blob: b0fd3d6f259f05ae313b81fa16745ab05180d9c3 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/Statistic.h"
36#include <algorithm>
37using namespace llvm;
38
39STATISTIC(NumLinear , "Number of insts linearized");
40STATISTIC(NumChanged, "Number of insts reassociated");
41STATISTIC(NumAnnihil, "Number of expr tree annihilated");
42STATISTIC(NumFactor , "Number of multiplies factored");
43
44namespace {
45 struct VISIBILITY_HIDDEN ValueEntry {
46 unsigned Rank;
47 Value *Op;
48 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
49 };
50 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
51 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
52 }
53}
54
55/// PrintOps - Print out the expression identified in the Ops list.
56///
57static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
58 Module *M = I->getParent()->getParent()->getParent();
59 cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
60 << *Ops[0].Op->getType();
61 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
62 WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M)
63 << "," << Ops[i].Rank;
64}
65
66namespace {
67 class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
68 std::map<BasicBlock*, unsigned> RankMap;
69 std::map<Value*, unsigned> ValueRankMap;
70 bool MadeChange;
71 public:
72 static char ID; // Pass identification, replacement for typeid
73 Reassociate() : FunctionPass((intptr_t)&ID) {}
74
75 bool runOnFunction(Function &F);
76
77 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78 AU.setPreservesCFG();
79 }
80 private:
81 void BuildRankMap(Function &F);
82 unsigned getRank(Value *V);
83 void ReassociateExpression(BinaryOperator *I);
84 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
85 unsigned Idx = 0);
86 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
87 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
88 void LinearizeExpr(BinaryOperator *I);
89 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
90 void ReassociateBB(BasicBlock *BB);
91
92 void RemoveDeadBinaryOp(Value *V);
93 };
94
95 char Reassociate::ID = 0;
96 RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
97}
98
99// Public interface to the Reassociate pass
100FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
101
102void Reassociate::RemoveDeadBinaryOp(Value *V) {
103 Instruction *Op = dyn_cast<Instruction>(V);
104 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
105 return;
106
107 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
108 RemoveDeadBinaryOp(LHS);
109 RemoveDeadBinaryOp(RHS);
110}
111
112
113static bool isUnmovableInstruction(Instruction *I) {
114 if (I->getOpcode() == Instruction::PHI ||
115 I->getOpcode() == Instruction::Alloca ||
116 I->getOpcode() == Instruction::Load ||
117 I->getOpcode() == Instruction::Malloc ||
118 I->getOpcode() == Instruction::Invoke ||
119 I->getOpcode() == Instruction::Call ||
120 I->getOpcode() == Instruction::UDiv ||
121 I->getOpcode() == Instruction::SDiv ||
122 I->getOpcode() == Instruction::FDiv ||
123 I->getOpcode() == Instruction::URem ||
124 I->getOpcode() == Instruction::SRem ||
125 I->getOpcode() == Instruction::FRem)
126 return true;
127 return false;
128}
129
130void Reassociate::BuildRankMap(Function &F) {
131 unsigned i = 2;
132
133 // Assign distinct ranks to function arguments
134 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
135 ValueRankMap[I] = ++i;
136
137 ReversePostOrderTraversal<Function*> RPOT(&F);
138 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
139 E = RPOT.end(); I != E; ++I) {
140 BasicBlock *BB = *I;
141 unsigned BBRank = RankMap[BB] = ++i << 16;
142
143 // Walk the basic block, adding precomputed ranks for any instructions that
144 // we cannot move. This ensures that the ranks for these instructions are
145 // all different in the block.
146 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
147 if (isUnmovableInstruction(I))
148 ValueRankMap[I] = ++BBRank;
149 }
150}
151
152unsigned Reassociate::getRank(Value *V) {
153 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
154
155 Instruction *I = dyn_cast<Instruction>(V);
156 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
157
158 unsigned &CachedRank = ValueRankMap[I];
159 if (CachedRank) return CachedRank; // Rank already known?
160
161 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
162 // we can reassociate expressions for code motion! Since we do not recurse
163 // for PHI nodes, we cannot have infinite recursion here, because there
164 // cannot be loops in the value graph that do not go through PHI nodes.
165 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
166 for (unsigned i = 0, e = I->getNumOperands();
167 i != e && Rank != MaxRank; ++i)
168 Rank = std::max(Rank, getRank(I->getOperand(i)));
169
170 // If this is a not or neg instruction, do not count it for rank. This
171 // assures us that X and ~X will have the same rank.
172 if (!I->getType()->isInteger() ||
173 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
174 ++Rank;
175
176 //DOUT << "Calculated Rank[" << V->getName() << "] = "
177 // << Rank << "\n";
178
179 return CachedRank = Rank;
180}
181
182/// isReassociableOp - Return true if V is an instruction of the specified
183/// opcode and if it only has one use.
184static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
185 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
186 cast<Instruction>(V)->getOpcode() == Opcode)
187 return cast<BinaryOperator>(V);
188 return 0;
189}
190
191/// LowerNegateToMultiply - Replace 0-X with X*-1.
192///
193static Instruction *LowerNegateToMultiply(Instruction *Neg) {
194 Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
195
196 Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, "",Neg);
197 Res->takeName(Neg);
198 Neg->replaceAllUsesWith(Res);
199 Neg->eraseFromParent();
200 return Res;
201}
202
203// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
204// Note that if D is also part of the expression tree that we recurse to
205// linearize it as well. Besides that case, this does not recurse into A,B, or
206// C.
207void Reassociate::LinearizeExpr(BinaryOperator *I) {
208 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
209 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
210 assert(isReassociableOp(LHS, I->getOpcode()) &&
211 isReassociableOp(RHS, I->getOpcode()) &&
212 "Not an expression that needs linearization?");
213
214 DOUT << "Linear" << *LHS << *RHS << *I;
215
216 // Move the RHS instruction to live immediately before I, avoiding breaking
217 // dominator properties.
218 RHS->moveBefore(I);
219
220 // Move operands around to do the linearization.
221 I->setOperand(1, RHS->getOperand(0));
222 RHS->setOperand(0, LHS);
223 I->setOperand(0, RHS);
224
225 ++NumLinear;
226 MadeChange = true;
227 DOUT << "Linearized: " << *I;
228
229 // If D is part of this expression tree, tail recurse.
230 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
231 LinearizeExpr(I);
232}
233
234
235/// LinearizeExprTree - Given an associative binary expression tree, traverse
236/// all of the uses putting it into canonical form. This forces a left-linear
237/// form of the the expression (((a+b)+c)+d), and collects information about the
238/// rank of the non-tree operands.
239///
240/// NOTE: These intentionally destroys the expression tree operands (turning
241/// them into undef values) to reduce #uses of the values. This means that the
242/// caller MUST use something like RewriteExprTree to put the values back in.
243///
244void Reassociate::LinearizeExprTree(BinaryOperator *I,
245 std::vector<ValueEntry> &Ops) {
246 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
247 unsigned Opcode = I->getOpcode();
248
249 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
250 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
251 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
252
253 // If this is a multiply expression tree and it contains internal negations,
254 // transform them into multiplies by -1 so they can be reassociated.
255 if (I->getOpcode() == Instruction::Mul) {
256 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
257 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
258 LHSBO = isReassociableOp(LHS, Opcode);
259 }
260 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
261 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
262 RHSBO = isReassociableOp(RHS, Opcode);
263 }
264 }
265
266 if (!LHSBO) {
267 if (!RHSBO) {
268 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
269 // such, just remember these operands and their rank.
270 Ops.push_back(ValueEntry(getRank(LHS), LHS));
271 Ops.push_back(ValueEntry(getRank(RHS), RHS));
272
273 // Clear the leaves out.
274 I->setOperand(0, UndefValue::get(I->getType()));
275 I->setOperand(1, UndefValue::get(I->getType()));
276 return;
277 } else {
278 // Turn X+(Y+Z) -> (Y+Z)+X
279 std::swap(LHSBO, RHSBO);
280 std::swap(LHS, RHS);
281 bool Success = !I->swapOperands();
282 assert(Success && "swapOperands failed");
283 MadeChange = true;
284 }
285 } else if (RHSBO) {
286 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
287 // part of the expression tree.
288 LinearizeExpr(I);
289 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
290 RHS = I->getOperand(1);
291 RHSBO = 0;
292 }
293
294 // Okay, now we know that the LHS is a nested expression and that the RHS is
295 // not. Perform reassociation.
296 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
297
298 // Move LHS right before I to make sure that the tree expression dominates all
299 // values.
300 LHSBO->moveBefore(I);
301
302 // Linearize the expression tree on the LHS.
303 LinearizeExprTree(LHSBO, Ops);
304
305 // Remember the RHS operand and its rank.
306 Ops.push_back(ValueEntry(getRank(RHS), RHS));
307
308 // Clear the RHS leaf out.
309 I->setOperand(1, UndefValue::get(I->getType()));
310}
311
312// RewriteExprTree - Now that the operands for this expression tree are
313// linearized and optimized, emit them in-order. This function is written to be
314// tail recursive.
315void Reassociate::RewriteExprTree(BinaryOperator *I,
316 std::vector<ValueEntry> &Ops,
317 unsigned i) {
318 if (i+2 == Ops.size()) {
319 if (I->getOperand(0) != Ops[i].Op ||
320 I->getOperand(1) != Ops[i+1].Op) {
321 Value *OldLHS = I->getOperand(0);
322 DOUT << "RA: " << *I;
323 I->setOperand(0, Ops[i].Op);
324 I->setOperand(1, Ops[i+1].Op);
325 DOUT << "TO: " << *I;
326 MadeChange = true;
327 ++NumChanged;
328
329 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
330 // delete the extra, now dead, nodes.
331 RemoveDeadBinaryOp(OldLHS);
332 }
333 return;
334 }
335 assert(i+2 < Ops.size() && "Ops index out of range!");
336
337 if (I->getOperand(1) != Ops[i].Op) {
338 DOUT << "RA: " << *I;
339 I->setOperand(1, Ops[i].Op);
340 DOUT << "TO: " << *I;
341 MadeChange = true;
342 ++NumChanged;
343 }
344
345 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
346 assert(LHS->getOpcode() == I->getOpcode() &&
347 "Improper expression tree!");
348
349 // Compactify the tree instructions together with each other to guarantee
350 // that the expression tree is dominated by all of Ops.
351 LHS->moveBefore(I);
352 RewriteExprTree(LHS, Ops, i+1);
353}
354
355
356
357// NegateValue - Insert instructions before the instruction pointed to by BI,
358// that computes the negative version of the value specified. The negative
359// version of the value is returned, and BI is left pointing at the instruction
360// that should be processed next by the reassociation pass.
361//
362static Value *NegateValue(Value *V, Instruction *BI) {
363 // We are trying to expose opportunity for reassociation. One of the things
364 // that we want to do to achieve this is to push a negation as deep into an
365 // expression chain as possible, to expose the add instructions. In practice,
366 // this means that we turn this:
367 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
368 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
369 // the constants. We assume that instcombine will clean up the mess later if
370 // we introduce tons of unnecessary negation instructions...
371 //
372 if (Instruction *I = dyn_cast<Instruction>(V))
373 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
374 // Push the negates through the add.
375 I->setOperand(0, NegateValue(I->getOperand(0), BI));
376 I->setOperand(1, NegateValue(I->getOperand(1), BI));
377
378 // We must move the add instruction here, because the neg instructions do
379 // not dominate the old add instruction in general. By moving it, we are
380 // assured that the neg instructions we just inserted dominate the
381 // instruction we are about to insert after them.
382 //
383 I->moveBefore(BI);
384 I->setName(I->getName()+".neg");
385 return I;
386 }
387
388 // Insert a 'neg' instruction that subtracts the value from zero to get the
389 // negation.
390 //
391 return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
392}
393
394/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
395/// only used by an add, transform this into (X+(0-Y)) to promote better
396/// reassociation.
397static Instruction *BreakUpSubtract(Instruction *Sub) {
398 // Don't bother to break this up unless either the LHS is an associable add or
399 // if this is only used by one.
400 if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
401 !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
402 !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
403 return 0;
404
405 // Convert a subtract into an add and a neg instruction... so that sub
406 // instructions can be commuted with other add instructions...
407 //
408 // Calculate the negative value of Operand 1 of the sub instruction...
409 // and set it as the RHS of the add instruction we just made...
410 //
411 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
412 Instruction *New =
413 BinaryOperator::createAdd(Sub->getOperand(0), NegVal, "", Sub);
414 New->takeName(Sub);
415
416 // Everyone now refers to the add instruction.
417 Sub->replaceAllUsesWith(New);
418 Sub->eraseFromParent();
419
420 DOUT << "Negated: " << *New;
421 return New;
422}
423
424/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
425/// by one, change this into a multiply by a constant to assist with further
426/// reassociation.
427static Instruction *ConvertShiftToMul(Instruction *Shl) {
428 // If an operand of this shift is a reassociable multiply, or if the shift
429 // is used by a reassociable multiply or add, turn into a multiply.
430 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
431 (Shl->hasOneUse() &&
432 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
433 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
434 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
435 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
436
437 Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
438 "", Shl);
439 Mul->takeName(Shl);
440 Shl->replaceAllUsesWith(Mul);
441 Shl->eraseFromParent();
442 return Mul;
443 }
444 return 0;
445}
446
447// Scan backwards and forwards among values with the same rank as element i to
448// see if X exists. If X does not exist, return i.
449static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
450 Value *X) {
451 unsigned XRank = Ops[i].Rank;
452 unsigned e = Ops.size();
453 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
454 if (Ops[j].Op == X)
455 return j;
456 // Scan backwards
457 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
458 if (Ops[j].Op == X)
459 return j;
460 return i;
461}
462
463/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
464/// and returning the result. Insert the tree before I.
465static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
466 if (Ops.size() == 1) return Ops.back();
467
468 Value *V1 = Ops.back();
469 Ops.pop_back();
470 Value *V2 = EmitAddTreeOfValues(I, Ops);
471 return BinaryOperator::createAdd(V2, V1, "tmp", I);
472}
473
474/// RemoveFactorFromExpression - If V is an expression tree that is a
475/// multiplication sequence, and if this sequence contains a multiply by Factor,
476/// remove Factor from the tree and return the new tree.
477Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
478 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
479 if (!BO) return 0;
480
481 std::vector<ValueEntry> Factors;
482 LinearizeExprTree(BO, Factors);
483
484 bool FoundFactor = false;
485 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
486 if (Factors[i].Op == Factor) {
487 FoundFactor = true;
488 Factors.erase(Factors.begin()+i);
489 break;
490 }
491 if (!FoundFactor) {
492 // Make sure to restore the operands to the expression tree.
493 RewriteExprTree(BO, Factors);
494 return 0;
495 }
496
497 if (Factors.size() == 1) return Factors[0].Op;
498
499 RewriteExprTree(BO, Factors);
500 return BO;
501}
502
503/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
504/// add its operands as factors, otherwise add V to the list of factors.
505static void FindSingleUseMultiplyFactors(Value *V,
506 std::vector<Value*> &Factors) {
507 BinaryOperator *BO;
508 if ((!V->hasOneUse() && !V->use_empty()) ||
509 !(BO = dyn_cast<BinaryOperator>(V)) ||
510 BO->getOpcode() != Instruction::Mul) {
511 Factors.push_back(V);
512 return;
513 }
514
515 // Otherwise, add the LHS and RHS to the list of factors.
516 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
517 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
518}
519
520
521
522Value *Reassociate::OptimizeExpression(BinaryOperator *I,
523 std::vector<ValueEntry> &Ops) {
524 // Now that we have the linearized expression tree, try to optimize it.
525 // Start by folding any constants that we found.
526 bool IterateOptimization = false;
527 if (Ops.size() == 1) return Ops[0].Op;
528
529 unsigned Opcode = I->getOpcode();
530
531 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
532 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
533 Ops.pop_back();
534 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
535 return OptimizeExpression(I, Ops);
536 }
537
538 // Check for destructive annihilation due to a constant being used.
539 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
540 switch (Opcode) {
541 default: break;
542 case Instruction::And:
543 if (CstVal->isZero()) { // ... & 0 -> 0
544 ++NumAnnihil;
545 return CstVal;
546 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
547 Ops.pop_back();
548 }
549 break;
550 case Instruction::Mul:
551 if (CstVal->isZero()) { // ... * 0 -> 0
552 ++NumAnnihil;
553 return CstVal;
554 } else if (cast<ConstantInt>(CstVal)->isOne()) {
555 Ops.pop_back(); // ... * 1 -> ...
556 }
557 break;
558 case Instruction::Or:
559 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
560 ++NumAnnihil;
561 return CstVal;
562 }
563 // FALLTHROUGH!
564 case Instruction::Add:
565 case Instruction::Xor:
566 if (CstVal->isZero()) // ... [|^+] 0 -> ...
567 Ops.pop_back();
568 break;
569 }
570 if (Ops.size() == 1) return Ops[0].Op;
571
572 // Handle destructive annihilation do to identities between elements in the
573 // argument list here.
574 switch (Opcode) {
575 default: break;
576 case Instruction::And:
577 case Instruction::Or:
578 case Instruction::Xor:
579 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
580 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
581 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
582 // First, check for X and ~X in the operand list.
583 assert(i < Ops.size());
584 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
585 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
586 unsigned FoundX = FindInOperandList(Ops, i, X);
587 if (FoundX != i) {
588 if (Opcode == Instruction::And) { // ...&X&~X = 0
589 ++NumAnnihil;
590 return Constant::getNullValue(X->getType());
591 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
592 ++NumAnnihil;
593 return ConstantInt::getAllOnesValue(X->getType());
594 }
595 }
596 }
597
598 // Next, check for duplicate pairs of values, which we assume are next to
599 // each other, due to our sorting criteria.
600 assert(i < Ops.size());
601 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
602 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
603 // Drop duplicate values.
604 Ops.erase(Ops.begin()+i);
605 --i; --e;
606 IterateOptimization = true;
607 ++NumAnnihil;
608 } else {
609 assert(Opcode == Instruction::Xor);
610 if (e == 2) {
611 ++NumAnnihil;
612 return Constant::getNullValue(Ops[0].Op->getType());
613 }
614 // ... X^X -> ...
615 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
616 i -= 1; e -= 2;
617 IterateOptimization = true;
618 ++NumAnnihil;
619 }
620 }
621 }
622 break;
623
624 case Instruction::Add:
625 // Scan the operand lists looking for X and -X pairs. If we find any, we
626 // can simplify the expression. X+-X == 0.
627 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
628 assert(i < Ops.size());
629 // Check for X and -X in the operand list.
630 if (BinaryOperator::isNeg(Ops[i].Op)) {
631 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
632 unsigned FoundX = FindInOperandList(Ops, i, X);
633 if (FoundX != i) {
634 // Remove X and -X from the operand list.
635 if (Ops.size() == 2) {
636 ++NumAnnihil;
637 return Constant::getNullValue(X->getType());
638 } else {
639 Ops.erase(Ops.begin()+i);
640 if (i < FoundX)
641 --FoundX;
642 else
643 --i; // Need to back up an extra one.
644 Ops.erase(Ops.begin()+FoundX);
645 IterateOptimization = true;
646 ++NumAnnihil;
647 --i; // Revisit element.
648 e -= 2; // Removed two elements.
649 }
650 }
651 }
652 }
653
654
655 // Scan the operand list, checking to see if there are any common factors
656 // between operands. Consider something like A*A+A*B*C+D. We would like to
657 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
658 // To efficiently find this, we count the number of times a factor occurs
659 // for any ADD operands that are MULs.
660 std::map<Value*, unsigned> FactorOccurrences;
661 unsigned MaxOcc = 0;
662 Value *MaxOccVal = 0;
663 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
664 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
665 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
666 // Compute all of the factors of this added value.
667 std::vector<Value*> Factors;
668 FindSingleUseMultiplyFactors(BOp, Factors);
669 assert(Factors.size() > 1 && "Bad linearize!");
670
671 // Add one to FactorOccurrences for each unique factor in this op.
672 if (Factors.size() == 2) {
673 unsigned Occ = ++FactorOccurrences[Factors[0]];
674 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
675 if (Factors[0] != Factors[1]) { // Don't double count A*A.
676 Occ = ++FactorOccurrences[Factors[1]];
677 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
678 }
679 } else {
680 std::set<Value*> Duplicates;
681 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
682 if (Duplicates.insert(Factors[i]).second) {
683 unsigned Occ = ++FactorOccurrences[Factors[i]];
684 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
685 }
686 }
687 }
688 }
689 }
690 }
691
692 // If any factor occurred more than one time, we can pull it out.
693 if (MaxOcc > 1) {
694 DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
695
696 // Create a new instruction that uses the MaxOccVal twice. If we don't do
697 // this, we could otherwise run into situations where removing a factor
698 // from an expression will drop a use of maxocc, and this can cause
699 // RemoveFactorFromExpression on successive values to behave differently.
700 Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
701 std::vector<Value*> NewMulOps;
702 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
703 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
704 NewMulOps.push_back(V);
705 Ops.erase(Ops.begin()+i);
706 --i; --e;
707 }
708 }
709
710 // No need for extra uses anymore.
711 delete DummyInst;
712
713 unsigned NumAddedValues = NewMulOps.size();
714 Value *V = EmitAddTreeOfValues(I, NewMulOps);
715 Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
716
717 // Now that we have inserted V and its sole use, optimize it. This allows
718 // us to handle cases that require multiple factoring steps, such as this:
719 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
720 if (NumAddedValues > 1)
721 ReassociateExpression(cast<BinaryOperator>(V));
722
723 ++NumFactor;
724
Dan Gohman301f4052008-01-29 13:02:09 +0000725 if (Ops.empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000726 return V2;
727
728 // Add the new value to the list of things being added.
729 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
730
731 // Rewrite the tree so that there is now a use of V.
732 RewriteExprTree(I, Ops);
733 return OptimizeExpression(I, Ops);
734 }
735 break;
736 //case Instruction::Mul:
737 }
738
739 if (IterateOptimization)
740 return OptimizeExpression(I, Ops);
741 return 0;
742}
743
744
745/// ReassociateBB - Inspect all of the instructions in this basic block,
746/// reassociating them as we go.
747void Reassociate::ReassociateBB(BasicBlock *BB) {
748 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
749 Instruction *BI = BBI++;
750 if (BI->getOpcode() == Instruction::Shl &&
751 isa<ConstantInt>(BI->getOperand(1)))
752 if (Instruction *NI = ConvertShiftToMul(BI)) {
753 MadeChange = true;
754 BI = NI;
755 }
756
757 // Reject cases where it is pointless to do this.
758 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
759 isa<VectorType>(BI->getType()))
760 continue; // Floating point ops are not associative.
761
762 // If this is a subtract instruction which is not already in negate form,
763 // see if we can convert it to X+-Y.
764 if (BI->getOpcode() == Instruction::Sub) {
765 if (!BinaryOperator::isNeg(BI)) {
766 if (Instruction *NI = BreakUpSubtract(BI)) {
767 MadeChange = true;
768 BI = NI;
769 }
770 } else {
771 // Otherwise, this is a negation. See if the operand is a multiply tree
772 // and if this is not an inner node of a multiply tree.
773 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
774 (!BI->hasOneUse() ||
775 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
776 BI = LowerNegateToMultiply(BI);
777 MadeChange = true;
778 }
779 }
780 }
781
782 // If this instruction is a commutative binary operator, process it.
783 if (!BI->isAssociative()) continue;
784 BinaryOperator *I = cast<BinaryOperator>(BI);
785
786 // If this is an interior node of a reassociable tree, ignore it until we
787 // get to the root of the tree, to avoid N^2 analysis.
788 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
789 continue;
790
791 // If this is an add tree that is used by a sub instruction, ignore it
792 // until we process the subtract.
793 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
794 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
795 continue;
796
797 ReassociateExpression(I);
798 }
799}
800
801void Reassociate::ReassociateExpression(BinaryOperator *I) {
802
803 // First, walk the expression tree, linearizing the tree, collecting
804 std::vector<ValueEntry> Ops;
805 LinearizeExprTree(I, Ops);
806
807 DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
808
809 // Now that we have linearized the tree to a list and have gathered all of
810 // the operands and their ranks, sort the operands by their rank. Use a
811 // stable_sort so that values with equal ranks will have their relative
812 // positions maintained (and so the compiler is deterministic). Note that
813 // this sorts so that the highest ranking values end up at the beginning of
814 // the vector.
815 std::stable_sort(Ops.begin(), Ops.end());
816
817 // OptimizeExpression - Now that we have the expression tree in a convenient
818 // sorted form, optimize it globally if possible.
819 if (Value *V = OptimizeExpression(I, Ops)) {
820 // This expression tree simplified to something that isn't a tree,
821 // eliminate it.
822 DOUT << "Reassoc to scalar: " << *V << "\n";
823 I->replaceAllUsesWith(V);
824 RemoveDeadBinaryOp(I);
825 return;
826 }
827
828 // We want to sink immediates as deeply as possible except in the case where
829 // this is a multiply tree used only by an add, and the immediate is a -1.
830 // In this case we reassociate to put the negation on the outside so that we
831 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
832 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
833 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
834 isa<ConstantInt>(Ops.back().Op) &&
835 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
836 Ops.insert(Ops.begin(), Ops.back());
837 Ops.pop_back();
838 }
839
840 DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
841
842 if (Ops.size() == 1) {
843 // This expression tree simplified to something that isn't a tree,
844 // eliminate it.
845 I->replaceAllUsesWith(Ops[0].Op);
846 RemoveDeadBinaryOp(I);
847 } else {
848 // Now that we ordered and optimized the expressions, splat them back into
849 // the expression tree, removing any unneeded nodes.
850 RewriteExprTree(I, Ops);
851 }
852}
853
854
855bool Reassociate::runOnFunction(Function &F) {
856 // Recalculate the rank map for F
857 BuildRankMap(F);
858
859 MadeChange = false;
860 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
861 ReassociateBB(FI);
862
863 // We are done with the rank map...
864 RankMap.clear();
865 ValueRankMap.clear();
866 return MadeChange;
867}
868