blob: d4d4b57692425321e1d54c462e995a61b7e9c7c5 [file] [log] [blame]
Owen Andersona723d1e2008-04-09 08:23:16 +00001//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000017#include "llvm/IntrinsicInst.h"
18#include "llvm/Instructions.h"
Owen Andersonfa5cbd62009-07-03 19:42:02 +000019#include "llvm/LLVMContext.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000020#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/MemoryDependenceAnalysis.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000025#include "llvm/Support/Debug.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000027#include "llvm/Support/raw_ostream.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000028#include "llvm/Target/TargetData.h"
29#include <list>
30using namespace llvm;
31
32STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
33STATISTIC(NumMemSetInfer, "Number of memsets inferred");
Duncan Sands05cd03b2009-09-03 13:37:16 +000034STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
Owen Andersona723d1e2008-04-09 08:23:16 +000035
Owen Andersona723d1e2008-04-09 08:23:16 +000036/// isBytewiseValue - If the specified value can be set by repeating the same
37/// byte in memory, return the i8 value that it is represented with. This is
38/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
39/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
40/// byte store (e.g. i16 0x1234), return null.
Chris Lattnercf0fe8d2009-10-05 05:54:46 +000041static Value *isBytewiseValue(Value *V) {
42 LLVMContext &Context = V->getContext();
43
Owen Andersona723d1e2008-04-09 08:23:16 +000044 // All byte-wide stores are splatable, even of arbitrary variables.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +000045 if (V->getType()->isIntegerTy(8)) return V;
Owen Andersona723d1e2008-04-09 08:23:16 +000046
47 // Constant float and double values can be handled as integer values if the
48 // corresponding integer value is "byteable". An important case is 0.0.
49 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
Chris Lattnercf0fe8d2009-10-05 05:54:46 +000050 if (CFP->getType()->isFloatTy())
Owen Anderson1d0be152009-08-13 21:58:54 +000051 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(Context));
Chris Lattnercf0fe8d2009-10-05 05:54:46 +000052 if (CFP->getType()->isDoubleTy())
Owen Anderson1d0be152009-08-13 21:58:54 +000053 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(Context));
Owen Andersona723d1e2008-04-09 08:23:16 +000054 // Don't handle long double formats, which have strange constraints.
55 }
56
57 // We can handle constant integers that are power of two in size and a
58 // multiple of 8 bits.
59 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
60 unsigned Width = CI->getBitWidth();
61 if (isPowerOf2_32(Width) && Width > 8) {
62 // We can handle this value if the recursive binary decomposition is the
63 // same at all levels.
64 APInt Val = CI->getValue();
65 APInt Val2;
66 while (Val.getBitWidth() != 8) {
67 unsigned NextWidth = Val.getBitWidth()/2;
68 Val2 = Val.lshr(NextWidth);
69 Val2.trunc(Val.getBitWidth()/2);
70 Val.trunc(Val.getBitWidth()/2);
71
72 // If the top/bottom halves aren't the same, reject it.
73 if (Val != Val2)
74 return 0;
75 }
Owen Andersoneed707b2009-07-24 23:12:02 +000076 return ConstantInt::get(Context, Val);
Owen Andersona723d1e2008-04-09 08:23:16 +000077 }
78 }
79
80 // Conceptually, we could handle things like:
81 // %a = zext i8 %X to i16
82 // %b = shl i16 %a, 8
83 // %c = or i16 %a, %b
84 // but until there is an example that actually needs this, it doesn't seem
85 // worth worrying about.
86 return 0;
87}
88
89static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
90 bool &VariableIdxFound, TargetData &TD) {
91 // Skip over the first indices.
92 gep_type_iterator GTI = gep_type_begin(GEP);
93 for (unsigned i = 1; i != Idx; ++i, ++GTI)
94 /*skip along*/;
95
96 // Compute the offset implied by the rest of the indices.
97 int64_t Offset = 0;
98 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
99 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
100 if (OpC == 0)
101 return VariableIdxFound = true;
102 if (OpC->isZero()) continue; // No offset.
103
104 // Handle struct indices, which add their field offset to the pointer.
105 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
106 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
107 continue;
108 }
109
110 // Otherwise, we have a sequential type like an array or vector. Multiply
111 // the index by the ElementSize.
Duncan Sands777d2302009-05-09 07:06:46 +0000112 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Owen Andersona723d1e2008-04-09 08:23:16 +0000113 Offset += Size*OpC->getSExtValue();
114 }
115
116 return Offset;
117}
118
119/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
120/// constant offset, and return that constant offset. For example, Ptr1 might
121/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
122static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
123 TargetData &TD) {
124 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
125 // base. After that base, they may have some number of common (and
126 // potentially variable) indices. After that they handle some constant
127 // offset, which determines their offset from each other. At this point, we
128 // handle no other case.
129 GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
130 GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
131 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
132 return false;
133
134 // Skip any common indices and track the GEP types.
135 unsigned Idx = 1;
136 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
137 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
138 break;
139
140 bool VariableIdxFound = false;
141 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
142 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
143 if (VariableIdxFound) return false;
144
145 Offset = Offset2-Offset1;
146 return true;
147}
148
149
150/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
151/// This allows us to analyze stores like:
152/// store 0 -> P+1
153/// store 0 -> P+0
154/// store 0 -> P+3
155/// store 0 -> P+2
156/// which sometimes happens with stores to arrays of structs etc. When we see
157/// the first store, we make a range [1, 2). The second store extends the range
158/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
159/// two ranges into [0, 3) which is memset'able.
160namespace {
161struct MemsetRange {
162 // Start/End - A semi range that describes the span that this range covers.
163 // The range is closed at the start and open at the end: [Start, End).
164 int64_t Start, End;
165
166 /// StartPtr - The getelementptr instruction that points to the start of the
167 /// range.
168 Value *StartPtr;
169
170 /// Alignment - The known alignment of the first store.
171 unsigned Alignment;
172
173 /// TheStores - The actual stores that make up this range.
174 SmallVector<StoreInst*, 16> TheStores;
175
176 bool isProfitableToUseMemset(const TargetData &TD) const;
177
178};
179} // end anon namespace
180
181bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
182 // If we found more than 8 stores to merge or 64 bytes, use memset.
183 if (TheStores.size() >= 8 || End-Start >= 64) return true;
184
185 // Assume that the code generator is capable of merging pairs of stores
186 // together if it wants to.
187 if (TheStores.size() <= 2) return false;
188
189 // If we have fewer than 8 stores, it can still be worthwhile to do this.
190 // For example, merging 4 i8 stores into an i32 store is useful almost always.
191 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
192 // memset will be split into 2 32-bit stores anyway) and doing so can
193 // pessimize the llvm optimizer.
194 //
195 // Since we don't have perfect knowledge here, make some assumptions: assume
196 // the maximum GPR width is the same size as the pointer size and assume that
197 // this width can be stored. If so, check to see whether we will end up
198 // actually reducing the number of stores used.
199 unsigned Bytes = unsigned(End-Start);
200 unsigned NumPointerStores = Bytes/TD.getPointerSize();
201
202 // Assume the remaining bytes if any are done a byte at a time.
203 unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
204
205 // If we will reduce the # stores (according to this heuristic), do the
206 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
207 // etc.
208 return TheStores.size() > NumPointerStores+NumByteStores;
209}
210
211
212namespace {
213class MemsetRanges {
214 /// Ranges - A sorted list of the memset ranges. We use std::list here
215 /// because each element is relatively large and expensive to copy.
216 std::list<MemsetRange> Ranges;
217 typedef std::list<MemsetRange>::iterator range_iterator;
218 TargetData &TD;
219public:
220 MemsetRanges(TargetData &td) : TD(td) {}
221
222 typedef std::list<MemsetRange>::const_iterator const_iterator;
223 const_iterator begin() const { return Ranges.begin(); }
224 const_iterator end() const { return Ranges.end(); }
225 bool empty() const { return Ranges.empty(); }
226
227 void addStore(int64_t OffsetFromFirst, StoreInst *SI);
228};
229
230} // end anon namespace
231
232
233/// addStore - Add a new store to the MemsetRanges data structure. This adds a
234/// new range for the specified store at the specified offset, merging into
235/// existing ranges as appropriate.
236void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
237 int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
238
239 // Do a linear search of the ranges to see if this can be joined and/or to
240 // find the insertion point in the list. We keep the ranges sorted for
241 // simplicity here. This is a linear search of a linked list, which is ugly,
242 // however the number of ranges is limited, so this won't get crazy slow.
243 range_iterator I = Ranges.begin(), E = Ranges.end();
244
245 while (I != E && Start > I->End)
246 ++I;
247
248 // We now know that I == E, in which case we didn't find anything to merge
249 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
250 // to insert a new range. Handle this now.
251 if (I == E || End < I->Start) {
252 MemsetRange &R = *Ranges.insert(I, MemsetRange());
253 R.Start = Start;
254 R.End = End;
255 R.StartPtr = SI->getPointerOperand();
256 R.Alignment = SI->getAlignment();
257 R.TheStores.push_back(SI);
258 return;
259 }
260
261 // This store overlaps with I, add it.
262 I->TheStores.push_back(SI);
263
264 // At this point, we may have an interval that completely contains our store.
265 // If so, just add it to the interval and return.
266 if (I->Start <= Start && I->End >= End)
267 return;
268
269 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
270 // but is not entirely contained within the range.
271
272 // See if the range extends the start of the range. In this case, it couldn't
273 // possibly cause it to join the prior range, because otherwise we would have
274 // stopped on *it*.
275 if (Start < I->Start) {
276 I->Start = Start;
277 I->StartPtr = SI->getPointerOperand();
Dan Gohman264d2452009-09-14 23:39:10 +0000278 I->Alignment = SI->getAlignment();
Owen Andersona723d1e2008-04-09 08:23:16 +0000279 }
280
281 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
282 // is in or right at the end of I), and that End >= I->Start. Extend I out to
283 // End.
284 if (End > I->End) {
285 I->End = End;
Nick Lewycky9c0f1462009-03-19 05:51:39 +0000286 range_iterator NextI = I;
Owen Andersona723d1e2008-04-09 08:23:16 +0000287 while (++NextI != E && End >= NextI->Start) {
288 // Merge the range in.
289 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
290 if (NextI->End > I->End)
291 I->End = NextI->End;
292 Ranges.erase(NextI);
293 NextI = I;
294 }
295 }
296}
297
298//===----------------------------------------------------------------------===//
299// MemCpyOpt Pass
300//===----------------------------------------------------------------------===//
301
302namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +0000303 class MemCpyOpt : public FunctionPass {
Owen Andersona723d1e2008-04-09 08:23:16 +0000304 bool runOnFunction(Function &F);
305 public:
306 static char ID; // Pass identification, replacement for typeid
Owen Anderson90c579d2010-08-06 18:33:48 +0000307 MemCpyOpt() : FunctionPass(ID) {}
Owen Andersona723d1e2008-04-09 08:23:16 +0000308
309 private:
310 // This transformation requires dominator postdominator info
311 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
312 AU.setPreservesCFG();
313 AU.addRequired<DominatorTree>();
314 AU.addRequired<MemoryDependenceAnalysis>();
315 AU.addRequired<AliasAnalysis>();
Owen Andersona723d1e2008-04-09 08:23:16 +0000316 AU.addPreserved<AliasAnalysis>();
317 AU.addPreserved<MemoryDependenceAnalysis>();
Owen Andersona723d1e2008-04-09 08:23:16 +0000318 }
319
320 // Helper fuctions
Chris Lattner61c6ba82009-09-01 17:09:55 +0000321 bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
322 bool processMemCpy(MemCpyInst *M);
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000323 bool processMemMove(MemMoveInst *M);
Chris Lattner61c6ba82009-09-01 17:09:55 +0000324 bool performCallSlotOptzn(MemCpyInst *cpy, CallInst *C);
Owen Andersona723d1e2008-04-09 08:23:16 +0000325 bool iterateOnFunction(Function &F);
326 };
327
328 char MemCpyOpt::ID = 0;
329}
330
331// createMemCpyOptPass - The public interface to this file...
332FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
333
Owen Anderson2ab36d32010-10-12 19:48:12 +0000334INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
335 false, false)
336INITIALIZE_PASS_DEPENDENCY(DominatorTree)
337INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
338INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
339INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
340 false, false)
Owen Andersona723d1e2008-04-09 08:23:16 +0000341
342
343/// processStore - When GVN is scanning forward over instructions, we look for
344/// some other patterns to fold away. In particular, this looks for stores to
345/// neighboring locations of memory. If it sees enough consequtive ones
346/// (currently 4) it attempts to merge them together into a memcpy/memset.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000347bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000348 if (SI->isVolatile()) return false;
349
Chris Lattnerff1e98c2009-09-08 00:27:14 +0000350 LLVMContext &Context = SI->getContext();
351
Owen Andersona723d1e2008-04-09 08:23:16 +0000352 // There are two cases that are interesting for this code to handle: memcpy
353 // and memset. Right now we only handle memset.
354
355 // Ensure that the value being stored is something that can be memset'able a
356 // byte at a time like "0" or "-1" or any width, as well as things like
357 // 0xA0A0A0A0 and 0.0.
Chris Lattnercf0fe8d2009-10-05 05:54:46 +0000358 Value *ByteVal = isBytewiseValue(SI->getOperand(0));
Owen Andersona723d1e2008-04-09 08:23:16 +0000359 if (!ByteVal)
360 return false;
361
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000362 TargetData *TD = getAnalysisIfAvailable<TargetData>();
363 if (!TD) return false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000364 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
Dan Gohmana195b7f2009-07-28 00:37:06 +0000365 Module *M = SI->getParent()->getParent()->getParent();
Owen Andersona723d1e2008-04-09 08:23:16 +0000366
367 // Okay, so we now have a single store that can be splatable. Scan to find
368 // all subsequent stores of the same value to offset from the same pointer.
369 // Join these together into ranges, so we can decide whether contiguous blocks
370 // are stored.
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000371 MemsetRanges Ranges(*TD);
Owen Andersona723d1e2008-04-09 08:23:16 +0000372
373 Value *StartPtr = SI->getPointerOperand();
374
375 BasicBlock::iterator BI = SI;
376 for (++BI; !isa<TerminatorInst>(BI); ++BI) {
377 if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
378 // If the call is readnone, ignore it, otherwise bail out. We don't even
379 // allow readonly here because we don't want something like:
380 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
Gabor Greifa292b2f2010-07-27 16:44:23 +0000381 if (AA.getModRefBehavior(CallSite(BI)) ==
Owen Andersona723d1e2008-04-09 08:23:16 +0000382 AliasAnalysis::DoesNotAccessMemory)
383 continue;
384
385 // TODO: If this is a memset, try to join it in.
386
387 break;
388 } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
389 break;
390
391 // If this is a non-store instruction it is fine, ignore it.
392 StoreInst *NextStore = dyn_cast<StoreInst>(BI);
393 if (NextStore == 0) continue;
394
395 // If this is a store, see if we can merge it in.
396 if (NextStore->isVolatile()) break;
397
398 // Check to see if this stored value is of the same byte-splattable value.
Chris Lattnercf0fe8d2009-10-05 05:54:46 +0000399 if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
Owen Andersona723d1e2008-04-09 08:23:16 +0000400 break;
401
402 // Check to see if this store is to a constant offset from the start ptr.
403 int64_t Offset;
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000404 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
Owen Andersona723d1e2008-04-09 08:23:16 +0000405 break;
406
407 Ranges.addStore(Offset, NextStore);
408 }
409
410 // If we have no ranges, then we just had a single store with nothing that
411 // could be merged in. This is a very common case of course.
412 if (Ranges.empty())
413 return false;
414
415 // If we had at least one store that could be merged in, add the starting
416 // store as well. We try to avoid this unless there is at least something
417 // interesting as a small compile-time optimization.
418 Ranges.addStore(0, SI);
Owen Andersona723d1e2008-04-09 08:23:16 +0000419
Owen Andersona723d1e2008-04-09 08:23:16 +0000420
421 // Now that we have full information about ranges, loop over the ranges and
422 // emit memset's for anything big enough to be worthwhile.
423 bool MadeChange = false;
424 for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
425 I != E; ++I) {
426 const MemsetRange &Range = *I;
427
428 if (Range.TheStores.size() == 1) continue;
429
430 // If it is profitable to lower this range to memset, do so now.
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000431 if (!Range.isProfitableToUseMemset(*TD))
Owen Andersona723d1e2008-04-09 08:23:16 +0000432 continue;
433
434 // Otherwise, we do want to transform this! Create a new memset. We put
435 // the memset right before the first instruction that isn't part of this
436 // memset block. This ensure that the memset is dominated by any addressing
437 // instruction needed by the start of the block.
438 BasicBlock::iterator InsertPt = BI;
Mon P Wang20adc9d2010-04-04 03:10:48 +0000439
Owen Andersona723d1e2008-04-09 08:23:16 +0000440 // Get the starting pointer of the block.
441 StartPtr = Range.StartPtr;
Mon P Wang20adc9d2010-04-04 03:10:48 +0000442
443 // Determine alignment
444 unsigned Alignment = Range.Alignment;
445 if (Alignment == 0) {
446 const Type *EltType =
447 cast<PointerType>(StartPtr->getType())->getElementType();
448 Alignment = TD->getABITypeAlignment(EltType);
449 }
450
Owen Andersona723d1e2008-04-09 08:23:16 +0000451 // Cast the start ptr to be i8* as memset requires.
Mon P Wang20adc9d2010-04-04 03:10:48 +0000452 const PointerType* StartPTy = cast<PointerType>(StartPtr->getType());
453 const PointerType *i8Ptr = Type::getInt8PtrTy(Context,
454 StartPTy->getAddressSpace());
455 if (StartPTy!= i8Ptr)
Daniel Dunbar460f6562009-07-26 09:48:23 +0000456 StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
Owen Andersona723d1e2008-04-09 08:23:16 +0000457 InsertPt);
Mon P Wang20adc9d2010-04-04 03:10:48 +0000458
Owen Andersona723d1e2008-04-09 08:23:16 +0000459 Value *Ops[] = {
460 StartPtr, ByteVal, // Start, value
Owen Andersone922c022009-07-22 00:24:57 +0000461 // size
Chris Lattnerff1e98c2009-09-08 00:27:14 +0000462 ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
Owen Andersone922c022009-07-22 00:24:57 +0000463 // align
Mon P Wang20adc9d2010-04-04 03:10:48 +0000464 ConstantInt::get(Type::getInt32Ty(Context), Alignment),
465 // volatile
466 ConstantInt::get(Type::getInt1Ty(Context), 0),
Owen Andersona723d1e2008-04-09 08:23:16 +0000467 };
Mon P Wang20adc9d2010-04-04 03:10:48 +0000468 const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
469
470 Function *MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
471
472 Value *C = CallInst::Create(MemSetF, Ops, Ops+5, "", InsertPt);
David Greenecb33fd12010-01-05 01:27:47 +0000473 DEBUG(dbgs() << "Replace stores:\n";
Owen Andersona723d1e2008-04-09 08:23:16 +0000474 for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
David Greenecb33fd12010-01-05 01:27:47 +0000475 dbgs() << *Range.TheStores[i];
476 dbgs() << "With: " << *C); C=C;
Owen Andersona723d1e2008-04-09 08:23:16 +0000477
Owen Andersona8bd6582008-04-21 07:45:10 +0000478 // Don't invalidate the iterator
479 BBI = BI;
480
Owen Andersona723d1e2008-04-09 08:23:16 +0000481 // Zap all the stores.
Chris Lattnerff1e98c2009-09-08 00:27:14 +0000482 for (SmallVector<StoreInst*, 16>::const_iterator
483 SI = Range.TheStores.begin(),
Owen Andersona8bd6582008-04-21 07:45:10 +0000484 SE = Range.TheStores.end(); SI != SE; ++SI)
485 (*SI)->eraseFromParent();
Owen Andersona723d1e2008-04-09 08:23:16 +0000486 ++NumMemSetInfer;
487 MadeChange = true;
488 }
489
490 return MadeChange;
491}
492
493
494/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
495/// and checks for the possibility of a call slot optimization by having
496/// the call write its result directly into the destination of the memcpy.
Owen Andersona8bd6582008-04-21 07:45:10 +0000497bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000498 // The general transformation to keep in mind is
499 //
500 // call @func(..., src, ...)
501 // memcpy(dest, src, ...)
502 //
503 // ->
504 //
505 // memcpy(dest, src, ...)
506 // call @func(..., dest, ...)
507 //
508 // Since moving the memcpy is technically awkward, we additionally check that
509 // src only holds uninitialized values at the moment of the call, meaning that
510 // the memcpy can be discarded rather than moved.
511
512 // Deliberately get the source and destination with bitcasts stripped away,
513 // because we'll need to do type comparisons based on the underlying type.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000514 Value *cpyDest = cpy->getDest();
515 Value *cpySrc = cpy->getSource();
Gabor Greif7d3056b2010-07-28 22:50:26 +0000516 CallSite CS(C);
Owen Andersona723d1e2008-04-09 08:23:16 +0000517
518 // We need to be able to reason about the size of the memcpy, so we require
519 // that it be a constant.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000520 ConstantInt *cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
Owen Andersona723d1e2008-04-09 08:23:16 +0000521 if (!cpyLength)
522 return false;
523
524 // Require that src be an alloca. This simplifies the reasoning considerably.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000525 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
Owen Andersona723d1e2008-04-09 08:23:16 +0000526 if (!srcAlloca)
527 return false;
528
529 // Check that all of src is copied to dest.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000530 TargetData *TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000531 if (!TD) return false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000532
Chris Lattner61c6ba82009-09-01 17:09:55 +0000533 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
Owen Andersona723d1e2008-04-09 08:23:16 +0000534 if (!srcArraySize)
535 return false;
536
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000537 uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
Owen Andersona723d1e2008-04-09 08:23:16 +0000538 srcArraySize->getZExtValue();
539
540 if (cpyLength->getZExtValue() < srcSize)
541 return false;
542
543 // Check that accessing the first srcSize bytes of dest will not cause a
544 // trap. Otherwise the transform is invalid since it might cause a trap
545 // to occur earlier than it otherwise would.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000546 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000547 // The destination is an alloca. Check it is larger than srcSize.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000548 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
Owen Andersona723d1e2008-04-09 08:23:16 +0000549 if (!destArraySize)
550 return false;
551
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000552 uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
Owen Andersona723d1e2008-04-09 08:23:16 +0000553 destArraySize->getZExtValue();
554
555 if (destSize < srcSize)
556 return false;
Chris Lattner61c6ba82009-09-01 17:09:55 +0000557 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000558 // If the destination is an sret parameter then only accesses that are
559 // outside of the returned struct type can trap.
560 if (!A->hasStructRetAttr())
561 return false;
562
Chris Lattner61c6ba82009-09-01 17:09:55 +0000563 const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000564 uint64_t destSize = TD->getTypeAllocSize(StructTy);
Owen Andersona723d1e2008-04-09 08:23:16 +0000565
566 if (destSize < srcSize)
567 return false;
568 } else {
569 return false;
570 }
571
572 // Check that src is not accessed except via the call and the memcpy. This
573 // guarantees that it holds only undefined values when passed in (so the final
574 // memcpy can be dropped), that it is not read or written between the call and
575 // the memcpy, and that writing beyond the end of it is undefined.
576 SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
577 srcAlloca->use_end());
578 while (!srcUseList.empty()) {
Dan Gohman321a8132010-01-05 16:27:25 +0000579 User *UI = srcUseList.pop_back_val();
Owen Andersona723d1e2008-04-09 08:23:16 +0000580
Owen Anderson009e4f72008-06-01 22:26:26 +0000581 if (isa<BitCastInst>(UI)) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000582 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
583 I != E; ++I)
584 srcUseList.push_back(*I);
Chris Lattner61c6ba82009-09-01 17:09:55 +0000585 } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
Owen Anderson009e4f72008-06-01 22:26:26 +0000586 if (G->hasAllZeroIndices())
587 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
588 I != E; ++I)
589 srcUseList.push_back(*I);
590 else
591 return false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000592 } else if (UI != C && UI != cpy) {
593 return false;
594 }
595 }
596
597 // Since we're changing the parameter to the callsite, we need to make sure
598 // that what would be the new parameter dominates the callsite.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000599 DominatorTree &DT = getAnalysis<DominatorTree>();
600 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
Owen Andersona723d1e2008-04-09 08:23:16 +0000601 if (!DT.dominates(cpyDestInst, C))
602 return false;
603
604 // In addition to knowing that the call does not access src in some
605 // unexpected manner, for example via a global, which we deduce from
606 // the use analysis, we also need to know that it does not sneakily
607 // access dest. We rely on AA to figure this out for us.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000608 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
Owen Andersona723d1e2008-04-09 08:23:16 +0000609 if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
610 AliasAnalysis::NoModRef)
611 return false;
612
613 // All the checks have passed, so do the transformation.
Owen Anderson12cb36c2008-06-01 21:52:16 +0000614 bool changedArgument = false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000615 for (unsigned i = 0; i < CS.arg_size(); ++i)
Owen Anderson009e4f72008-06-01 22:26:26 +0000616 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000617 if (cpySrc->getType() != cpyDest->getType())
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000618 cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
Owen Andersona723d1e2008-04-09 08:23:16 +0000619 cpyDest->getName(), C);
Owen Anderson12cb36c2008-06-01 21:52:16 +0000620 changedArgument = true;
Chris Lattner61c6ba82009-09-01 17:09:55 +0000621 if (CS.getArgument(i)->getType() == cpyDest->getType())
Owen Anderson009e4f72008-06-01 22:26:26 +0000622 CS.setArgument(i, cpyDest);
Chris Lattner61c6ba82009-09-01 17:09:55 +0000623 else
624 CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
625 CS.getArgument(i)->getType(), cpyDest->getName(), C));
Owen Andersona723d1e2008-04-09 08:23:16 +0000626 }
627
Owen Anderson12cb36c2008-06-01 21:52:16 +0000628 if (!changedArgument)
629 return false;
630
Owen Andersona723d1e2008-04-09 08:23:16 +0000631 // Drop any cached information about the call, because we may have changed
632 // its dependence information by changing its parameter.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000633 MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
Chris Lattner4f8c18c2008-11-29 23:30:39 +0000634 MD.removeInstruction(C);
Owen Andersona723d1e2008-04-09 08:23:16 +0000635
636 // Remove the memcpy
637 MD.removeInstruction(cpy);
Owen Andersona8bd6582008-04-21 07:45:10 +0000638 cpy->eraseFromParent();
Dan Gohmanfe601042010-06-22 15:08:57 +0000639 ++NumMemCpyInstr;
Owen Andersona723d1e2008-04-09 08:23:16 +0000640
641 return true;
642}
643
Gabor Greif7d3056b2010-07-28 22:50:26 +0000644/// processMemCpy - perform simplification of memcpy's. If we have memcpy A
645/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
646/// B to be a memcpy from X to Z (or potentially a memmove, depending on
647/// circumstances). This allows later passes to remove the first memcpy
648/// altogether.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000649bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
650 MemoryDependenceAnalysis &MD = getAnalysis<MemoryDependenceAnalysis>();
Owen Andersona8bd6582008-04-21 07:45:10 +0000651
652 // The are two possible optimizations we can do for memcpy:
Chris Lattner61c6ba82009-09-01 17:09:55 +0000653 // a) memcpy-memcpy xform which exposes redundance for DSE.
654 // b) call-memcpy xform for return slot optimization.
Chris Lattner4c724002008-11-29 02:29:27 +0000655 MemDepResult dep = MD.getDependency(M);
Chris Lattnerb51deb92008-12-05 21:04:20 +0000656 if (!dep.isClobber())
Owen Andersona8bd6582008-04-21 07:45:10 +0000657 return false;
Chris Lattnerb51deb92008-12-05 21:04:20 +0000658 if (!isa<MemCpyInst>(dep.getInst())) {
Chris Lattner61c6ba82009-09-01 17:09:55 +0000659 if (CallInst *C = dyn_cast<CallInst>(dep.getInst()))
Owen Anderson9dcace32008-04-29 21:26:06 +0000660 return performCallSlotOptzn(M, C);
Chris Lattnerb51deb92008-12-05 21:04:20 +0000661 return false;
Owen Anderson9dcace32008-04-29 21:26:06 +0000662 }
Owen Andersona8bd6582008-04-21 07:45:10 +0000663
Chris Lattner61c6ba82009-09-01 17:09:55 +0000664 MemCpyInst *MDep = cast<MemCpyInst>(dep.getInst());
Owen Andersona8bd6582008-04-21 07:45:10 +0000665
Owen Andersona723d1e2008-04-09 08:23:16 +0000666 // We can only transforms memcpy's where the dest of one is the source of the
667 // other
668 if (M->getSource() != MDep->getDest())
669 return false;
670
671 // Second, the length of the memcpy's must be the same, or the preceeding one
672 // must be larger than the following one.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000673 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
674 ConstantInt *C2 = dyn_cast<ConstantInt>(M->getLength());
Owen Andersona723d1e2008-04-09 08:23:16 +0000675 if (!C1 || !C2)
676 return false;
677
678 uint64_t DepSize = C1->getValue().getZExtValue();
679 uint64_t CpySize = C2->getValue().getZExtValue();
680
681 if (DepSize < CpySize)
682 return false;
683
684 // Finally, we have to make sure that the dest of the second does not
685 // alias the source of the first
Chris Lattner61c6ba82009-09-01 17:09:55 +0000686 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
Owen Andersona723d1e2008-04-09 08:23:16 +0000687 if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
688 AliasAnalysis::NoAlias)
689 return false;
690 else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
691 AliasAnalysis::NoAlias)
692 return false;
693 else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
694 != AliasAnalysis::NoAlias)
695 return false;
696
697 // If all checks passed, then we can transform these memcpy's
Mon P Wang20adc9d2010-04-04 03:10:48 +0000698 const Type *ArgTys[3] = { M->getRawDest()->getType(),
699 MDep->getRawSource()->getType(),
700 M->getLength()->getType() };
Chris Lattner61c6ba82009-09-01 17:09:55 +0000701 Function *MemCpyFun = Intrinsic::getDeclaration(
Owen Andersona723d1e2008-04-09 08:23:16 +0000702 M->getParent()->getParent()->getParent(),
Mon P Wang20adc9d2010-04-04 03:10:48 +0000703 M->getIntrinsicID(), ArgTys, 3);
Owen Andersona723d1e2008-04-09 08:23:16 +0000704
Eric Christopher04fcbf92010-10-01 09:02:05 +0000705 // Make sure to use the lesser of the alignment of the source and the dest
706 // since we're changing where we're reading from, but don't want to increase
707 // the alignment past what can be read from or written to.
Eric Christopherc69a0002010-09-25 00:57:26 +0000708 // TODO: Is this worth it if we're creating a less aligned memcpy? For
709 // example we could be moving from movaps -> movq on x86.
Eric Christopher04fcbf92010-10-01 09:02:05 +0000710 unsigned Align = std::min(MDep->getAlignmentCst()->getZExtValue(),
711 M->getAlignmentCst()->getZExtValue());
712 LLVMContext &Context = M->getContext();
713 ConstantInt *AlignCI = ConstantInt::get(Type::getInt32Ty(Context), Align);
Mon P Wang20adc9d2010-04-04 03:10:48 +0000714 Value *Args[5] = {
715 M->getRawDest(), MDep->getRawSource(), M->getLength(),
Eric Christopher04fcbf92010-10-01 09:02:05 +0000716 AlignCI, M->getVolatileCst()
Chris Lattnerdfe964c2009-03-08 03:59:00 +0000717 };
Mon P Wang20adc9d2010-04-04 03:10:48 +0000718 CallInst *C = CallInst::Create(MemCpyFun, Args, Args+5, "", M);
Owen Andersona723d1e2008-04-09 08:23:16 +0000719
Owen Anderson02e99882008-04-29 21:51:00 +0000720 // If C and M don't interfere, then this is a valid transformation. If they
721 // did, this would mean that the two sources overlap, which would be bad.
Chris Lattner39f372e2008-11-29 01:43:36 +0000722 if (MD.getDependency(C) == dep) {
Chris Lattner4f8c18c2008-11-29 23:30:39 +0000723 MD.removeInstruction(M);
Owen Andersona8bd6582008-04-21 07:45:10 +0000724 M->eraseFromParent();
Dan Gohmanfe601042010-06-22 15:08:57 +0000725 ++NumMemCpyInstr;
Owen Andersona723d1e2008-04-09 08:23:16 +0000726 return true;
727 }
728
Owen Anderson02e99882008-04-29 21:51:00 +0000729 // Otherwise, there was no point in doing this, so we remove the call we
730 // inserted and act like nothing happened.
Owen Andersona723d1e2008-04-09 08:23:16 +0000731 MD.removeInstruction(C);
Owen Andersona8bd6582008-04-21 07:45:10 +0000732 C->eraseFromParent();
Owen Anderson02e99882008-04-29 21:51:00 +0000733 return false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000734}
735
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000736/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
737/// are guaranteed not to alias.
738bool MemCpyOpt::processMemMove(MemMoveInst *M) {
739 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
740
741 // If the memmove is a constant size, use it for the alias query, this allows
742 // us to optimize things like: memmove(P, P+64, 64);
743 uint64_t MemMoveSize = ~0ULL;
744 if (ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength()))
745 MemMoveSize = Len->getZExtValue();
746
747 // See if the pointers alias.
748 if (AA.alias(M->getRawDest(), MemMoveSize, M->getRawSource(), MemMoveSize) !=
749 AliasAnalysis::NoAlias)
750 return false;
751
David Greenecb33fd12010-01-05 01:27:47 +0000752 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000753
754 // If not, then we know we can transform this.
755 Module *Mod = M->getParent()->getParent()->getParent();
Mon P Wang20adc9d2010-04-04 03:10:48 +0000756 const Type *ArgTys[3] = { M->getRawDest()->getType(),
757 M->getRawSource()->getType(),
758 M->getLength()->getType() };
Gabor Greifa3997812010-07-22 10:37:47 +0000759 M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
760 ArgTys, 3));
Duncan Sands05cd03b2009-09-03 13:37:16 +0000761
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000762 // MemDep may have over conservative information about this instruction, just
763 // conservatively flush it from the cache.
764 getAnalysis<MemoryDependenceAnalysis>().removeInstruction(M);
Duncan Sands05cd03b2009-09-03 13:37:16 +0000765
766 ++NumMoveToCpy;
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000767 return true;
768}
769
770
Chris Lattner61c6ba82009-09-01 17:09:55 +0000771// MemCpyOpt::iterateOnFunction - Executes one iteration of GVN.
Owen Andersona723d1e2008-04-09 08:23:16 +0000772bool MemCpyOpt::iterateOnFunction(Function &F) {
Chris Lattner61c6ba82009-09-01 17:09:55 +0000773 bool MadeChange = false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000774
Chris Lattner61c6ba82009-09-01 17:09:55 +0000775 // Walk all instruction in the function.
Owen Andersona8bd6582008-04-21 07:45:10 +0000776 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000777 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
778 BI != BE;) {
Chris Lattner61c6ba82009-09-01 17:09:55 +0000779 // Avoid invalidating the iterator.
780 Instruction *I = BI++;
Owen Andersona8bd6582008-04-21 07:45:10 +0000781
782 if (StoreInst *SI = dyn_cast<StoreInst>(I))
Chris Lattner61c6ba82009-09-01 17:09:55 +0000783 MadeChange |= processStore(SI, BI);
784 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
785 MadeChange |= processMemCpy(M);
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000786 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
787 if (processMemMove(M)) {
788 --BI; // Reprocess the new memcpy.
789 MadeChange = true;
790 }
791 }
Owen Andersona723d1e2008-04-09 08:23:16 +0000792 }
793 }
794
Chris Lattner61c6ba82009-09-01 17:09:55 +0000795 return MadeChange;
Owen Andersona723d1e2008-04-09 08:23:16 +0000796}
Chris Lattner61c6ba82009-09-01 17:09:55 +0000797
798// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
799// function.
800//
801bool MemCpyOpt::runOnFunction(Function &F) {
802 bool MadeChange = false;
803 while (1) {
804 if (!iterateOnFunction(F))
805 break;
806 MadeChange = true;
807 }
808
809 return MadeChange;
810}
811
812
813