Chris Lattner | 80f43d3 | 2010-01-04 07:53:58 +0000 | [diff] [blame^] | 1 | //===- InstCombineCasts.cpp -----------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the visit functions for cast operations. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "InstCombine.h" |
| 15 | #include "llvm/Target/TargetData.h" |
| 16 | #include "llvm/Support/PatternMatch.h" |
| 17 | using namespace llvm; |
| 18 | using namespace PatternMatch; |
| 19 | |
| 20 | // FIXME: InstCombiner::EvaluateInDifferentType! |
| 21 | |
| 22 | |
| 23 | /// This function is a wrapper around CastInst::isEliminableCastPair. It |
| 24 | /// simply extracts arguments and returns what that function returns. |
| 25 | static Instruction::CastOps |
| 26 | isEliminableCastPair( |
| 27 | const CastInst *CI, ///< The first cast instruction |
| 28 | unsigned opcode, ///< The opcode of the second cast instruction |
| 29 | const Type *DstTy, ///< The target type for the second cast instruction |
| 30 | TargetData *TD ///< The target data for pointer size |
| 31 | ) { |
| 32 | |
| 33 | const Type *SrcTy = CI->getOperand(0)->getType(); // A from above |
| 34 | const Type *MidTy = CI->getType(); // B from above |
| 35 | |
| 36 | // Get the opcodes of the two Cast instructions |
| 37 | Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); |
| 38 | Instruction::CastOps secondOp = Instruction::CastOps(opcode); |
| 39 | |
| 40 | unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, |
| 41 | DstTy, |
| 42 | TD ? TD->getIntPtrType(CI->getContext()) : 0); |
| 43 | |
| 44 | // We don't want to form an inttoptr or ptrtoint that converts to an integer |
| 45 | // type that differs from the pointer size. |
| 46 | if ((Res == Instruction::IntToPtr && |
| 47 | (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) || |
| 48 | (Res == Instruction::PtrToInt && |
| 49 | (!TD || DstTy != TD->getIntPtrType(CI->getContext())))) |
| 50 | Res = 0; |
| 51 | |
| 52 | return Instruction::CastOps(Res); |
| 53 | } |
| 54 | |
| 55 | /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results |
| 56 | /// in any code being generated. It does not require codegen if V is simple |
| 57 | /// enough or if the cast can be folded into other casts. |
| 58 | bool InstCombiner::ValueRequiresCast(Instruction::CastOps opcode,const Value *V, |
| 59 | const Type *Ty) { |
| 60 | if (V->getType() == Ty || isa<Constant>(V)) return false; |
| 61 | |
| 62 | // If this is another cast that can be eliminated, it isn't codegen either. |
| 63 | if (const CastInst *CI = dyn_cast<CastInst>(V)) |
| 64 | if (isEliminableCastPair(CI, opcode, Ty, TD)) |
| 65 | return false; |
| 66 | return true; |
| 67 | } |
| 68 | |
| 69 | |
| 70 | /// @brief Implement the transforms common to all CastInst visitors. |
| 71 | Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { |
| 72 | Value *Src = CI.getOperand(0); |
| 73 | |
| 74 | // Many cases of "cast of a cast" are eliminable. If it's eliminable we just |
| 75 | // eliminate it now. |
| 76 | if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast |
| 77 | if (Instruction::CastOps opc = |
| 78 | isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { |
| 79 | // The first cast (CSrc) is eliminable so we need to fix up or replace |
| 80 | // the second cast (CI). CSrc will then have a good chance of being dead. |
| 81 | return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | // If we are casting a select then fold the cast into the select |
| 86 | if (SelectInst *SI = dyn_cast<SelectInst>(Src)) |
| 87 | if (Instruction *NV = FoldOpIntoSelect(CI, SI)) |
| 88 | return NV; |
| 89 | |
| 90 | // If we are casting a PHI then fold the cast into the PHI |
| 91 | if (isa<PHINode>(Src)) { |
| 92 | // We don't do this if this would create a PHI node with an illegal type if |
| 93 | // it is currently legal. |
| 94 | if (!isa<IntegerType>(Src->getType()) || |
| 95 | !isa<IntegerType>(CI.getType()) || |
| 96 | ShouldChangeType(CI.getType(), Src->getType())) |
| 97 | if (Instruction *NV = FoldOpIntoPhi(CI)) |
| 98 | return NV; |
| 99 | } |
| 100 | |
| 101 | return 0; |
| 102 | } |
| 103 | |
| 104 | /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) |
| 105 | Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { |
| 106 | Value *Src = CI.getOperand(0); |
| 107 | |
| 108 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { |
| 109 | // If casting the result of a getelementptr instruction with no offset, turn |
| 110 | // this into a cast of the original pointer! |
| 111 | if (GEP->hasAllZeroIndices()) { |
| 112 | // Changing the cast operand is usually not a good idea but it is safe |
| 113 | // here because the pointer operand is being replaced with another |
| 114 | // pointer operand so the opcode doesn't need to change. |
| 115 | Worklist.Add(GEP); |
| 116 | CI.setOperand(0, GEP->getOperand(0)); |
| 117 | return &CI; |
| 118 | } |
| 119 | |
| 120 | // If the GEP has a single use, and the base pointer is a bitcast, and the |
| 121 | // GEP computes a constant offset, see if we can convert these three |
| 122 | // instructions into fewer. This typically happens with unions and other |
| 123 | // non-type-safe code. |
| 124 | if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) { |
| 125 | if (GEP->hasAllConstantIndices()) { |
| 126 | // We are guaranteed to get a constant from EmitGEPOffset. |
| 127 | ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP)); |
| 128 | int64_t Offset = OffsetV->getSExtValue(); |
| 129 | |
| 130 | // Get the base pointer input of the bitcast, and the type it points to. |
| 131 | Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0); |
| 132 | const Type *GEPIdxTy = |
| 133 | cast<PointerType>(OrigBase->getType())->getElementType(); |
| 134 | SmallVector<Value*, 8> NewIndices; |
| 135 | if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) { |
| 136 | // If we were able to index down into an element, create the GEP |
| 137 | // and bitcast the result. This eliminates one bitcast, potentially |
| 138 | // two. |
| 139 | Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ? |
| 140 | Builder->CreateInBoundsGEP(OrigBase, |
| 141 | NewIndices.begin(), NewIndices.end()) : |
| 142 | Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end()); |
| 143 | NGEP->takeName(GEP); |
| 144 | |
| 145 | if (isa<BitCastInst>(CI)) |
| 146 | return new BitCastInst(NGEP, CI.getType()); |
| 147 | assert(isa<PtrToIntInst>(CI)); |
| 148 | return new PtrToIntInst(NGEP, CI.getType()); |
| 149 | } |
| 150 | } |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | return commonCastTransforms(CI); |
| 155 | } |
| 156 | |
| 157 | /// commonIntCastTransforms - This function implements the common transforms |
| 158 | /// for trunc, zext, and sext. |
| 159 | Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) { |
| 160 | if (Instruction *Result = commonCastTransforms(CI)) |
| 161 | return Result; |
| 162 | |
| 163 | Value *Src = CI.getOperand(0); |
| 164 | const Type *SrcTy = Src->getType(); |
| 165 | const Type *DestTy = CI.getType(); |
| 166 | uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); |
| 167 | uint32_t DestBitSize = DestTy->getScalarSizeInBits(); |
| 168 | |
| 169 | // See if we can simplify any instructions used by the LHS whose sole |
| 170 | // purpose is to compute bits we don't care about. |
| 171 | if (SimplifyDemandedInstructionBits(CI)) |
| 172 | return &CI; |
| 173 | |
| 174 | // If the source isn't an instruction or has more than one use then we |
| 175 | // can't do anything more. |
| 176 | Instruction *SrcI = dyn_cast<Instruction>(Src); |
| 177 | if (!SrcI || !Src->hasOneUse()) |
| 178 | return 0; |
| 179 | |
| 180 | // Attempt to propagate the cast into the instruction for int->int casts. |
| 181 | int NumCastsRemoved = 0; |
| 182 | // Only do this if the dest type is a simple type, don't convert the |
| 183 | // expression tree to something weird like i93 unless the source is also |
| 184 | // strange. |
| 185 | if ((isa<VectorType>(DestTy) || |
| 186 | ShouldChangeType(SrcI->getType(), DestTy)) && |
| 187 | CanEvaluateInDifferentType(SrcI, DestTy, |
| 188 | CI.getOpcode(), NumCastsRemoved)) { |
| 189 | // If this cast is a truncate, evaluting in a different type always |
| 190 | // eliminates the cast, so it is always a win. If this is a zero-extension, |
| 191 | // we need to do an AND to maintain the clear top-part of the computation, |
| 192 | // so we require that the input have eliminated at least one cast. If this |
| 193 | // is a sign extension, we insert two new casts (to do the extension) so we |
| 194 | // require that two casts have been eliminated. |
| 195 | bool DoXForm = false; |
| 196 | bool JustReplace = false; |
| 197 | switch (CI.getOpcode()) { |
| 198 | default: |
| 199 | // All the others use floating point so we shouldn't actually |
| 200 | // get here because of the check above. |
| 201 | llvm_unreachable("Unknown cast type"); |
| 202 | case Instruction::Trunc: |
| 203 | DoXForm = true; |
| 204 | break; |
| 205 | case Instruction::ZExt: { |
| 206 | DoXForm = NumCastsRemoved >= 1; |
| 207 | |
| 208 | if (!DoXForm && 0) { |
| 209 | // If it's unnecessary to issue an AND to clear the high bits, it's |
| 210 | // always profitable to do this xform. |
| 211 | Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, false); |
| 212 | APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize)); |
| 213 | if (MaskedValueIsZero(TryRes, Mask)) |
| 214 | return ReplaceInstUsesWith(CI, TryRes); |
| 215 | |
| 216 | if (Instruction *TryI = dyn_cast<Instruction>(TryRes)) |
| 217 | if (TryI->use_empty()) |
| 218 | EraseInstFromFunction(*TryI); |
| 219 | } |
| 220 | break; |
| 221 | } |
| 222 | case Instruction::SExt: { |
| 223 | DoXForm = NumCastsRemoved >= 2; |
| 224 | if (!DoXForm && !isa<TruncInst>(SrcI) && 0) { |
| 225 | // If we do not have to emit the truncate + sext pair, then it's always |
| 226 | // profitable to do this xform. |
| 227 | // |
| 228 | // It's not safe to eliminate the trunc + sext pair if one of the |
| 229 | // eliminated cast is a truncate. e.g. |
| 230 | // t2 = trunc i32 t1 to i16 |
| 231 | // t3 = sext i16 t2 to i32 |
| 232 | // != |
| 233 | // i32 t1 |
| 234 | Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, true); |
| 235 | unsigned NumSignBits = ComputeNumSignBits(TryRes); |
| 236 | if (NumSignBits > (DestBitSize - SrcBitSize)) |
| 237 | return ReplaceInstUsesWith(CI, TryRes); |
| 238 | |
| 239 | if (Instruction *TryI = dyn_cast<Instruction>(TryRes)) |
| 240 | if (TryI->use_empty()) |
| 241 | EraseInstFromFunction(*TryI); |
| 242 | } |
| 243 | break; |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | if (DoXForm) { |
| 248 | DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type" |
| 249 | " to avoid cast: " << CI); |
| 250 | Value *Res = EvaluateInDifferentType(SrcI, DestTy, |
| 251 | CI.getOpcode() == Instruction::SExt); |
| 252 | if (JustReplace) |
| 253 | // Just replace this cast with the result. |
| 254 | return ReplaceInstUsesWith(CI, Res); |
| 255 | |
| 256 | assert(Res->getType() == DestTy); |
| 257 | switch (CI.getOpcode()) { |
| 258 | default: llvm_unreachable("Unknown cast type!"); |
| 259 | case Instruction::Trunc: |
| 260 | // Just replace this cast with the result. |
| 261 | return ReplaceInstUsesWith(CI, Res); |
| 262 | case Instruction::ZExt: { |
| 263 | assert(SrcBitSize < DestBitSize && "Not a zext?"); |
| 264 | |
| 265 | // If the high bits are already zero, just replace this cast with the |
| 266 | // result. |
| 267 | APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize)); |
| 268 | if (MaskedValueIsZero(Res, Mask)) |
| 269 | return ReplaceInstUsesWith(CI, Res); |
| 270 | |
| 271 | // We need to emit an AND to clear the high bits. |
| 272 | Constant *C = ConstantInt::get(CI.getContext(), |
| 273 | APInt::getLowBitsSet(DestBitSize, SrcBitSize)); |
| 274 | return BinaryOperator::CreateAnd(Res, C); |
| 275 | } |
| 276 | case Instruction::SExt: { |
| 277 | // If the high bits are already filled with sign bit, just replace this |
| 278 | // cast with the result. |
| 279 | unsigned NumSignBits = ComputeNumSignBits(Res); |
| 280 | if (NumSignBits > (DestBitSize - SrcBitSize)) |
| 281 | return ReplaceInstUsesWith(CI, Res); |
| 282 | |
| 283 | // We need to emit a cast to truncate, then a cast to sext. |
| 284 | return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy); |
| 285 | } |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0; |
| 291 | Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0; |
| 292 | |
| 293 | switch (SrcI->getOpcode()) { |
| 294 | case Instruction::Add: |
| 295 | case Instruction::Mul: |
| 296 | case Instruction::And: |
| 297 | case Instruction::Or: |
| 298 | case Instruction::Xor: |
| 299 | // If we are discarding information, rewrite. |
| 300 | if (DestBitSize < SrcBitSize && DestBitSize != 1) { |
| 301 | // Don't insert two casts unless at least one can be eliminated. |
| 302 | if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy) || |
| 303 | !ValueRequiresCast(CI.getOpcode(), Op0, DestTy)) { |
| 304 | Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName()); |
| 305 | Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName()); |
| 306 | return BinaryOperator::Create( |
| 307 | cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | // cast (xor bool X, true) to int --> xor (cast bool X to int), 1 |
| 312 | if (isa<ZExtInst>(CI) && SrcBitSize == 1 && |
| 313 | SrcI->getOpcode() == Instruction::Xor && |
| 314 | Op1 == ConstantInt::getTrue(CI.getContext()) && |
| 315 | (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) { |
| 316 | Value *New = Builder->CreateZExt(Op0, DestTy, Op0->getName()); |
| 317 | return BinaryOperator::CreateXor(New, |
| 318 | ConstantInt::get(CI.getType(), 1)); |
| 319 | } |
| 320 | break; |
| 321 | |
| 322 | case Instruction::Shl: { |
| 323 | // Canonicalize trunc inside shl, if we can. |
| 324 | ConstantInt *CI = dyn_cast<ConstantInt>(Op1); |
| 325 | if (CI && DestBitSize < SrcBitSize && |
| 326 | CI->getLimitedValue(DestBitSize) < DestBitSize) { |
| 327 | Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName()); |
| 328 | Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName()); |
| 329 | return BinaryOperator::CreateShl(Op0c, Op1c); |
| 330 | } |
| 331 | break; |
| 332 | } |
| 333 | } |
| 334 | return 0; |
| 335 | } |
| 336 | |
| 337 | |
| 338 | Instruction *InstCombiner::visitTrunc(TruncInst &CI) { |
| 339 | if (Instruction *Result = commonIntCastTransforms(CI)) |
| 340 | return Result; |
| 341 | |
| 342 | Value *Src = CI.getOperand(0); |
| 343 | const Type *Ty = CI.getType(); |
| 344 | uint32_t DestBitWidth = Ty->getScalarSizeInBits(); |
| 345 | uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits(); |
| 346 | |
| 347 | // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0) |
| 348 | if (DestBitWidth == 1) { |
| 349 | Constant *One = ConstantInt::get(Src->getType(), 1); |
| 350 | Src = Builder->CreateAnd(Src, One, "tmp"); |
| 351 | Value *Zero = Constant::getNullValue(Src->getType()); |
| 352 | return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); |
| 353 | } |
| 354 | |
| 355 | // Optimize trunc(lshr(), c) to pull the shift through the truncate. |
| 356 | ConstantInt *ShAmtV = 0; |
| 357 | Value *ShiftOp = 0; |
| 358 | if (Src->hasOneUse() && |
| 359 | match(Src, m_LShr(m_Value(ShiftOp), m_ConstantInt(ShAmtV)))) { |
| 360 | uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth); |
| 361 | |
| 362 | // Get a mask for the bits shifting in. |
| 363 | APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth)); |
| 364 | if (MaskedValueIsZero(ShiftOp, Mask)) { |
| 365 | if (ShAmt >= DestBitWidth) // All zeros. |
| 366 | return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty)); |
| 367 | |
| 368 | // Okay, we can shrink this. Truncate the input, then return a new |
| 369 | // shift. |
| 370 | Value *V1 = Builder->CreateTrunc(ShiftOp, Ty, ShiftOp->getName()); |
| 371 | Value *V2 = ConstantExpr::getTrunc(ShAmtV, Ty); |
| 372 | return BinaryOperator::CreateLShr(V1, V2); |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | return 0; |
| 377 | } |
| 378 | |
| 379 | /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations |
| 380 | /// in order to eliminate the icmp. |
| 381 | Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, |
| 382 | bool DoXform) { |
| 383 | // If we are just checking for a icmp eq of a single bit and zext'ing it |
| 384 | // to an integer, then shift the bit to the appropriate place and then |
| 385 | // cast to integer to avoid the comparison. |
| 386 | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { |
| 387 | const APInt &Op1CV = Op1C->getValue(); |
| 388 | |
| 389 | // zext (x <s 0) to i32 --> x>>u31 true if signbit set. |
| 390 | // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. |
| 391 | if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || |
| 392 | (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { |
| 393 | if (!DoXform) return ICI; |
| 394 | |
| 395 | Value *In = ICI->getOperand(0); |
| 396 | Value *Sh = ConstantInt::get(In->getType(), |
| 397 | In->getType()->getScalarSizeInBits()-1); |
| 398 | In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); |
| 399 | if (In->getType() != CI.getType()) |
| 400 | In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp"); |
| 401 | |
| 402 | if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { |
| 403 | Constant *One = ConstantInt::get(In->getType(), 1); |
| 404 | In = Builder->CreateXor(In, One, In->getName()+".not"); |
| 405 | } |
| 406 | |
| 407 | return ReplaceInstUsesWith(CI, In); |
| 408 | } |
| 409 | |
| 410 | |
| 411 | |
| 412 | // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. |
| 413 | // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. |
| 414 | // zext (X == 1) to i32 --> X iff X has only the low bit set. |
| 415 | // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. |
| 416 | // zext (X != 0) to i32 --> X iff X has only the low bit set. |
| 417 | // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. |
| 418 | // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. |
| 419 | // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. |
| 420 | if ((Op1CV == 0 || Op1CV.isPowerOf2()) && |
| 421 | // This only works for EQ and NE |
| 422 | ICI->isEquality()) { |
| 423 | // If Op1C some other power of two, convert: |
| 424 | uint32_t BitWidth = Op1C->getType()->getBitWidth(); |
| 425 | APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); |
| 426 | APInt TypeMask(APInt::getAllOnesValue(BitWidth)); |
| 427 | ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne); |
| 428 | |
| 429 | APInt KnownZeroMask(~KnownZero); |
| 430 | if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? |
| 431 | if (!DoXform) return ICI; |
| 432 | |
| 433 | bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; |
| 434 | if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { |
| 435 | // (X&4) == 2 --> false |
| 436 | // (X&4) != 2 --> true |
| 437 | Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), |
| 438 | isNE); |
| 439 | Res = ConstantExpr::getZExt(Res, CI.getType()); |
| 440 | return ReplaceInstUsesWith(CI, Res); |
| 441 | } |
| 442 | |
| 443 | uint32_t ShiftAmt = KnownZeroMask.logBase2(); |
| 444 | Value *In = ICI->getOperand(0); |
| 445 | if (ShiftAmt) { |
| 446 | // Perform a logical shr by shiftamt. |
| 447 | // Insert the shift to put the result in the low bit. |
| 448 | In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), |
| 449 | In->getName()+".lobit"); |
| 450 | } |
| 451 | |
| 452 | if ((Op1CV != 0) == isNE) { // Toggle the low bit. |
| 453 | Constant *One = ConstantInt::get(In->getType(), 1); |
| 454 | In = Builder->CreateXor(In, One, "tmp"); |
| 455 | } |
| 456 | |
| 457 | if (CI.getType() == In->getType()) |
| 458 | return ReplaceInstUsesWith(CI, In); |
| 459 | else |
| 460 | return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); |
| 461 | } |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | // icmp ne A, B is equal to xor A, B when A and B only really have one bit. |
| 466 | // It is also profitable to transform icmp eq into not(xor(A, B)) because that |
| 467 | // may lead to additional simplifications. |
| 468 | if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { |
| 469 | if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { |
| 470 | uint32_t BitWidth = ITy->getBitWidth(); |
| 471 | Value *LHS = ICI->getOperand(0); |
| 472 | Value *RHS = ICI->getOperand(1); |
| 473 | |
| 474 | APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); |
| 475 | APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); |
| 476 | APInt TypeMask(APInt::getAllOnesValue(BitWidth)); |
| 477 | ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS); |
| 478 | ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS); |
| 479 | |
| 480 | if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { |
| 481 | APInt KnownBits = KnownZeroLHS | KnownOneLHS; |
| 482 | APInt UnknownBit = ~KnownBits; |
| 483 | if (UnknownBit.countPopulation() == 1) { |
| 484 | if (!DoXform) return ICI; |
| 485 | |
| 486 | Value *Result = Builder->CreateXor(LHS, RHS); |
| 487 | |
| 488 | // Mask off any bits that are set and won't be shifted away. |
| 489 | if (KnownOneLHS.uge(UnknownBit)) |
| 490 | Result = Builder->CreateAnd(Result, |
| 491 | ConstantInt::get(ITy, UnknownBit)); |
| 492 | |
| 493 | // Shift the bit we're testing down to the lsb. |
| 494 | Result = Builder->CreateLShr( |
| 495 | Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); |
| 496 | |
| 497 | if (ICI->getPredicate() == ICmpInst::ICMP_EQ) |
| 498 | Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); |
| 499 | Result->takeName(ICI); |
| 500 | return ReplaceInstUsesWith(CI, Result); |
| 501 | } |
| 502 | } |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | return 0; |
| 507 | } |
| 508 | |
| 509 | Instruction *InstCombiner::visitZExt(ZExtInst &CI) { |
| 510 | // If one of the common conversion will work, do it. |
| 511 | if (Instruction *Result = commonIntCastTransforms(CI)) |
| 512 | return Result; |
| 513 | |
| 514 | Value *Src = CI.getOperand(0); |
| 515 | |
| 516 | // If this is a TRUNC followed by a ZEXT then we are dealing with integral |
| 517 | // types and if the sizes are just right we can convert this into a logical |
| 518 | // 'and' which will be much cheaper than the pair of casts. |
| 519 | if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast |
| 520 | // Get the sizes of the types involved. We know that the intermediate type |
| 521 | // will be smaller than A or C, but don't know the relation between A and C. |
| 522 | Value *A = CSrc->getOperand(0); |
| 523 | unsigned SrcSize = A->getType()->getScalarSizeInBits(); |
| 524 | unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); |
| 525 | unsigned DstSize = CI.getType()->getScalarSizeInBits(); |
| 526 | // If we're actually extending zero bits, then if |
| 527 | // SrcSize < DstSize: zext(a & mask) |
| 528 | // SrcSize == DstSize: a & mask |
| 529 | // SrcSize > DstSize: trunc(a) & mask |
| 530 | if (SrcSize < DstSize) { |
| 531 | APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); |
| 532 | Constant *AndConst = ConstantInt::get(A->getType(), AndValue); |
| 533 | Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); |
| 534 | return new ZExtInst(And, CI.getType()); |
| 535 | } |
| 536 | |
| 537 | if (SrcSize == DstSize) { |
| 538 | APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); |
| 539 | return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), |
| 540 | AndValue)); |
| 541 | } |
| 542 | if (SrcSize > DstSize) { |
| 543 | Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp"); |
| 544 | APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); |
| 545 | return BinaryOperator::CreateAnd(Trunc, |
| 546 | ConstantInt::get(Trunc->getType(), |
| 547 | AndValue)); |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) |
| 552 | return transformZExtICmp(ICI, CI); |
| 553 | |
| 554 | BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); |
| 555 | if (SrcI && SrcI->getOpcode() == Instruction::Or) { |
| 556 | // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one |
| 557 | // of the (zext icmp) will be transformed. |
| 558 | ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); |
| 559 | ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); |
| 560 | if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && |
| 561 | (transformZExtICmp(LHS, CI, false) || |
| 562 | transformZExtICmp(RHS, CI, false))) { |
| 563 | Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); |
| 564 | Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); |
| 565 | return BinaryOperator::Create(Instruction::Or, LCast, RCast); |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | // zext(trunc(t) & C) -> (t & zext(C)). |
| 570 | if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse()) |
| 571 | if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) |
| 572 | if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) { |
| 573 | Value *TI0 = TI->getOperand(0); |
| 574 | if (TI0->getType() == CI.getType()) |
| 575 | return |
| 576 | BinaryOperator::CreateAnd(TI0, |
| 577 | ConstantExpr::getZExt(C, CI.getType())); |
| 578 | } |
| 579 | |
| 580 | // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)). |
| 581 | if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse()) |
| 582 | if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) |
| 583 | if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0))) |
| 584 | if (And->getOpcode() == Instruction::And && And->hasOneUse() && |
| 585 | And->getOperand(1) == C) |
| 586 | if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) { |
| 587 | Value *TI0 = TI->getOperand(0); |
| 588 | if (TI0->getType() == CI.getType()) { |
| 589 | Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); |
| 590 | Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp"); |
| 591 | return BinaryOperator::CreateXor(NewAnd, ZC); |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | return 0; |
| 596 | } |
| 597 | |
| 598 | Instruction *InstCombiner::visitSExt(SExtInst &CI) { |
| 599 | if (Instruction *I = commonIntCastTransforms(CI)) |
| 600 | return I; |
| 601 | |
| 602 | Value *Src = CI.getOperand(0); |
| 603 | |
| 604 | // Canonicalize sign-extend from i1 to a select. |
| 605 | if (Src->getType() == Type::getInt1Ty(CI.getContext())) |
| 606 | return SelectInst::Create(Src, |
| 607 | Constant::getAllOnesValue(CI.getType()), |
| 608 | Constant::getNullValue(CI.getType())); |
| 609 | |
| 610 | // See if the value being truncated is already sign extended. If so, just |
| 611 | // eliminate the trunc/sext pair. |
| 612 | if (Operator::getOpcode(Src) == Instruction::Trunc) { |
| 613 | Value *Op = cast<User>(Src)->getOperand(0); |
| 614 | unsigned OpBits = Op->getType()->getScalarSizeInBits(); |
| 615 | unsigned MidBits = Src->getType()->getScalarSizeInBits(); |
| 616 | unsigned DestBits = CI.getType()->getScalarSizeInBits(); |
| 617 | unsigned NumSignBits = ComputeNumSignBits(Op); |
| 618 | |
| 619 | if (OpBits == DestBits) { |
| 620 | // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign |
| 621 | // bits, it is already ready. |
| 622 | if (NumSignBits > DestBits-MidBits) |
| 623 | return ReplaceInstUsesWith(CI, Op); |
| 624 | } else if (OpBits < DestBits) { |
| 625 | // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign |
| 626 | // bits, just sext from i32. |
| 627 | if (NumSignBits > OpBits-MidBits) |
| 628 | return new SExtInst(Op, CI.getType(), "tmp"); |
| 629 | } else { |
| 630 | // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign |
| 631 | // bits, just truncate to i32. |
| 632 | if (NumSignBits > OpBits-MidBits) |
| 633 | return new TruncInst(Op, CI.getType(), "tmp"); |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | // If the input is a shl/ashr pair of a same constant, then this is a sign |
| 638 | // extension from a smaller value. If we could trust arbitrary bitwidth |
| 639 | // integers, we could turn this into a truncate to the smaller bit and then |
| 640 | // use a sext for the whole extension. Since we don't, look deeper and check |
| 641 | // for a truncate. If the source and dest are the same type, eliminate the |
| 642 | // trunc and extend and just do shifts. For example, turn: |
| 643 | // %a = trunc i32 %i to i8 |
| 644 | // %b = shl i8 %a, 6 |
| 645 | // %c = ashr i8 %b, 6 |
| 646 | // %d = sext i8 %c to i32 |
| 647 | // into: |
| 648 | // %a = shl i32 %i, 30 |
| 649 | // %d = ashr i32 %a, 30 |
| 650 | Value *A = 0; |
| 651 | ConstantInt *BA = 0, *CA = 0; |
| 652 | if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)), |
| 653 | m_ConstantInt(CA))) && |
| 654 | BA == CA && isa<TruncInst>(A)) { |
| 655 | Value *I = cast<TruncInst>(A)->getOperand(0); |
| 656 | if (I->getType() == CI.getType()) { |
| 657 | unsigned MidSize = Src->getType()->getScalarSizeInBits(); |
| 658 | unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); |
| 659 | unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; |
| 660 | Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); |
| 661 | I = Builder->CreateShl(I, ShAmtV, CI.getName()); |
| 662 | return BinaryOperator::CreateAShr(I, ShAmtV); |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | return 0; |
| 667 | } |
| 668 | |
| 669 | |
| 670 | /// FitsInFPType - Return a Constant* for the specified FP constant if it fits |
| 671 | /// in the specified FP type without changing its value. |
| 672 | static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { |
| 673 | bool losesInfo; |
| 674 | APFloat F = CFP->getValueAPF(); |
| 675 | (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); |
| 676 | if (!losesInfo) |
| 677 | return ConstantFP::get(CFP->getContext(), F); |
| 678 | return 0; |
| 679 | } |
| 680 | |
| 681 | /// LookThroughFPExtensions - If this is an fp extension instruction, look |
| 682 | /// through it until we get the source value. |
| 683 | static Value *LookThroughFPExtensions(Value *V) { |
| 684 | if (Instruction *I = dyn_cast<Instruction>(V)) |
| 685 | if (I->getOpcode() == Instruction::FPExt) |
| 686 | return LookThroughFPExtensions(I->getOperand(0)); |
| 687 | |
| 688 | // If this value is a constant, return the constant in the smallest FP type |
| 689 | // that can accurately represent it. This allows us to turn |
| 690 | // (float)((double)X+2.0) into x+2.0f. |
| 691 | if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { |
| 692 | if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) |
| 693 | return V; // No constant folding of this. |
| 694 | // See if the value can be truncated to float and then reextended. |
| 695 | if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) |
| 696 | return V; |
| 697 | if (CFP->getType() == Type::getDoubleTy(V->getContext())) |
| 698 | return V; // Won't shrink. |
| 699 | if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) |
| 700 | return V; |
| 701 | // Don't try to shrink to various long double types. |
| 702 | } |
| 703 | |
| 704 | return V; |
| 705 | } |
| 706 | |
| 707 | Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { |
| 708 | if (Instruction *I = commonCastTransforms(CI)) |
| 709 | return I; |
| 710 | |
| 711 | // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are |
| 712 | // smaller than the destination type, we can eliminate the truncate by doing |
| 713 | // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well |
| 714 | // as many builtins (sqrt, etc). |
| 715 | BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); |
| 716 | if (OpI && OpI->hasOneUse()) { |
| 717 | switch (OpI->getOpcode()) { |
| 718 | default: break; |
| 719 | case Instruction::FAdd: |
| 720 | case Instruction::FSub: |
| 721 | case Instruction::FMul: |
| 722 | case Instruction::FDiv: |
| 723 | case Instruction::FRem: |
| 724 | const Type *SrcTy = OpI->getType(); |
| 725 | Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); |
| 726 | Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); |
| 727 | if (LHSTrunc->getType() != SrcTy && |
| 728 | RHSTrunc->getType() != SrcTy) { |
| 729 | unsigned DstSize = CI.getType()->getScalarSizeInBits(); |
| 730 | // If the source types were both smaller than the destination type of |
| 731 | // the cast, do this xform. |
| 732 | if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize && |
| 733 | RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) { |
| 734 | LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType()); |
| 735 | RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType()); |
| 736 | return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); |
| 737 | } |
| 738 | } |
| 739 | break; |
| 740 | } |
| 741 | } |
| 742 | return 0; |
| 743 | } |
| 744 | |
| 745 | Instruction *InstCombiner::visitFPExt(CastInst &CI) { |
| 746 | return commonCastTransforms(CI); |
| 747 | } |
| 748 | |
| 749 | Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { |
| 750 | Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); |
| 751 | if (OpI == 0) |
| 752 | return commonCastTransforms(FI); |
| 753 | |
| 754 | // fptoui(uitofp(X)) --> X |
| 755 | // fptoui(sitofp(X)) --> X |
| 756 | // This is safe if the intermediate type has enough bits in its mantissa to |
| 757 | // accurately represent all values of X. For example, do not do this with |
| 758 | // i64->float->i64. This is also safe for sitofp case, because any negative |
| 759 | // 'X' value would cause an undefined result for the fptoui. |
| 760 | if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && |
| 761 | OpI->getOperand(0)->getType() == FI.getType() && |
| 762 | (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ |
| 763 | OpI->getType()->getFPMantissaWidth()) |
| 764 | return ReplaceInstUsesWith(FI, OpI->getOperand(0)); |
| 765 | |
| 766 | return commonCastTransforms(FI); |
| 767 | } |
| 768 | |
| 769 | Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { |
| 770 | Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); |
| 771 | if (OpI == 0) |
| 772 | return commonCastTransforms(FI); |
| 773 | |
| 774 | // fptosi(sitofp(X)) --> X |
| 775 | // fptosi(uitofp(X)) --> X |
| 776 | // This is safe if the intermediate type has enough bits in its mantissa to |
| 777 | // accurately represent all values of X. For example, do not do this with |
| 778 | // i64->float->i64. This is also safe for sitofp case, because any negative |
| 779 | // 'X' value would cause an undefined result for the fptoui. |
| 780 | if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && |
| 781 | OpI->getOperand(0)->getType() == FI.getType() && |
| 782 | (int)FI.getType()->getScalarSizeInBits() <= |
| 783 | OpI->getType()->getFPMantissaWidth()) |
| 784 | return ReplaceInstUsesWith(FI, OpI->getOperand(0)); |
| 785 | |
| 786 | return commonCastTransforms(FI); |
| 787 | } |
| 788 | |
| 789 | Instruction *InstCombiner::visitUIToFP(CastInst &CI) { |
| 790 | return commonCastTransforms(CI); |
| 791 | } |
| 792 | |
| 793 | Instruction *InstCombiner::visitSIToFP(CastInst &CI) { |
| 794 | return commonCastTransforms(CI); |
| 795 | } |
| 796 | |
| 797 | Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { |
| 798 | // If the destination integer type is smaller than the intptr_t type for |
| 799 | // this target, do a ptrtoint to intptr_t then do a trunc. This allows the |
| 800 | // trunc to be exposed to other transforms. Don't do this for extending |
| 801 | // ptrtoint's, because we don't know if the target sign or zero extends its |
| 802 | // pointers. |
| 803 | if (TD && |
| 804 | CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) { |
| 805 | Value *P = Builder->CreatePtrToInt(CI.getOperand(0), |
| 806 | TD->getIntPtrType(CI.getContext()), |
| 807 | "tmp"); |
| 808 | return new TruncInst(P, CI.getType()); |
| 809 | } |
| 810 | |
| 811 | return commonPointerCastTransforms(CI); |
| 812 | } |
| 813 | |
| 814 | |
| 815 | Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { |
| 816 | // If the source integer type is larger than the intptr_t type for |
| 817 | // this target, do a trunc to the intptr_t type, then inttoptr of it. This |
| 818 | // allows the trunc to be exposed to other transforms. Don't do this for |
| 819 | // extending inttoptr's, because we don't know if the target sign or zero |
| 820 | // extends to pointers. |
| 821 | if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() > |
| 822 | TD->getPointerSizeInBits()) { |
| 823 | Value *P = Builder->CreateTrunc(CI.getOperand(0), |
| 824 | TD->getIntPtrType(CI.getContext()), "tmp"); |
| 825 | return new IntToPtrInst(P, CI.getType()); |
| 826 | } |
| 827 | |
| 828 | if (Instruction *I = commonCastTransforms(CI)) |
| 829 | return I; |
| 830 | |
| 831 | return 0; |
| 832 | } |
| 833 | |
| 834 | Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { |
| 835 | // If the operands are integer typed then apply the integer transforms, |
| 836 | // otherwise just apply the common ones. |
| 837 | Value *Src = CI.getOperand(0); |
| 838 | const Type *SrcTy = Src->getType(); |
| 839 | const Type *DestTy = CI.getType(); |
| 840 | |
| 841 | if (isa<PointerType>(SrcTy)) { |
| 842 | if (Instruction *I = commonPointerCastTransforms(CI)) |
| 843 | return I; |
| 844 | } else { |
| 845 | if (Instruction *Result = commonCastTransforms(CI)) |
| 846 | return Result; |
| 847 | } |
| 848 | |
| 849 | |
| 850 | // Get rid of casts from one type to the same type. These are useless and can |
| 851 | // be replaced by the operand. |
| 852 | if (DestTy == Src->getType()) |
| 853 | return ReplaceInstUsesWith(CI, Src); |
| 854 | |
| 855 | if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { |
| 856 | const PointerType *SrcPTy = cast<PointerType>(SrcTy); |
| 857 | const Type *DstElTy = DstPTy->getElementType(); |
| 858 | const Type *SrcElTy = SrcPTy->getElementType(); |
| 859 | |
| 860 | // If the address spaces don't match, don't eliminate the bitcast, which is |
| 861 | // required for changing types. |
| 862 | if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace()) |
| 863 | return 0; |
| 864 | |
| 865 | // If we are casting a alloca to a pointer to a type of the same |
| 866 | // size, rewrite the allocation instruction to allocate the "right" type. |
| 867 | // There is no need to modify malloc calls because it is their bitcast that |
| 868 | // needs to be cleaned up. |
| 869 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) |
| 870 | if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) |
| 871 | return V; |
| 872 | |
| 873 | // If the source and destination are pointers, and this cast is equivalent |
| 874 | // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. |
| 875 | // This can enhance SROA and other transforms that want type-safe pointers. |
| 876 | Constant *ZeroUInt = |
| 877 | Constant::getNullValue(Type::getInt32Ty(CI.getContext())); |
| 878 | unsigned NumZeros = 0; |
| 879 | while (SrcElTy != DstElTy && |
| 880 | isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) && |
| 881 | SrcElTy->getNumContainedTypes() /* not "{}" */) { |
| 882 | SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); |
| 883 | ++NumZeros; |
| 884 | } |
| 885 | |
| 886 | // If we found a path from the src to dest, create the getelementptr now. |
| 887 | if (SrcElTy == DstElTy) { |
| 888 | SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt); |
| 889 | return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"", |
| 890 | ((Instruction*) NULL)); |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { |
| 895 | if (DestVTy->getNumElements() == 1) { |
| 896 | if (!isa<VectorType>(SrcTy)) { |
| 897 | Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); |
| 898 | return InsertElementInst::Create(UndefValue::get(DestTy), Elem, |
| 899 | Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); |
| 900 | } |
| 901 | // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { |
| 906 | if (SrcVTy->getNumElements() == 1) { |
| 907 | if (!isa<VectorType>(DestTy)) { |
| 908 | Value *Elem = |
| 909 | Builder->CreateExtractElement(Src, |
| 910 | Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); |
| 911 | return CastInst::Create(Instruction::BitCast, Elem, DestTy); |
| 912 | } |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { |
| 917 | if (SVI->hasOneUse()) { |
| 918 | // Okay, we have (bitconvert (shuffle ..)). Check to see if this is |
| 919 | // a bitconvert to a vector with the same # elts. |
| 920 | if (isa<VectorType>(DestTy) && |
| 921 | cast<VectorType>(DestTy)->getNumElements() == |
| 922 | SVI->getType()->getNumElements() && |
| 923 | SVI->getType()->getNumElements() == |
| 924 | cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) { |
| 925 | CastInst *Tmp; |
| 926 | // If either of the operands is a cast from CI.getType(), then |
| 927 | // evaluating the shuffle in the casted destination's type will allow |
| 928 | // us to eliminate at least one cast. |
| 929 | if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) && |
| 930 | Tmp->getOperand(0)->getType() == DestTy) || |
| 931 | ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) && |
| 932 | Tmp->getOperand(0)->getType() == DestTy)) { |
| 933 | Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); |
| 934 | Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); |
| 935 | // Return a new shuffle vector. Use the same element ID's, as we |
| 936 | // know the vector types match #elts. |
| 937 | return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); |
| 938 | } |
| 939 | } |
| 940 | } |
| 941 | } |
| 942 | return 0; |
| 943 | } |