030#include "llvm/Support/Debug.h"
Daniel Dunbar23e2b802009-07-26 07:49:05 +000031#include "llvm/Support/raw_ostream.h"
Chris Lattneree99d152008-04-20 20:35:01 +000032using namespace llvm;
33
Chris Lattneree23b832008-04-20 22:39:42 +000034STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattnered90ae22009-10-11 07:24:57 +000036STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattneree99d152008-04-20 20:35:01 +000037
Chris Lattner6c2a5502008-04-20 21:13:06 +000038static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40 cl::desc("Max block size to duplicate for jump threading"),
41 cl::init(6), cl::Hidden);
42
Chris Lattneree99d152008-04-20 20:35:01 +000043namespace {
Chris Lattner48b29e32008-05-09 04:43:13 +000044 /// This pass performs 'jump threading', which looks at blocks that have
45 /// multiple predecessors and multiple successors. If one or more of the
46 /// predecessors of the block can be proven to always jump to one of the
47 /// successors, we forward the edge from the predecessor to the successor by
48 /// duplicating the contents of this block.
49 ///
50 /// An example of when this can occur is code like this:
51 ///
52 /// if () { ...
53 /// X = 4;
54 /// }
55 /// if (X < 3) {
56 ///
57 /// In this case, the unconditional branch at the end of the first if can be
58 /// revectored to the false side of the second if.
59 ///
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000060 class JumpThreading : public FunctionPass {
Chris Lattnerd4fe5402008-12-01 04:48:07 +000061 TargetData *TD;
Chris Lattner5b1d7822009-05-04 02:28:08 +000062#ifdef NDEBUG
63 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
Chris Lattneree99d152008-04-20 20:35:01 +000067 public:
68 static char ID; // Pass identification
Dan Gohman26f8c272008-09-04 17:05:41 +000069 JumpThreading() : FunctionPass(&ID) {}
Chris Lattneree99d152008-04-20 20:35:01 +000070
71 bool runOnFunction(Function &F);
Chris Lattner5b1d7822009-05-04 02:28:08 +000072 void FindLoopHeaders(Function &F);
73
Chris Lattner4735c732008-11-27 07:20:04 +000074 bool ProcessBlock(BasicBlock *BB);
Chris Lattner353c7f92009-10-11 04:33:43 +000075 bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
Chris Lattnered90ae22009-10-11 07:24:57 +000076 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
77 BasicBlock *PredBB);
Nick Lewyckyfb4605d2009-06-19 04:56:29 +000078 BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
Chris Lattnera00d6712009-11-06 18:15:14 +000079
80 typedef SmallVectorImpl<std::pair<ConstantInt*,
81 BasicBlock*> > PredValueInfo;
82
83 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84 PredValueInfo &Result);
85 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86
87
Chris Lattnerf4b9ed22008-12-03 07:48:08 +000088 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattnerd234e792008-12-04 06:31:07 +000089 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattnerfddc5022008-04-22 07:05:46 +000090
Chris Lattnercbc3a3e2008-04-22 06:36:15 +000091 bool ProcessJumpOnPHI(PHINode *PN);
Chris Lattnera64044c2008-04-22 21:40:39 +000092 bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
Chris Lattnera35cd9e2008-11-27 05:07:53 +000093
94 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattneree99d152008-04-20 20:35:01 +000095 };
Chris Lattneree99d152008-04-20 20:35:01 +000096}
97
Dan Gohman089efff2008-05-13 00:00:25 +000098char JumpThreading::ID = 0;
99static RegisterPass<JumpThreading>
100X("jump-threading", "Jump Threading");
101
Chris Lattneree99d152008-04-20 20:35:01 +0000102// Public interface to the Jump Threading pass
103FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
104
105/// runOnFunction - Top level algorithm.
106///
107bool JumpThreading::runOnFunction(Function &F) {
Daniel Dunbar23e2b802009-07-26 07:49:05 +0000108 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman56de36b2009-07-24 18:13:53 +0000109 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattneree23b832008-04-20 22:39:42 +0000110
Chris Lattner5b1d7822009-05-04 02:28:08 +0000111 FindLoopHeaders(F);
112
Chris Lattneree23b832008-04-20 22:39:42 +0000113 bool AnotherIteration = true, EverChanged = false;
114 while (AnotherIteration) {
115 AnotherIteration = false;
116 bool Changed = false;
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000117 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
118 BasicBlock *BB = I;
119 while (ProcessBlock(BB))
Chris Lattneree23b832008-04-20 22:39:42 +0000120 Changed = true;
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000121
122 ++I;
123
124 // If the block is trivially dead, zap it. This eliminates the successor
125 // edges which simplifies the CFG.
126 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner7cd3b162008-12-08 22:44:07 +0000127 BB != &BB->getParent()->getEntryBlock()) {
Daniel Dunbar23e2b802009-07-26 07:49:05 +0000128 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattnered90ae22009-10-11 07:24:57 +0000129 << "' with terminator: " << *BB->getTerminator() << '\n');
Chris Lattner5b1d7822009-05-04 02:28:08 +0000130 LoopHeaders.erase(BB);
asl7a969d82009-05-04 19:10:38 +0000131 DeleteDeadBlock(BB);
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000132 Changed = true;
133 }
134 }
Chris Lattneree23b832008-04-20 22:39:42 +0000135 AnotherIteration = Changed;
136 EverChanged |= Changed;
137 }
Chris Lattner5b1d7822009-05-04 02:28:08 +0000138
139 LoopHeaders.clear();
Chris Lattneree23b832008-04-20 22:39:42 +0000140 return EverChanged;
Chris Lattneree99d152008-04-20 20:35:01 +0000141}
Chris Lattner6c2a5502008-04-20 21:13:06 +0000142
Chris Lattnered90ae22009-10-11 07:24:57 +0000143/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
144/// thread across it.
145static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
146 /// Ignore PHI nodes, these will be flattened when duplication happens.
147 BasicBlock::const_iterator I = BB->getFirstNonPHI();
148
149 // Sum up the cost of each instruction until we get to the terminator. Don't
150 // include the terminator because the copy won't include it.
151 unsigned Size = 0;
152 for (; !isa<TerminatorInst>(I); ++I) {
153 // Debugger intrinsics don't incur code size.
154 if (isa<DbgInfoIntrinsic>(I)) continue;
155
156 // If this is a pointer->pointer bitcast, it is free.
157 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
158 continue;
159
160 // All other instructions count for at least one unit.
161 ++Size;
162
163 // Calls are more expensive. If they are non-intrinsic calls, we model them
164 // as having cost of 4. If they are a non-vector intrinsic, we model them
165 // as having cost of 2 total, and if they are a vector intrinsic, we model
166 // them as having cost 1.
167 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
168 if (!isa<IntrinsicInst>(CI))
169 Size += 3;
170 else if (!isa<VectorType>(CI->getType()))
171 Size += 1;
172 }
173 }
174
175 // Threading through a switch statement is particularly profitable. If this
176 // block ends in a switch, decrease its cost to make it more likely to happen.
177 if (isa<SwitchInst>(I))
178 Size = Size > 6 ? Size-6 : 0;
179
180 return Size;
181}
182
183
184
asl7a969d82009-05-04 19:10:38 +0000185/// FindLoopHeaders - We do not want jump threading to turn proper loop
Chris Lattner5b1d7822009-05-04 02:28:08 +0000186/// structures into irreducible loops. Doing this breaks up the loop nesting
187/// hierarchy and pessimizes later transformations. To prevent this from
188/// happening, we first have to find the loop headers. Here we approximate this
189/// by finding targets of backedges in the CFG.
190///
191/// Note that there definitely are cases when we want to allow threading of
192/// edges across a loop header. For example, threading a jump from outside the
193/// loop (the preheader) to an exit block of the loop is definitely profitable.
194/// It is also almost always profitable to thread backedges from within the loop
195/// to exit blocks, and is often profitable to thread backedges to other blocks
196/// within the loop (forming a nested loop). This simple analysis is not rich
197/// enough to track all of these properties and keep it up-to-date as the CFG
198/// mutates, so we don't allow any of these transformations.
199///
200void JumpThreading::FindLoopHeaders(Function &F) {
201 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
202 FindFunctionBackedges(F, Edges);
203
204 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
205 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
206}
207
208
Chris Lattnerfddc5022008-04-22 07:05:46 +0000209/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
210/// value for the PHI, factor them together so we get one block to thread for
211/// the whole group.
212/// This is important for things like "phi i1 [true, true, false, true, x]"
213/// where we only need to clone the block for the true blocks once.
214///
Nick Lewyckyfb4605d2009-06-19 04:56:29 +0000215BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
Chris Lattnerfddc5022008-04-22 07:05:46 +0000216 SmallVector<BasicBlock*, 16> CommonPreds;
217 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Nick Lewyckyfb4605d2009-06-19 04:56:29 +0000218 if (PN->getIncomingValue(i) == Val)
Chris Lattnerfddc5022008-04-22 07:05:46 +0000219 CommonPreds.push_back(PN->getIncomingBlock(i));
220
221 if (CommonPreds.size() == 1)
222 return CommonPreds[0];
223
Daniel Dunbar23e2b802009-07-26 07:49:05 +0000224 DEBUG(errs() << " Factoring out " << CommonPreds.size()
225 << " common predecessors.\n");
Chris Lattnerfddc5022008-04-22 07:05:46 +0000226 return SplitBlockPredecessors(PN->getParent(),
227 &CommonPreds[0], CommonPreds.size(),
228 ".thr_comm", this);
229}
Chris Lattnera00d6712009-11-06 18:15:14 +0000230
231/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
232/// hand sides of the compare instruction, try to determine the result. If the
233/// result can not be determined, a null pointer is returned.
234static Constant *GetResultOfComparison(CmpInst::Predicate pred,
235 Value *LHS, Value *RHS) {
236 if (Constant *CLHS = dyn_cast<Constant>(LHS))
237 if (Constant *CRHS = dyn_cast<Constant>(RHS))
238 return ConstantExpr::getCompare(pred, CLHS, CRHS);
Chris Lattnerfddc5022008-04-22 07:05:46 +0000239
Chris Lattnera00d6712009-11-06 18:15:14 +0000240 if (LHS == RHS)
241 if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
242 if (ICmpInst::isTrueWhenEqual(pred))
243 return ConstantInt::getTrue(LHS->getContext());
244 else
245 return ConstantInt::getFalse(LHS->getContext());
246 return 0;
247}
248
249
250/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
251/// if we can infer that the value is a known ConstantInt in any of our
252/// predecessors. If so, return the known the list of value and pred BB in the
253/// result vector. If a value is known to be undef, it is returned as null.
254///
255/// The BB basic block is known to start with a PHI node.
256///
257/// This returns true if there were any known values.
258///
259///
260/// TODO: Per PR2563, we could infer value range information about a predecessor
261/// based on its terminator.
262bool JumpThreading::
263ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
264 PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
265
266 // If V is a constantint, then it is known in all predecessors.
267 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
268 ConstantInt *CI = dyn_cast<ConstantInt>(V);
269 Result.resize(TheFirstPHI->getNumIncomingValues());
270 for (unsigned i = 0, e = Result.size(); i != e; ++i)
271 Result.push_back(std::make_pair(CI, TheFirstPHI->getIncomingBlock(i)));
272 return true;
273 }
274
275 // If V is a non-instruction value, or an instruction in a different block,
276 // then it can't be derived from a PHI.
277 Instruction *I = dyn_cast<Instruction>(V);
278 if (I == 0 || I->getParent() != BB)
279 return false;
280
281 /// If I is a PHI node, then we know the incoming values for any constants.
282 if (PHINode *PN = dyn_cast<PHINode>(I)) {
283 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
284 Value *InVal = PN->getIncomingValue(i);
285 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
286 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
287 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
288 }
289 }
290 return !Result.empty();
291 }
292
293 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
294
295 // Handle some boolean conditions.
296 if (I->getType()->getPrimitiveSizeInBits() == 1) {
297 // X | true -> true
298 // X & false -> false
299 if (I->getOpcode() == Instruction::Or ||
300 I->getOpcode() == Instruction::And) {
301 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
302 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
303
304 if (LHSVals.empty() && RHSVals.empty())
305 return false;
306
307 ConstantInt *InterestingVal;
308 if (I->getOpcode() == Instruction::Or)
309 InterestingVal = ConstantInt::getTrue(I->getContext());
310 else
311 InterestingVal = ConstantInt::getFalse(I->getContext());
312
313 // Scan for the sentinel.
314 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
315 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
316 Result.push_back(LHSVals[i]);
317 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
318 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
319 Result.push_back(RHSVals[i]);
320 return !Result.empty();
321 }
322
323 // TODO: Should handle the NOT form of XOR.
324
325 }
326
327 // Handle compare with phi operand, where the PHI is defined in this block.
328 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
329 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
330 if (PN && PN->getParent() == BB) {
331 // We can do this simplification if any comparisons fold to true or false.
332 // See if any do.
333 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
334 BasicBlock *PredBB = PN->getIncomingBlock(i);
335 Value *LHS = PN->getIncomingValue(i);
336 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
337
338 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS);
339 if (Res == 0) continue;
340
341 if (isa<UndefValue>(Res))
342 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
343 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
344 Result.push_back(std::make_pair(CI, PredBB));
345 }
346
347 return !Result.empty();
348 }
349
350 // TODO: We could also recurse to see if we can determine constants another
351 // way.
352 }
353 return false;
354}
355
356
Chris Lattnerfddc5022008-04-22 07:05:46 +0000357
Chris Lattnera5c0a112009-10-11 04:18:15 +0000358/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
359/// in an undefined jump, decide which block is best to revector to.
360///
361/// Since we can pick an arbitrary destination, we pick the successor with the
362/// fewest predecessors. This should reduce the in-degree of the others.
363///
364static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
365 TerminatorInst *BBTerm = BB->getTerminator();
366 unsigned MinSucc = 0;
367 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
368 // Compute the successor with the minimum number of predecessors.
369 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
370 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
371 TestBB = BBTerm->getSuccessor(i);
372 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
373 if (NumPreds < MinNumPreds)
374 MinSucc = i;
375 }
376
377 return MinSucc;
378}
379
Chris Lattner4735c732008-11-27 07:20:04 +0000380/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner6c2a5502008-04-20 21:13:06 +0000381/// through to a successor, transform them now.
Chris Lattner4735c732008-11-27 07:20:04 +0000382bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattnera35cd9e2008-11-27 05:07:53 +0000383 // If this block has a single predecessor, and if that pred has a single
384 // successor, merge the blocks. This encourages recursive jump threading
385 // because now the condition in this block can be threaded through
386 // predecessors of our predecessor block.
Chris Lattnera00d6712009-11-06 18:15:14 +0000387 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattner6ae27712008-11-28 19:54:49 +0000388 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
389 SinglePred != BB) {
Chris Lattner5b1d7822009-05-04 02:28:08 +0000390 // If SinglePred was a loop header, BB becomes one.
391 if (LoopHeaders.erase(SinglePred))
392 LoopHeaders.insert(BB);
393
Chris Lattnerb3485b92008-11-27 19:25:19 +0000394 // Remember if SinglePred was the entry block of the function. If so, we
395 // will need to move BB back to the entry position.
396 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Chris Lattnera35cd9e2008-11-27 05:07:53 +0000397 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattnerb3485b92008-11-27 19:25:19 +0000398
399 if (isEntry && BB != &BB->getParent()->getEntryBlock())
400 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattnera35cd9e2008-11-27 05:07:53 +0000401 return true;
402 }
Chris Lattnera00d6712009-11-06 18:15:14 +0000403 }
404
405 // Look to see if the terminator is a branch of switch, if not we can't thread
406 // it.
Chris Lattner6c2a5502008-04-20 21:13:06 +0000407 Value *Condition;
Chris Lattneree23b832008-04-20 22:39:42 +0000408 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
409 // Can't thread an unconditional jump.
410 if (BI->isUnconditional()) return false;
Chris Lattner6c2a5502008-04-20 21:13:06 +0000411 Condition = BI->getCondition();
Chris Lattneree23b832008-04-20 22:39:42 +0000412 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner6c2a5502008-04-20 21:13:06 +0000413 Condition = SI->getCondition();
414 else
415 return false; // Must be an invoke.
Chris Lattneree23b832008-04-20 22:39:42 +0000416
417 // If the terminator of this block is branching on a constant, simplify the
Chris Lattnerb192cc82008-04-21 18:25:01 +0000418 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattneree23b832008-04-20 22:39:42 +0000419 // other blocks.
420 if (isa<ConstantInt>(Condition)) {
Daniel Dunbar23e2b802009-07-26 07:49:05 +0000421 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattnered90ae22009-10-11 07:24:57 +0000422 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattneree23b832008-04-20 22:39:42 +0000423 ++NumFolds;
424 ConstantFoldTerminator(BB);
425 return true;
426 }
427
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000428 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnera5c0a112009-10-11 04:18:15 +0000429 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000430 if (isa<UndefValue>(Condition)) {
Chris Lattnera5c0a112009-10-11 04:18:15 +0000431 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000432
433 // Fold the branch/switch.
Chris Lattnera5c0a112009-10-11 04:18:15 +0000434 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000435 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnera5c0a112009-10-11 04:18:15 +0000436 if (i == BestSucc) continue;
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000437 BBTerm->getSuccessor(i)->removePredecessor(BB);
438 }
439
Daniel Dunbar23e2b802009-07-26 07:49:05 +0000440 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattnered90ae22009-10-11 07:24:57 +0000441 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnera5c0a112009-10-11 04:18:15 +0000442 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000443 BBTerm->eraseFromParent();
444 return true;
445 }
446
447 Instruction *CondInst = dyn_cast<Instruction>(Condition);
448
449 // If the condition is an instruction defined in another block, see if a
450 // predecessor has the same condition:
451 // br COND, BBX, BBY
452 // BBX:
453 // br COND, BBZ, BBW
454 if (!Condition->hasOneUse() && // Multiple uses.
455 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
456 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
457 if (isa<BranchInst>(BB->getTerminator())) {
458 for (; PI != E; ++PI)
459 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
460 if (PBI->isConditional() && PBI->getCondition() == Condition &&
461 ProcessBranchOnDuplicateCond(*PI, BB))
462 return true;
Chris Lattnerd234e792008-12-04 06:31:07 +0000463 } else {
464 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
465 for (; PI != E; ++PI)
466 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
467 if (PSI->getCondition() == Condition &&
468 ProcessSwitchOnDuplicateCond(*PI, BB))
469 return true;
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000470 }
471 }
472
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000473 // All the rest of our checks depend on the condition being an instruction.
474 if (CondInst == 0)
475 return false;
476
Chris Lattner6c2a5502008-04-20 21:13:06 +0000477 // See if this is a phi node in the current block.
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000478 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
479 if (PN->getParent() == BB)
480 return ProcessJumpOnPHI(PN);
Chris Lattner6c2a5502008-04-20 21:13:06 +0000481
Nick Lewyckyfb4605d2009-06-19 04:56:29 +0000482 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
483 if (isa<PHINode>(CondCmp->getOperand(0))) {
484 // If we have "br (phi != 42)" and the phi node has any constant values
485 // as operands, we can thread through this block.
486 //
487 // If we have "br (cmp phi, x)" and the phi node contains x such that the
488 // comparison uniquely identifies the branch target, we can thread
489 // through this block.
490
491 if (ProcessBranchOnCompare(CondCmp, BB))
492 return true;
493 }
Chris Lattner36b3b332009-06-19 16:27:56 +0000494
495 // If we have a comparison, loop over the predecessors to see if there is
Chris Lattnera00d6712009-11-06 18:15:14 +0000496 // a condition with a lexically identical value.
Chris Lattner36b3b332009-06-19 16:27:56 +0000497 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
498 for (; PI != E; ++PI)
499 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
500 if (PBI->isConditional() && *PI != BB) {
501 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
502 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
503 CI->getOperand(1) == CondCmp->getOperand(1) &&
504 CI->getPredicate() == CondCmp->getPredicate()) {
505 // TODO: Could handle things like (x != 4) --> (x == 17)
506 if (ProcessBranchOnDuplicateCond(*PI, BB))
507 return true;
508 }
509 }
510 }
Nick Lewyckyfb4605d2009-06-19 04:56:29 +0000511 }
Chris Lattnera35cd9e2008-11-27 05:07:53 +0000512
513 // Check for some cases that are worth simplifying. Right now we want to look
514 // for loads that are used by a switch or by the condition for the branch. If
515 // we see one, check to see if it's partially redundant. If so, insert a PHI
516 // which can then be used to thread the values.
517 //
518 // This is particularly important because reg2mem inserts loads and stores all
519 // over the place, and this blocks jump threading if we don't zap them.
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000520 Value *SimplifyValue = CondInst;
Chris Lattnera35cd9e2008-11-27 05:07:53 +0000521 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
522 if (isa<Constant>(CondCmp->getOperand(1)))
523 SimplifyValue = CondCmp->getOperand(0);
524
525 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
526 if (SimplifyPartiallyRedundantLoad(LI))
527 return true;
528
Chris Lattnera00d6712009-11-06 18:15:14 +0000529
530 // Handle a variety of cases where we are branching on something derived from
531 // a PHI node in the current block. If we can prove that any predecessors
532 // compute a predictable value based on a PHI node, thread those predecessors.
533 //
534 // We only bother doing this if the current block has a PHI node and if the
535 // conditional instruction lives in the current block. If either condition
536 // fail, this won't be a computable value anyway.
537 if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
538 if (ProcessThreadableEdges(CondInst, BB))
539 return true;
540
541
Chris Lattnera35cd9e2008-11-27 05:07:53 +0000542 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
543 // "(X == 4)" thread through this block.
Chris Lattnera64044c2008-04-22 21:40:39 +0000544
Chris Lattnercbc3a3e2008-04-22 06:36:15 +0000545 return false;
546}
547
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000548/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
549/// block that jump on exactly the same condition. This means that we almost
550/// always know the direction of the edge in the DESTBB:
551/// PREDBB:
552/// br COND, DESTBB, BBY
553/// DESTBB:
554/// br COND, BBZ, BBW
555///
556/// If DESTBB has multiple predecessors, we can't just constant fold the branch
557/// in DESTBB, we have to thread over it.
558bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
559 BasicBlock *BB) {
560 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
561
562 // If both successors of PredBB go to DESTBB, we don't know anything. We can
563 // fold the branch to an unconditional one, which allows other recursive
564 // simplifications.
565 bool BranchDir;
566 if (PredBI->getSuccessor(1) != BB)
567 BranchDir = true;
568 else if (PredBI->getSuccessor(0) != BB)
569 BranchDir = false;
570 else {
Daniel Dunbar23e2b802009-07-26 07:49:05 +0000571 DEBUG(errs() << " In block '" << PredBB->getName()
Chris Lattnered90ae22009-10-11 07:24:57 +0000572 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000573 ++NumFolds;
574 ConstantFoldTerminator(PredBB);
575 return true;
576 }
577
578 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
579
580 // If the dest block has one predecessor, just fix the branch condition to a
581 // constant and fold it.
582 if (BB->getSinglePredecessor()) {
Daniel Dunbar23e2b802009-07-26 07:49:05 +0000583 DEBUG(errs() << " In block '" << BB->getName()
584 << "' folding condition to '" << BranchDir << "': "
Chris Lattnered90ae22009-10-11 07:24:57 +0000585 << *BB->getTerminator() << '\n');
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000586 ++NumFolds;
Chris Lattner59be4472009-10-11 18:39:58 +0000587 Value *OldCond = DestBI->getCondition();
Owen Anderson35b47072009-08-13 21:58:54 +0000588 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
589 BranchDir));
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000590 ConstantFoldTerminator(BB);
Chris Lattner59be4472009-10-11 18:39:58 +0000591 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000592 return true;
593 }
Chris Lattner353c7f92009-10-11 04:33:43 +0000594
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000595
596 // Next, figure out which successor we are threading to.
597 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
598
Chris Lattner5b1d7822009-05-04 02:28:08 +0000599 // Ok, try to thread it!
Chris Lattner353c7f92009-10-11 04:33:43 +0000600 return ThreadEdge(BB, PredBB, SuccBB);
Chris Lattnerf4b9ed22008-12-03 07:48:08 +0000601}
602
Chris Lattnerd234e792008-12-04 06:31:07 +0000603/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
604/// block that switch on exactly the same condition. This means that we almost
605/// always know the direction of the edge in the DESTBB:
606/// PREDBB:
607/// switch COND [... DESTBB, BBY ... ]
608/// DESTBB:
609/// switch COND [... BBZ, BBW ]
610///
611/// Optimizing switches like this is very important, because simplifycfg builds
612/// switches out of repeated 'if' conditions.
613bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
614 BasicBlock *DestBB) {
Chris Lattnerefb15902009-01-19 21:20:34 +0000615 // Can't thread edge to self.
616 if (PredBB == DestBB)
617 return false;
618
Chris Lattnerd234e792008-12-04 06:31:07 +0000619 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
620 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
621
622 // There are a variety of optimizations that we can potentially do on these
623 // blocks: we order them from most to least preferable.
624
625 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
626 // directly to their destination. This does not introduce *any* code size
Dale Johannesenb3a9f392009-03-17 00:38:24 +0000627 // growth. Skip debug info first.
628 BasicBlock::iterator BBI = DestBB->begin();
629 while (isa<DbgInfoIntrinsic>(BBI))
630 BBI++;
Chris Lattnerd234e792008-12-04 06:31:07 +0000631
632 // FIXME: Thread if it just contains a PHI.
Dale Johannesenb3a9f392009-03-17 00:38:24 +0000633 if (isa<SwitchInst>(BBI)) {
Chris Lattnerd234e792008-12-04 06:31:07 +0000634 bool MadeChange = false;
635 // Ignore the default edge for now.
636 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
637 ConstantInt *DestVal = DestSI->getCaseValue(i);
638 BasicBlock *DestSucc = DestSI->getSuccessor(i);
639
640 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
641 // PredSI has an explicit case for it. If so, forward. If it is covered
642 // by the default case, we can't update PredSI.
643 unsigned PredCase = PredSI->findCaseValue(DestVal);
644 if (PredCase == 0) continue;
645
646 // If PredSI doesn't go to DestBB on this value, then it won't reach the
647 // case on this condition.
648 if (PredSI->getSuccessor(PredCase) != DestBB &&
649 DestSI->getSuccessor(i) != DestBB)
650 continue;
651
652 // Otherwise, we're safe to make the change. Make sure that the edge from
653 // DestSI to DestSucc is not critical and has no PHI nodes.
Daniel Dunbar23e2b802009-07-26 07:49:05 +0000654 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
655 DEBUG(errs() << "THROUGH: " << *DestSI);
Chris Lattnerd234e792008-12-04 06:31:07 +0000656
657 // If the destination has PHI nodes, just split the edge for updating
658 // simplicity.
659 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
660 SplitCriticalEdge(DestSI, i, this);
661 DestSucc = DestSI->getSuccessor(i);
662 }
663 FoldSingleEntryPHINodes(DestSucc);
664 PredSI->setSuccessor(PredCase, DestSucc);
665 MadeChange = true;
666 }
667
668 if (MadeChange)
669 return true;
670 }
671
672 return false;
673}
674
675
Chris Lattnera35cd9e2008-11-27 05:07:53 +0000676/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
677/// load instruction, eliminate it by replacing it with a PHI node. This is an
678/// important optimization that encourages jump threading, and needs to be run
679/// interlaced with other jump threading tasks.
680bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
681 // Don't hack volatile loads.
682 if (LI->isVolatile()) return false;
683
684 // If the load is defined in a block with exactly one predecessor, it can't be
685 // partially redundant.
686 BasicBlock *LoadBB = LI->getParent();
687 if (LoadBB->getSinglePredecessor())
688 return false;
689
690 Value *LoadedPtr = LI->getOperand(0);
691
692 // If the loaded operand is defined in the LoadBB, it can't be available.
693 // FIXME: Could do PHI translation, that would be fun :)
694 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
695 if (PtrOp->getParent() == LoadBB)
696 return false;
697
698 // Scan a few instructions up from the load, to see if it is obviously live at
699 // the entry to its block.
700 BasicBlock::iterator BBIt = LI;
701
Chris Lattner4c1c24f2008-11-27 08:10:05 +0000702 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
703 BBIt, 6)) {
Chris Lattnera35cd9e2008-11-27 05:07:53 +0000704 // If the value if the load is locally available within the block, just use
705 // it. This frequently occurs for reg2mem'd allocas.
706 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner6b644ff2009-01-09 06:08:12 +0000707
708 // If the returned value is the load itself, replace with an undef. This can
709 // only happen in dead loops.
Owen Andersonb99ecca2009-07-30 23:03:37 +0000710 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattnera35cd9e2008-11-27 05:07:53 +0000711 LI->replaceAllUsesWith(AvailableVal);
712 LI->eraseFromParent();
713 return true;
714 }
715
716 // Otherwise, if we scanned the whole block and got to the top of the block,
717 // we know the block is locally transparent to the load. If not, something
718 // might clobber its value.
719 if (BBIt != LoadBB->begin())
720 return false;
721
722
723 SmallPtrSet<BasicBlock*, 8> PredsScanned;
724 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
725 AvailablePredsTy AvailablePreds;
726 BasicBlock *OneUnavailablePred = 0;
727
728 // If we got here, the loaded value is transparent through to the start of the
729 // block. Check to see if it is available in any of the predecessor blocks.
730 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
731 PI != PE; ++PI) {
732 BasicBlock *PredBB = *PI;
733
734 // If we already scanned this predecessor, skip it.
735 if (!PredsScanned.insert(PredBB))
736 continue;
737
738 // Scan the predecessor to see if the value is available in the pred.
739 BBIt = PredBB->end();
Chris Lattner4c1c24f2008-11-27 08:10:05 +0000740 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattnera35cd9e2008-11-27 05:07:53 +0000741 if (!PredAvailable) {
742 OneUnavailablePred = PredBB;
743 continue;
744 }
745
746 // If so, this load is partially redundant. Remember this info so that we
747 // can create a PHI node.
748 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
749 }
750
751 // If the loaded value isn't available in any predecessor, it isn't partially
752 // redundant.
753 if (AvailablePreds.empty()) return false;
754
755 // Okay, the loaded value is available in at least one (and maybe all!)
756 // predecessors. If the value is unavailable in more than one unique
757 // predecessor, we want to insert a merge block for those common predecessors.
758 // This ensures that we only have to insert one reload, thus not increasing
759 // code size.
760 BasicBlock *UnavailablePred = 0;
761
762 // If there is exactly one predecessor where the value is unavailable, the
763 // already computed 'OneUnavailablePred' block is it. If it ends in an
764 // unconditional branch, we know that it isn't a critical edge.
765 if (PredsScanned.size() == AvailablePreds.size()+1 &&
766 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
767 UnavailablePred = OneUnavailablePred;
768 } else if (PredsScanned.size() != AvailablePreds.size()) {
769 // Otherwise, we had multiple unavailable predecessors or we had a critical
770 // edge from the one.
771 SmallVector<BasicBlock*, 8> PredsToSplit;
772 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
773
774 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
775 AvailablePredSet.insert(AvailablePreds[i].first);
776
777 // Add all the unavailable predecessors to the PredsToSplit list.
778 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
779 PI != PE; ++PI)
780 if (!AvailablePredSet.count(*PI))
781 PredsToSplit.push_back(*PI);
782
783 // Split them out to their own block.
784 UnavailablePred =
785 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
786 "thread-split", this);
787 }
788
789 // If the value isn't available in all predecessors, then there will be
790 // exactly one where it isn't available. Insert a load on that edge and add
791 // it to the AvailablePreds list.
792 if (UnavailablePred) {
793 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
794 "Can't handle critical edge here!");
795 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
796 UnavailablePred->getTerminator());
797 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
798 }
799
800 // Now we know that each predecessor of this block has a value in
801 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnere2dca522008-12-01 06:52:57 +0000802 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattnera35cd9e2008-11-27 05:07:53 +0000803
804 // Create a PHI node at the start of the block for the PRE'd load value.
805 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
806 PN->takeName(LI);
807
808 // Insert new entries into the PHI for each predecessor. A single block may
809 // have multiple entries here.
810 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
811 ++PI) {
812 AvailablePredsTy::iterator I =
813 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
814 std::make_pair(*PI, (Value*)0));
815
816 assert(I != AvailablePreds.end() && I->first == *PI &&
817 "Didn't find entry for predecessor!");
818
819 PN->addIncoming(I->second, I->first);
820 }
821
822 //cerr << "PRE: " << *LI << *PN << "\n";
823
824 LI->replaceAllUsesWith(PN);
825 LI->eraseFromParent();
826
827 return true;
828}
829
Chris Lattnera00d6712009-11-06 18:15:14 +0000830/// FindMostPopularDest - The specified list contains multiple possible
831/// threadable destinations. Pick the one that occurs the most frequently in
832/// the list.
833static BasicBlock *
834FindMostPopularDest(BasicBlock *BB,
835 const SmallVectorImpl<std::pair<BasicBlock*,
836 BasicBlock*> > &PredToDestList) {
837 assert(!PredToDestList.empty());
838
839 // Determine popularity. If there are multiple possible destinations, we
840 // explicitly choose to ignore 'undef' destinations. We prefer to thread
841 // blocks with known and real destinations to threading undef. We'll handle
842 // them later if interesting.
843 DenseMap<BasicBlock*, unsigned> DestPopularity;
844 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
845 if (PredToDestList[i].second)
846 DestPopularity[PredToDestList[i].second]++;
847
848 // Find the most popular dest.
849 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
850 BasicBlock *MostPopularDest = DPI->first;
851 unsigned Popularity = DPI->second;
852 SmallVector<BasicBlock*, 4> SamePopularity;
853
854 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
855 // If the popularity of this entry isn't higher than the popularity we've
856 // seen so far, ignore it.
857 if (DPI->second < Popularity)
858 ; // ignore.
859 else if (DPI->second == Popularity) {
860 // If it is the same as what we've seen so far, keep track of it.
861 SamePopularity.push_back(DPI->first);
862 } else {
863 // If it is more popular, remember it.
864 SamePopularity.clear();
865 MostPopularDest = DPI->first;
866 Popularity = DPI->second;
867 }
868 }
869
870 // Okay, now we know the most popular destination. If there is more than
871 // destination, we need to determine one. This is arbitrary, but we need
872 // to make a deterministic decision. Pick the first one that appears in the
873 // successor list.
874 if (!SamePopularity.empty()) {
875 SamePopularity.push_back(MostPopularDest);
876 TerminatorInst *TI = BB->getTerminator();
877 for (unsigned i = 0; ; ++i) {
878 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
879
880 if (std::find(SamePopularity.begin(), SamePopularity.end(),
881 TI->getSuccessor(i)) == SamePopularity.end())
882 continue;
883
884 MostPopularDest = TI->getSuccessor(i);
885 break;
886 }
887 }
888
889 // Okay, we have finally picked the most popular destination.
890 return MostPopularDest;
891}
892
893bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
894 BasicBlock *BB) {
895 // If threading this would thread across a loop header, don't even try to
896 // thread the edge.
897 if (LoopHeaders.count(BB))
898 return false;
899
900
901
902 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
903 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
904 return false;
905 assert(!PredValues.empty() &&
906 "ComputeValueKnownInPredecessors returned true with no values");
907
908 DEBUG(errs() << "IN BB: " << *BB;
909 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
910 errs() << " BB '" << BB->getName() << "': FOUND condition = ";
911 if (PredValues[i].first)
912 errs() << *PredValues[i].first;
913 else
914 errs() << "UNDEF";
915 errs() << " for pred '" << PredValues[i].second->getName()
916 << "'.\n";
917 });
918
919 // Decide what we want to thread through. Convert our list of known values to
920 // a list of known destinations for each pred. This also discards duplicate
921 // predecessors and keeps track of the undefined inputs (which are represented
922 // as a null dest in the PredToDestList.
923 SmallPtrSet<BasicBlock*, 16> SeenPreds;
924 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
925
926 BasicBlock *OnlyDest = 0;
927 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
928
929 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
930 BasicBlock *Pred = PredValues[i].second;
931 if (!SeenPreds.insert(Pred))
932 continue; // Duplicate predecessor entry.
933
934 // If the predecessor ends with an indirect goto, we can't change its
935 // destination.
936 if (isa<IndirectBrInst>(Pred->getTerminator()))
937 continue;
938
939 ConstantInt *Val = PredValues[i].first;
940
941 BasicBlock *DestBB;
942 if (Val == 0) // Undef.
943 DestBB = 0;
944 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
945 DestBB = BI->getSuccessor(Val->isZero());
946 else {
947 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
948 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
949 }
950
951 // If we have exactly one destination, remember it for efficiency below.
952 if (i == 0)
953 OnlyDest = DestBB;
954 else if (OnlyDest != DestBB)
955 OnlyDest = MultipleDestSentinel;
956
957 PredToDestList.push_back(std::make_pair(Pred, DestBB));
958 }
959
960 // If all edges were unthreadable, we fail.
961 if (PredToDestList.empty())
962 return false;
963
964 // Determine which is the most common successor. If we have many inputs and
965 // this block is a switch, we want to start by threading the batch that goes
966 // to the most popular destination first. If we only know about one
967 // threadable destination (the common case) we can avoid this.
968 BasicBlock *MostPopularDest = OnlyDest;
969
970 if (MostPopularDest == MultipleDestSentinel)
971 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
972
973 // Now that we know what the most popular destination is, factor all
974 // predecessors that will jump to it into a single predecessor.
975 SmallVector<BasicBlock*, 16> PredsToFactor;
976 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
977 if (PredToDestList[i].second == MostPopularDest)
978 PredsToFactor.push_back(PredToDestList[i].first);
979
980 BasicBlock *PredToThread;
981 if (PredsToFactor.size() == 1)
982 PredToThread = PredsToFactor[0];
983 else {
984 DEBUG(errs() << " Factoring out " << PredsToFactor.size()
985 << " common predecessors.\n");
986 PredToThread = SplitBlockPredecessors(BB, &PredsToFactor[0],
987 PredsToFactor.size(),
988 ".thr_comm", this);
989 }
990
991 // If the threadable edges are branching on an undefined value, we get to pick
992 // the destination that these predecessors should get to.
993 if (MostPopularDest == 0)
994 MostPopularDest = BB->getTerminator()->
995 getSuccessor(GetBestDestForJumpOnUndef(BB));
996
997 // Ok, try to thread it!
998 return ThreadEdge(BB, PredToThread, MostPopularDest);
999}
Chris Lattnera35cd9e2008-11-27 05:07:53 +00001000
Chris Lattnera5c0a112009-10-11 04:18:15 +00001001/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
Chris Lattnercbc3a3e2008-04-22 06:36:15 +00001002/// the current block. See if there are any simplifications we can do based on
1003/// inputs to the phi node.
1004///
1005bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
Chris Lattner5bf9d1b2009-10-11 04:40:21 +00001006 BasicBlock *BB = PN->getParent();
1007
Chris Lattnera5c0a112009-10-11 04:18:15 +00001008 // See if the phi node has any constant integer or undef values. If so, we
1009 // can determine where the corresponding predecessor will branch.
Chris Lattnera5c0a112009-10-11 04:18:15 +00001010 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1011 Value *PredVal = PN->getIncomingValue(i);
Chris Lattner5bf9d1b2009-10-11 04:40:21 +00001012
1013 // Check to see if this input is a constant integer. If so, the direction
1014 // of the branch is predictable.
Chris Lattnera5c0a112009-10-11 04:18:15 +00001015 if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) {
Chris Lattner5bf9d1b2009-10-11 04:40:21 +00001016 // Merge any common predecessors that will act the same.
1017 BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI);
1018
1019 BasicBlock *SuccBB;
1020 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1021 SuccBB = BI->getSuccessor(CI->isZero());
1022 else {
1023 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1024 SuccBB = SI->getSuccessor(SI->findCaseValue(CI));
1025 }
1026
1027 // Ok, try to thread it!
1028 return ThreadEdge(BB, PredBB, SuccBB);
Chris Lattnera5c0a112009-10-11 04:18:15 +00001029 }
1030
Chris Lattner5bf9d1b2009-10-11 04:40:21 +00001031 // If the input is an undef, then it doesn't matter which way it will go.
1032 // Pick an arbitrary dest and thread the edge.
Chris Lattnera5c0a112009-10-11 04:18:15 +00001033 if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) {
Chris Lattner5bf9d1b2009-10-11 04:40:21 +00001034 // Merge any common predecessors that will act the same.
1035 BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV);
1036 BasicBlock *SuccBB =
1037 BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB));
1038
1039 // Ok, try to thread it!
1040 return ThreadEdge(BB, PredBB, SuccBB);
Chris Lattnera5c0a112009-10-11 04:18:15 +00001041 }
Chris Lattner5bf9d1b2009-10-11 04:40:21 +00001042 }
Chris Lattner0add3212008-04-20 21:18:09 +00001043
Chris Lattnered90ae22009-10-11 07:24:57 +00001044 // If the incoming values are all variables, we don't know the destination of
1045 // any predecessors. However, if any of the predecessor blocks end in an
1046 // unconditional branch, we can *duplicate* the jump into that block in order
1047 // to further encourage jump threading and to eliminate cases where we have
1048 // branch on a phi of an icmp (branch on icmp is much better).
1049
1050 // We don't want to do this tranformation for switches, because we don't
1051 // really want to duplicate a switch.
1052 if (isa<SwitchInst>(BB->getTerminator()))
1053 return false;
1054
1055 // Look for unconditional branch predecessors.
1056 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1057 BasicBlock *PredBB = PN->getIncomingBlock(i);
1058 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1059 if (PredBr->isUnconditional() &&
1060 // Try to duplicate BB into PredBB.
1061 DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1062 return true;
1063 }
1064
Chris Lattner5bf9d1b2009-10-11 04:40:21 +00001065 return false;
Chris Lattneree23b832008-04-20 22:39:42 +00001066}
1067
Chris Lattnera64044c2008-04-22 21:40:39 +00001068/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
Nick Lewyckyfb4605d2009-06-19 04:56:29 +00001069/// node and a value. If we can identify when the comparison is true between
1070/// the phi inputs and the value, we can fold the compare for that edge and
1071/// thread through it.
Chris Lattnera64044c2008-04-22 21:40:39 +00001072bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
1073 PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
Nick Lewyckyfb4605d2009-06-19 04:56:29 +00001074 Value *RHS = Cmp->getOperand(1);
Chris Lattnera64044c2008-04-22 21:40:39 +00001075
1076 // If the phi isn't in the current block, an incoming edge to this block
1077 // doesn't control the destination.
1078 if (PN->getParent() != BB)
1079 return false;
1080
1081 // We can do this simplification if any comparisons fold to true or false.
1082 // See if any do.
Nick Lewyckyfb4605d2009-06-19 04:56:29 +00001083 Value *PredVal = 0;
Chris Lattnera64044c2008-04-22 21:40:39 +00001084 bool TrueDirection = false;
1085 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Nick Lewyckyfb4605d2009-06-19 04:56:29 +00001086 PredVal = PN->getIncomingValue(i);
Chris Lattnera64044c2008-04-22 21:40:39 +00001087
Chris Lattnera00d6712009-11-06 18:15:14 +00001088 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal, RHS);
Nick Lewyckyfb4605d2009-06-19 04:56:29 +00001089 if (!Res) {
1090 PredVal = 0;
1091 continue;
1092 }
1093
Chris Lattnera64044c2008-04-22 21:40:39 +00001094 // If this folded to a constant expr, we can't do anything.
1095 if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
1096 TrueDirection = ResC->getZExtValue();
1097 break;
1098 }
1099 // If this folded to undef, just go the false way.
1100 if (isa<UndefValue>(Res)) {
1101 TrueDirection = false;
1102 break;
1103 }
1104
1105 // Otherwise, we can't fold this input.
Nick Lewyckyfb4605d2009-06-19 04:56:29 +00001106 PredVal = 0;
Chris Lattnera64044c2008-04-22 21:40:39 +00001107 }
1108
1109 // If no match, bail out.
Nick Lewyckyfb4605d2009-06-19 04:56:29 +00001110 if (PredVal == 0)
Chris Lattnera64044c2008-04-22 21:40:39 +00001111 return false;
1112
Chris Lattnera64044c2008-04-22 21:40:39 +00001113 // If so, we can actually do this threading. Merge any common predecessors
1114 // that will act the same.
Nick Lewyckyfb4605d2009-06-19 04:56:29 +00001115 BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
Chris Lattnera64044c2008-04-22 21:40:39 +00001116
1117 // Next, get our successor.
1118 BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
1119
Chris Lattner5b1d7822009-05-04 02:28:08 +00001120 // Ok, try to thread it!
Chris Lattner353c7f92009-10-11 04:33:43 +00001121 return ThreadEdge(BB, PredBB, SuccBB);
1122}
1123
Chris Lattnera64044c2008-04-22 21:40:39 +00001124
Chris Lattnered90ae22009-10-11 07:24:57 +00001125/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1126/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1127/// NewPred using the entries from OldPred (suitably mapped).
1128static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1129 BasicBlock *OldPred,
1130 BasicBlock *NewPred,
1131 DenseMap<Instruction*, Value*> &ValueMap) {
1132 for (BasicBlock::iterator PNI = PHIBB->begin();
1133 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1134 // Ok, we have a PHI node. Figure out what the incoming value was for the
1135 // DestBlock.
1136 Value *IV = PN->getIncomingValueForBlock(OldPred);
1137
1138 // Remap the value if necessary.
1139 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1140 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1141 if (I != ValueMap.end())
1142 IV = I->second;
1143 }
1144
1145 PN->addIncoming(IV, NewPred);
1146 }
1147}
Chris Lattnerfddc5022008-04-22 07:05:46 +00001148
Chris Lattneree23b832008-04-20 22:39:42 +00001149/// ThreadEdge - We have decided that it is safe and profitable to thread an
1150/// edge from PredBB to SuccBB across BB. Transform the IR to reflect this
1151/// change.
Chris Lattner5b1d7822009-05-04 02:28:08 +00001152bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
Chris Lattner353c7f92009-10-11 04:33:43 +00001153 BasicBlock *SuccBB) {
Chris Lattner5b1d7822009-05-04 02:28:08 +00001154 // If threading to the same block as we come from, we would infinite loop.
1155 if (SuccBB == BB) {
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001156 DEBUG(errs() << " Not threading across BB '" << BB->getName()
1157 << "' - would thread to self!\n");
Chris Lattner5b1d7822009-05-04 02:28:08 +00001158 return false;
1159 }
1160
1161 // If threading this would thread across a loop header, don't thread the edge.
1162 // See the comments above FindLoopHeaders for justifications and caveats.
1163 if (LoopHeaders.count(BB)) {
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001164 DEBUG(errs() << " Not threading from '" << PredBB->getName()
1165 << "' across loop header BB '" << BB->getName()
1166 << "' to dest BB '" << SuccBB->getName()
1167 << "' - it might create an irreducible loop!\n");
Chris Lattner5b1d7822009-05-04 02:28:08 +00001168 return false;
1169 }
1170
Chris Lattnered90ae22009-10-11 07:24:57 +00001171 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1172 if (JumpThreadCost > Threshold) {
1173 DEBUG(errs() << " Not threading BB '" << BB->getName()
1174 << "' - Cost is too high: " << JumpThreadCost << "\n");
1175 return false;
1176 }
1177
Chris Lattner5b1d7822009-05-04 02:28:08 +00001178 // And finally, do it!
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001179 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar5d3ea962009-07-26 09:48:23 +00001180 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001181 << ", across block:\n "
1182 << *BB << "\n");
Chris Lattner5b1d7822009-05-04 02:28:08 +00001183
Chris Lattneree23b832008-04-20 22:39:42 +00001184 // We are going to have to map operands from the original BB block to the new
1185 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1186 // account for entry from PredBB.
1187 DenseMap<Instruction*, Value*> ValueMapping;
1188
Owen Anderson35b47072009-08-13 21:58:54 +00001189 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1190 BB->getName()+".thread",
1191 BB->getParent(), BB);
Chris Lattneree23b832008-04-20 22:39:42 +00001192 NewBB->moveAfter(PredBB);
1193
1194 BasicBlock::iterator BI = BB->begin();
1195 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1196 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1197
1198 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1199 // mapping and using it to remap operands in the cloned instructions.
1200 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewyckyc94270c2009-09-27 07:38:41 +00001201 Instruction *New = BI->clone();
Daniel Dunbar5d3ea962009-07-26 09:48:23 +00001202 New->setName(BI->getName());
Chris Lattneree23b832008-04-20 22:39:42 +00001203 NewBB->getInstList().push_back(New);
1204 ValueMapping[BI] = New;
1205
1206 // Remap operands to patch up intra-block references.
1207 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohman07c88b02009-07-02 00:17:47 +00001208 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1209 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1210 if (I != ValueMapping.end())
1211 New->setOperand(i, I->second);
1212 }
Chris Lattneree23b832008-04-20 22:39:42 +00001213 }
1214
1215 // We didn't copy the terminator from BB over to NewBB, because there is now
1216 // an unconditional jump to SuccBB. Insert the unconditional jump.
1217 BranchInst::Create(SuccBB, NewBB);
1218
1219 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1220 // PHI nodes for NewBB now.
Chris Lattnered90ae22009-10-11 07:24:57 +00001221 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattneree23b832008-04-20 22:39:42 +00001222
Chris Lattnercad6e472009-10-10 09:05:58 +00001223 // If there were values defined in BB that are used outside the block, then we
1224 // now have to update all uses of the value to use either the original value,
1225 // the cloned value, or some PHI derived value. This can require arbitrary
1226 // PHI insertion, of which we are prepared to do, clean these up now.
1227 SSAUpdater SSAUpdate;
1228 SmallVector<Use*, 16> UsesToRename;
1229 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1230 // Scan all uses of this instruction to see if it is used outside of its
1231 // block, and if so, record them in UsesToRename.
1232 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1233 ++UI) {
1234 Instruction *User = cast<Instruction>(*UI);
1235 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1236 if (UserPN->getIncomingBlock(UI) == BB)
1237 continue;
1238 } else if (User->getParent() == BB)
1239 continue;
1240
1241 UsesToRename.push_back(&UI.getUse());
1242 }
1243
1244 // If there are no uses outside the block, we're done with this instruction.
1245 if (UsesToRename.empty())
1246 continue;
1247
1248 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1249
1250 // We found a use of I outside of BB. Rename all uses of I that are outside
1251 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1252 // with the two values we know.
1253 SSAUpdate.Initialize(I);
1254 SSAUpdate.AddAvailableValue(BB, I);
1255 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1256
1257 while (!UsesToRename.empty())
1258 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1259 DEBUG(errs() << "\n");
1260 }
1261
1262
Chris Lattnerd4fe5402008-12-01 04:48:07 +00001263 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattneree23b832008-04-20 22:39:42 +00001264 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1265 // us to simplify any PHI nodes in BB.
1266 TerminatorInst *PredTerm = PredBB->getTerminator();
1267 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1268 if (PredTerm->getSuccessor(i) == BB) {
1269 BB->removePredecessor(PredBB);
1270 PredTerm->setSuccessor(i, NewBB);
1271 }
Chris Lattnerd4fe5402008-12-01 04:48:07 +00001272
1273 // At this point, the IR is fully up to date and consistent. Do a quick scan
1274 // over the new instructions and zap any that are constants or dead. This
1275 // frequently happens because of phi translation.
1276 BI = NewBB->begin();
1277 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1278 Instruction *Inst = BI++;
Chris Lattner6070c012009-11-06 04:27:31 +00001279 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
Chris Lattnerd4fe5402008-12-01 04:48:07 +00001280 Inst->replaceAllUsesWith(C);
1281 Inst->eraseFromParent();
1282 continue;
1283 }
1284
1285 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1286 }
Chris Lattner5b1d7822009-05-04 02:28:08 +00001287
1288 // Threaded an edge!
1289 ++NumThreads;
1290 return true;
Chris Lattner6c2a5502008-04-20 21:13:06 +00001291}
Chris Lattnered90ae22009-10-11 07:24:57 +00001292
1293/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1294/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1295/// If we can duplicate the contents of BB up into PredBB do so now, this
1296/// improves the odds that the branch will be on an analyzable instruction like
1297/// a compare.
1298bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1299 BasicBlock *PredBB) {
1300 // If BB is a loop header, then duplicating this block outside the loop would
1301 // cause us to transform this into an irreducible loop, don't do this.
1302 // See the comments above FindLoopHeaders for justifications and caveats.
1303 if (LoopHeaders.count(BB)) {
1304 DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
1305 << "' into predecessor block '" << PredBB->getName()
1306 << "' - it might create an irreducible loop!\n");
1307 return false;
1308 }
1309
1310 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1311 if (DuplicationCost > Threshold) {
1312 DEBUG(errs() << " Not duplicating BB '" << BB->getName()
1313 << "' - Cost is too high: " << DuplicationCost << "\n");
1314 return false;
1315 }
1316
1317 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1318 // of PredBB.
1319 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
1320 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1321 << DuplicationCost << " block is:" << *BB << "\n");
1322
1323 // We are going to have to map operands from the original BB block into the
1324 // PredBB block. Evaluate PHI nodes in BB.
1325 DenseMap<Instruction*, Value*> ValueMapping;
1326
1327 BasicBlock::iterator BI = BB->begin();
1328 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1329 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1330
1331 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1332
1333 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1334 // mapping and using it to remap operands in the cloned instructions.
1335 for (; BI != BB->end(); ++BI) {
1336 Instruction *New = BI->clone();
1337 New->setName(BI->getName());
1338 PredBB->getInstList().insert(OldPredBranch, New);
1339 ValueMapping[BI] = New;
1340
1341 // Remap operands to patch up intra-block references.
1342 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1343 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1344 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1345 if (I != ValueMapping.end())
1346 New->setOperand(i, I->second);
1347 }
1348 }
1349
1350 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1351 // add entries to the PHI nodes for branch from PredBB now.
1352 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1353 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1354 ValueMapping);
1355 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1356 ValueMapping);
1357
1358 // If there were values defined in BB that are used outside the block, then we
1359 // now have to update all uses of the value to use either the original value,
1360 // the cloned value, or some PHI derived value. This can require arbitrary
1361 // PHI insertion, of which we are prepared to do, clean these up now.
1362 SSAUpdater SSAUpdate;
1363 SmallVector<Use*, 16> UsesToRename;
1364 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1365 // Scan all uses of this instruction to see if it is used outside of its
1366 // block, and if so, record them in UsesToRename.
1367 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1368 ++UI) {
1369 Instruction *User = cast<Instruction>(*UI);
1370 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1371 if (UserPN->getIncomingBlock(UI) == BB)
1372 continue;
1373 } else if (User->getParent() == BB)
1374 continue;
1375
1376 UsesToRename.push_back(&UI.getUse());
1377 }
1378
1379 // If there are no uses outside the block, we're done with this instruction.
1380 if (UsesToRename.empty())
1381 continue;
1382
1383 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1384
1385 // We found a use of I outside of BB. Rename all uses of I that are outside
1386 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1387 // with the two values we know.
1388 SSAUpdate.Initialize(I);
1389 SSAUpdate.AddAvailableValue(BB, I);
1390 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1391
1392 while (!UsesToRename.empty())
1393 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1394 DEBUG(errs() << "\n");
1395 }
1396
1397 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1398 // that we nuked.
1399 BB->removePredecessor(PredBB);
1400
1401 // Remove the unconditional branch at the end of the PredBB block.
1402 OldPredBranch->eraseFromParent();
1403
1404 ++NumDupes;
1405 return true;
1406}
1407
1408