blob: 0af3a9dac2e14d614c6a8a72780f5508be153463 [file] [log] [blame]
Misha Brukman13fd15c2004-01-15 00:14:41 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Chris Lattner261efe92003-11-25 01:02:51 +00003<html>
4<head>
5 <title>LLVM Programmer's Manual</title>
Misha Brukman13fd15c2004-01-15 00:14:41 +00006 <link rel="stylesheet" href="llvm.css" type="text/css">
Chris Lattner261efe92003-11-25 01:02:51 +00007</head>
Misha Brukman13fd15c2004-01-15 00:14:41 +00008<body>
9
10<div class="doc_title">
11 LLVM Programmer's Manual
12</div>
13
Chris Lattner9355b472002-09-06 02:50:58 +000014<ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +000015 <li><a href="#introduction">Introduction</a></li>
Chris Lattner9355b472002-09-06 02:50:58 +000016 <li><a href="#general">General Information</a>
Chris Lattner261efe92003-11-25 01:02:51 +000017 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000018 <li><a href="#stl">The C++ Standard Template Library</a></li>
19<!--
20 <li>The <tt>-time-passes</tt> option</li>
21 <li>How to use the LLVM Makefile system</li>
22 <li>How to write a regression test</li>
Chris Lattner61db4652004-12-08 19:05:44 +000023
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000024-->
Chris Lattner84b7f8d2003-08-01 22:20:59 +000025 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +000026 </li>
27 <li><a href="#apis">Important and useful LLVM APIs</a>
28 <ul>
29 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
30and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
31 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt>
32option</a>
33 <ul>
34 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
35and the <tt>-debug-only</tt> option</a> </li>
36 </ul>
37 </li>
38 <li><a href="#Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000039option</a></li>
40<!--
41 <li>The <tt>InstVisitor</tt> template
42 <li>The general graph API
43-->
Chris Lattner261efe92003-11-25 01:02:51 +000044 </ul>
45 </li>
Chris Lattnerae7f7592002-09-06 18:31:18 +000046 <li><a href="#common">Helpful Hints for Common Operations</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000047 <ul>
Chris Lattner261efe92003-11-25 01:02:51 +000048 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
49 <ul>
50 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
51in a <tt>Function</tt></a> </li>
52 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
53in a <tt>BasicBlock</tt></a> </li>
54 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
55in a <tt>Function</tt></a> </li>
56 <li><a href="#iterate_convert">Turning an iterator into a
57class pointer</a> </li>
58 <li><a href="#iterate_complex">Finding call sites: a more
59complex example</a> </li>
60 <li><a href="#calls_and_invokes">Treating calls and invokes
61the same way</a> </li>
62 <li><a href="#iterate_chains">Iterating over def-use &amp;
63use-def chains</a> </li>
64 </ul>
65 </li>
66 <li><a href="#simplechanges">Making simple changes</a>
67 <ul>
68 <li><a href="#schanges_creating">Creating and inserting new
69 <tt>Instruction</tt>s</a> </li>
70 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
71 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
72with another <tt>Value</tt></a> </li>
73 </ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000074 </li>
Chris Lattnerae7f7592002-09-06 18:31:18 +000075<!--
76 <li>Working with the Control Flow Graph
77 <ul>
78 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
79 <li>
80 <li>
81 </ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000082-->
Chris Lattner261efe92003-11-25 01:02:51 +000083 </ul>
84 </li>
Joel Stanley9b96c442002-09-06 21:55:13 +000085 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +000086 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000087 <li><a href="#Value">The <tt>Value</tt> class</a>
Chris Lattner9355b472002-09-06 02:50:58 +000088 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000089 <li><a href="#User">The <tt>User</tt> class</a>
Chris Lattner261efe92003-11-25 01:02:51 +000090 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +000091 <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
92 <ul>
93 <li><a href="#GetElementPtrInst">The <tt>GetElementPtrInst</tt> class</a></li>
94 </ul>
95 </li>
96 <li><a href="#Module">The <tt>Module</tt> class</a></li>
97 <li><a href="#Constant">The <tt>Constant</tt> class</a>
98 <ul>
99 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
100 <ul>
101 <li><a href="#BasicBlock">The <tt>BasicBlock</tt>class</a></li>
102 <li><a href="#Function">The <tt>Function</tt> class</a></li>
103 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
104 </ul>
105 </li>
106 </ul>
107 </li>
Reid Spencer8b2da7a2004-07-18 13:10:31 +0000108 </ul>
109 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000110 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
Reid Spencer096603a2004-05-26 08:41:35 +0000111 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000112 </ul>
113 </li>
114 </ul>
Chris Lattner261efe92003-11-25 01:02:51 +0000115 </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +0000116 <li><a href="#SymbolTable">The <tt>SymbolTable</tt> class </a></li>
117 <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
118 <ul>
119 <li>Creating, inserting, moving and deleting from LLVM lists </li>
120 </ul>
121 </li>
122 <li>Important iterator invalidation semantics to be aware of.</li>
Chris Lattner9355b472002-09-06 02:50:58 +0000123</ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000124
Chris Lattner69bf8a92004-05-23 21:06:58 +0000125<div class="doc_author">
126 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
Chris Lattner94c43592004-05-26 16:52:55 +0000127 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
128 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>, and
129 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000130</div>
131
Chris Lattner9355b472002-09-06 02:50:58 +0000132<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000133<div class="doc_section">
134 <a name="introduction">Introduction </a>
135</div>
Chris Lattner9355b472002-09-06 02:50:58 +0000136<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000137
138<div class="doc_text">
139
140<p>This document is meant to highlight some of the important classes and
Chris Lattner261efe92003-11-25 01:02:51 +0000141interfaces available in the LLVM source-base. This manual is not
142intended to explain what LLVM is, how it works, and what LLVM code looks
143like. It assumes that you know the basics of LLVM and are interested
144in writing transformations or otherwise analyzing or manipulating the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000145code.</p>
146
147<p>This document should get you oriented so that you can find your
Chris Lattner261efe92003-11-25 01:02:51 +0000148way in the continuously growing source code that makes up the LLVM
149infrastructure. Note that this manual is not intended to serve as a
150replacement for reading the source code, so if you think there should be
151a method in one of these classes to do something, but it's not listed,
152check the source. Links to the <a href="/doxygen/">doxygen</a> sources
153are provided to make this as easy as possible.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000154
155<p>The first section of this document describes general information that is
156useful to know when working in the LLVM infrastructure, and the second describes
157the Core LLVM classes. In the future this manual will be extended with
158information describing how to use extension libraries, such as dominator
159information, CFG traversal routines, and useful utilities like the <tt><a
160href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
161
162</div>
163
Chris Lattner9355b472002-09-06 02:50:58 +0000164<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000165<div class="doc_section">
166 <a name="general">General Information</a>
167</div>
168<!-- *********************************************************************** -->
169
170<div class="doc_text">
171
172<p>This section contains general information that is useful if you are working
173in the LLVM source-base, but that isn't specific to any particular API.</p>
174
175</div>
176
177<!-- ======================================================================= -->
178<div class="doc_subsection">
179 <a name="stl">The C++ Standard Template Library</a>
180</div>
181
182<div class="doc_text">
183
184<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
Chris Lattner261efe92003-11-25 01:02:51 +0000185perhaps much more than you are used to, or have seen before. Because of
186this, you might want to do a little background reading in the
187techniques used and capabilities of the library. There are many good
188pages that discuss the STL, and several books on the subject that you
Misha Brukman13fd15c2004-01-15 00:14:41 +0000189can get, so it will not be discussed in this document.</p>
190
191<p>Here are some useful links:</p>
192
193<ol>
194
195<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
196reference</a> - an excellent reference for the STL and other parts of the
197standard C++ library.</li>
198
199<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
Tanya Lattner09cf73c2004-06-22 04:24:55 +0000200O'Reilly book in the making. It has a decent
201Standard Library
202Reference that rivals Dinkumware's, and is unfortunately no longer free since the book has been
Misha Brukman13fd15c2004-01-15 00:14:41 +0000203published.</li>
204
205<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
206Questions</a></li>
207
208<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
209Contains a useful <a
210href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
211STL</a>.</li>
212
213<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
214Page</a></li>
215
Tanya Lattner79445ba2004-12-08 18:34:56 +0000216<li><a href="http://64.78.49.204/">
Reid Spencer096603a2004-05-26 08:41:35 +0000217Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
218the book).</a></li>
219
Misha Brukman13fd15c2004-01-15 00:14:41 +0000220</ol>
221
222<p>You are also encouraged to take a look at the <a
223href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
224to write maintainable code more than where to put your curly braces.</p>
225
226</div>
227
228<!-- ======================================================================= -->
229<div class="doc_subsection">
230 <a name="stl">Other useful references</a>
231</div>
232
233<div class="doc_text">
234
Misha Brukman13fd15c2004-01-15 00:14:41 +0000235<ol>
236<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
Chris Lattner261efe92003-11-25 01:02:51 +0000237Branch and Tag Primer</a></li>
Misha Brukmana0f71e42004-06-18 18:39:00 +0000238<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
239static and shared libraries across platforms</a></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000240</ol>
241
242</div>
243
Chris Lattner9355b472002-09-06 02:50:58 +0000244<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000245<div class="doc_section">
246 <a name="apis">Important and useful LLVM APIs</a>
247</div>
248<!-- *********************************************************************** -->
249
250<div class="doc_text">
251
252<p>Here we highlight some LLVM APIs that are generally useful and good to
253know about when writing transformations.</p>
254
255</div>
256
257<!-- ======================================================================= -->
258<div class="doc_subsection">
259 <a name="isa">The isa&lt;&gt;, cast&lt;&gt; and dyn_cast&lt;&gt; templates</a>
260</div>
261
262<div class="doc_text">
263
264<p>The LLVM source-base makes extensive use of a custom form of RTTI.
Chris Lattner261efe92003-11-25 01:02:51 +0000265These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
266operator, but they don't have some drawbacks (primarily stemming from
267the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
268have a v-table). Because they are used so often, you must know what they
269do and how they work. All of these templates are defined in the <a
270 href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000271file (note that you very rarely have to include this file directly).</p>
272
273<dl>
274 <dt><tt>isa&lt;&gt;</tt>: </dt>
275
276 <dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
277 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
278 a reference or pointer points to an instance of the specified class. This can
279 be very useful for constraint checking of various sorts (example below).</dd>
280
281 <dt><tt>cast&lt;&gt;</tt>: </dt>
282
283 <dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
284 converts a pointer or reference from a base class to a derived cast, causing
285 an assertion failure if it is not really an instance of the right type. This
286 should be used in cases where you have some information that makes you believe
287 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
288 and <tt>cast&lt;&gt;</tt> template is:
289
Chris Lattner69bf8a92004-05-23 21:06:58 +0000290 <pre>
291 static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
292 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
293 return true;
294
295 <i>// Otherwise, it must be an instruction...</i>
296 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
297 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000298
299 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
300 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
301 operator.</p>
302
303 </dd>
304
305 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
306
307 <dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
308 checks to see if the operand is of the specified type, and if so, returns a
309 pointer to it (this operator does not work with references). If the operand is
310 not of the correct type, a null pointer is returned. Thus, this works very
311 much like the <tt>dynamic_cast</tt> operator in C++, and should be used in the
312 same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt> operator is used
313 in an <tt>if</tt> statement or some other flow control statement like this:
314
Chris Lattner69bf8a92004-05-23 21:06:58 +0000315 <pre>
316 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
317 ...
318 }
319 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000320
321 <p> This form of the <tt>if</tt> statement effectively combines together a
322 call to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
323 statement, which is very convenient.</p>
324
325 <p> Another common example is:</p>
326
Chris Lattner69bf8a92004-05-23 21:06:58 +0000327 <pre>
328 <i>// Loop over all of the phi nodes in a basic block</i>
329 BasicBlock::iterator BBI = BB-&gt;begin();
330 for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast&lt;<a href="#PHINode">PHINode</a>&gt;(BBI); ++BBI)
331 std::cerr &lt;&lt; *PN;
332 </pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000333
334 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
335 <tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused.
336 In particular you should not use big chained <tt>if/then/else</tt> blocks to
337 check for lots of different variants of classes. If you find yourself
338 wanting to do this, it is much cleaner and more efficient to use the
339 InstVisitor class to dispatch over the instruction type directly.</p>
340
Chris Lattner261efe92003-11-25 01:02:51 +0000341 </dd>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000342
Chris Lattner261efe92003-11-25 01:02:51 +0000343 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000344
345 <dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
346 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as
347 an argument (which it then propagates). This can sometimes be useful,
348 allowing you to combine several null checks into one.</dd>
349
Chris Lattner261efe92003-11-25 01:02:51 +0000350 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000351
352 <dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
353 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
354 as an argument (which it then propagates). This can sometimes be useful,
355 allowing you to combine several null checks into one.</dd>
356
Chris Lattner261efe92003-11-25 01:02:51 +0000357 </dl>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000358
359<p>These five templates can be used with any classes, whether they have a
360v-table or not. To add support for these templates, you simply need to add
361<tt>classof</tt> static methods to the class you are interested casting
362to. Describing this is currently outside the scope of this document, but there
363are lots of examples in the LLVM source base.</p>
364
365</div>
366
367<!-- ======================================================================= -->
368<div class="doc_subsection">
369 <a name="DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt> option</a>
370</div>
371
372<div class="doc_text">
373
374<p>Often when working on your pass you will put a bunch of debugging printouts
375and other code into your pass. After you get it working, you want to remove
376it... but you may need it again in the future (to work out new bugs that you run
377across).</p>
378
379<p> Naturally, because of this, you don't want to delete the debug printouts,
380but you don't want them to always be noisy. A standard compromise is to comment
381them out, allowing you to enable them if you need them in the future.</p>
382
383<p>The "<tt><a href="/doxygen/Debug_8h-source.html">Support/Debug.h</a></tt>"
384file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
385this problem. Basically, you can put arbitrary code into the argument of the
386<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
387tool) is run with the '<tt>-debug</tt>' command line argument:</p>
388
Chris Lattner261efe92003-11-25 01:02:51 +0000389 <pre> ... <br> DEBUG(std::cerr &lt;&lt; "I am here!\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000390
391<p>Then you can run your pass like this:</p>
392
Chris Lattner261efe92003-11-25 01:02:51 +0000393 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> I am here!<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000394
395<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
396to not have to create "yet another" command line option for the debug output for
397your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
398so they do not cause a performance impact at all (for the same reason, they
399should also not contain side-effects!).</p>
400
401<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
402enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
403"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
404program hasn't been started yet, you can always just run it with
405<tt>-debug</tt>.</p>
406
407</div>
408
409<!-- _______________________________________________________________________ -->
410<div class="doc_subsubsection">
411 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE()</tt> and
412 the <tt>-debug-only</tt> option</a>
413</div>
414
415<div class="doc_text">
416
417<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
418just turns on <b>too much</b> information (such as when working on the code
419generator). If you want to enable debug information with more fine-grained
420control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
421option as follows:</p>
422
Chris Lattner261efe92003-11-25 01:02:51 +0000423 <pre> ...<br> DEBUG(std::cerr &lt;&lt; "No debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "foo"<br> DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "bar"<br> DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE ""<br> DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");<br> ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000424
425<p>Then you can run your pass like this:</p>
426
Chris Lattner261efe92003-11-25 01:02:51 +0000427 <pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> No debug type<br> 'foo' debug type<br> 'bar' debug type<br> No debug type (2)<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo<br> 'foo' debug type<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar<br> 'bar' debug type<br> $<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000428
429<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
430a file, to specify the debug type for the entire module (if you do this before
431you <tt>#include "Support/Debug.h"</tt>, you don't have to insert the ugly
432<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
433"bar", because there is no system in place to ensure that names do not
434conflict. If two different modules use the same string, they will all be turned
435on when the name is specified. This allows, for example, all debug information
436for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
Chris Lattner261efe92003-11-25 01:02:51 +0000437even if the source lives in multiple files.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000438
439</div>
440
441<!-- ======================================================================= -->
442<div class="doc_subsection">
443 <a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
444 option</a>
445</div>
446
447<div class="doc_text">
448
449<p>The "<tt><a
450href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>" file
451provides a template named <tt>Statistic</tt> that is used as a unified way to
452keep track of what the LLVM compiler is doing and how effective various
453optimizations are. It is useful to see what optimizations are contributing to
454making a particular program run faster.</p>
455
456<p>Often you may run your pass on some big program, and you're interested to see
457how many times it makes a certain transformation. Although you can do this with
458hand inspection, or some ad-hoc method, this is a real pain and not very useful
459for big programs. Using the <tt>Statistic</tt> template makes it very easy to
460keep track of this information, and the calculated information is presented in a
461uniform manner with the rest of the passes being executed.</p>
462
463<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
464it are as follows:</p>
465
466<ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000467 <li>Define your statistic like this:
Chris Lattner261efe92003-11-25 01:02:51 +0000468 <pre>static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000469
470 <p>The <tt>Statistic</tt> template can emulate just about any data-type,
471 but if you do not specify a template argument, it defaults to acting like
472 an unsigned int counter (this is usually what you want).</p></li>
473
Chris Lattner261efe92003-11-25 01:02:51 +0000474 <li>Whenever you make a transformation, bump the counter:
Chris Lattner261efe92003-11-25 01:02:51 +0000475 <pre> ++NumXForms; // I did stuff<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +0000476 </li>
477 </ol>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000478
479 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
480 statistics gathered, use the '<tt>-stats</tt>' option:</p>
481
Chris Lattner261efe92003-11-25 01:02:51 +0000482 <pre> $ opt -stats -mypassname &lt; program.bc &gt; /dev/null<br> ... statistic output ...<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000483
Chris Lattner261efe92003-11-25 01:02:51 +0000484 <p> When running <tt>gccas</tt> on a C file from the SPEC benchmark
485suite, it gives a report that looks like this:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000486
Chris Lattner261efe92003-11-25 01:02:51 +0000487 <pre> 7646 bytecodewriter - Number of normal instructions<br> 725 bytecodewriter - Number of oversized instructions<br> 129996 bytecodewriter - Number of bytecode bytes written<br> 2817 raise - Number of insts DCEd or constprop'd<br> 3213 raise - Number of cast-of-self removed<br> 5046 raise - Number of expression trees converted<br> 75 raise - Number of other getelementptr's formed<br> 138 raise - Number of load/store peepholes<br> 42 deadtypeelim - Number of unused typenames removed from symtab<br> 392 funcresolve - Number of varargs functions resolved<br> 27 globaldce - Number of global variables removed<br> 2 adce - Number of basic blocks removed<br> 134 cee - Number of branches revectored<br> 49 cee - Number of setcc instruction eliminated<br> 532 gcse - Number of loads removed<br> 2919 gcse - Number of instructions removed<br> 86 indvars - Number of canonical indvars added<br> 87 indvars - Number of aux indvars removed<br> 25 instcombine - Number of dead inst eliminate<br> 434 instcombine - Number of insts combined<br> 248 licm - Number of load insts hoisted<br> 1298 licm - Number of insts hoisted to a loop pre-header<br> 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)<br> 75 mem2reg - Number of alloca's promoted<br> 1444 cfgsimplify - Number of blocks simplified<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000488
489<p>Obviously, with so many optimizations, having a unified framework for this
490stuff is very nice. Making your pass fit well into the framework makes it more
491maintainable and useful.</p>
492
493</div>
494
495<!-- *********************************************************************** -->
496<div class="doc_section">
497 <a name="common">Helpful Hints for Common Operations</a>
498</div>
499<!-- *********************************************************************** -->
500
501<div class="doc_text">
502
503<p>This section describes how to perform some very simple transformations of
504LLVM code. This is meant to give examples of common idioms used, showing the
505practical side of LLVM transformations. <p> Because this is a "how-to" section,
506you should also read about the main classes that you will be working with. The
507<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
508and descriptions of the main classes that you should know about.</p>
509
510</div>
511
512<!-- NOTE: this section should be heavy on example code -->
513<!-- ======================================================================= -->
514<div class="doc_subsection">
515 <a name="inspection">Basic Inspection and Traversal Routines</a>
516</div>
517
518<div class="doc_text">
519
520<p>The LLVM compiler infrastructure have many different data structures that may
521be traversed. Following the example of the C++ standard template library, the
522techniques used to traverse these various data structures are all basically the
523same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
524method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
525function returns an iterator pointing to one past the last valid element of the
526sequence, and there is some <tt>XXXiterator</tt> data type that is common
527between the two operations.</p>
528
529<p>Because the pattern for iteration is common across many different aspects of
530the program representation, the standard template library algorithms may be used
531on them, and it is easier to remember how to iterate. First we show a few common
532examples of the data structures that need to be traversed. Other data
533structures are traversed in very similar ways.</p>
534
535</div>
536
537<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000538<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000539 <a name="iterate_function">Iterating over the </a><a
540 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
541 href="#Function"><tt>Function</tt></a>
542</div>
543
544<div class="doc_text">
545
546<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
547transform in some way; in particular, you'd like to manipulate its
548<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
549the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
550an example that prints the name of a <tt>BasicBlock</tt> and the number of
551<tt>Instruction</tt>s it contains:</p>
552
Chris Lattner261efe92003-11-25 01:02:51 +0000553 <pre> // func is a pointer to a Function instance<br> for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i) {<br><br> // print out the name of the basic block if it has one, and then the<br> // number of instructions that it contains<br><br> cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has " <br> &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";<br> }<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000554
555<p>Note that i can be used as if it were a pointer for the purposes of
Joel Stanley9b96c442002-09-06 21:55:13 +0000556invoking member functions of the <tt>Instruction</tt> class. This is
557because the indirection operator is overloaded for the iterator
Chris Lattner7496ec52003-08-05 22:54:23 +0000558classes. In the above code, the expression <tt>i-&gt;size()</tt> is
Misha Brukman13fd15c2004-01-15 00:14:41 +0000559exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
560
561</div>
562
563<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000564<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000565 <a name="iterate_basicblock">Iterating over the </a><a
566 href="#Instruction"><tt>Instruction</tt></a>s in a <a
567 href="#BasicBlock"><tt>BasicBlock</tt></a>
568</div>
569
570<div class="doc_text">
571
572<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
573easy to iterate over the individual instructions that make up
574<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
575a <tt>BasicBlock</tt>:</p>
576
Chris Lattner55c04612005-03-06 06:00:13 +0000577<pre>
578 // blk is a pointer to a BasicBlock instance
579 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
580 // the next statement works since operator&lt;&lt;(ostream&amp;,...)
581 // is overloaded for Instruction&amp;
582 std::cerr &lt;&lt; *i &lt;&lt; "\n";
583</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000584
585<p>However, this isn't really the best way to print out the contents of a
586<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
587anything you'll care about, you could have just invoked the print routine on the
Chris Lattner55c04612005-03-06 06:00:13 +0000588basic block itself: <tt>std::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000589
590</div>
591
592<!-- _______________________________________________________________________ -->
Chris Lattner69bf8a92004-05-23 21:06:58 +0000593<div class="doc_subsubsection">
Misha Brukman13fd15c2004-01-15 00:14:41 +0000594 <a name="iterate_institer">Iterating over the </a><a
595 href="#Instruction"><tt>Instruction</tt></a>s in a <a
596 href="#Function"><tt>Function</tt></a>
597</div>
598
599<div class="doc_text">
600
601<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
602<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
603<tt>InstIterator</tt> should be used instead. You'll need to include <a
604href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
605and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000606small example that shows how to dump all instructions in a function to the standard error stream:<p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000607
Chris Lattner69bf8a92004-05-23 21:06:58 +0000608 <pre>#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"<br>...<br>// Suppose F is a ptr to a function<br>for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)<br> cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
Joel Stanleye7be6502002-09-09 15:50:33 +0000609Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
610worklist with its initial contents. For example, if you wanted to
Chris Lattner261efe92003-11-25 01:02:51 +0000611initialize a worklist to contain all instructions in a <tt>Function</tt>
612F, all you would need to do is something like:
613 <pre>std::set&lt;Instruction*&gt; worklist;<br>worklist.insert(inst_begin(F), inst_end(F));<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000614
615<p>The STL set <tt>worklist</tt> would now contain all instructions in the
616<tt>Function</tt> pointed to by F.</p>
617
618</div>
619
620<!-- _______________________________________________________________________ -->
621<div class="doc_subsubsection">
622 <a name="iterate_convert">Turning an iterator into a class pointer (and
623 vice-versa)</a>
624</div>
625
626<div class="doc_text">
627
628<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
Joel Stanley9b96c442002-09-06 21:55:13 +0000629instance when all you've got at hand is an iterator. Well, extracting
Chris Lattner69bf8a92004-05-23 21:06:58 +0000630a reference or a pointer from an iterator is very straight-forward.
Chris Lattner261efe92003-11-25 01:02:51 +0000631Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000632is a <tt>BasicBlock::const_iterator</tt>:</p>
633
Chris Lattner261efe92003-11-25 01:02:51 +0000634 <pre> Instruction&amp; inst = *i; // grab reference to instruction reference<br> Instruction* pinst = &amp;*i; // grab pointer to instruction reference<br> const Instruction&amp; inst = *j;<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000635
636<p>However, the iterators you'll be working with in the LLVM framework are
637special: they will automatically convert to a ptr-to-instance type whenever they
638need to. Instead of dereferencing the iterator and then taking the address of
639the result, you can simply assign the iterator to the proper pointer type and
640you get the dereference and address-of operation as a result of the assignment
641(behind the scenes, this is a result of overloading casting mechanisms). Thus
642the last line of the last example,</p>
643
Chris Lattner261efe92003-11-25 01:02:51 +0000644 <pre>Instruction* pinst = &amp;*i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000645
646<p>is semantically equivalent to</p>
647
Chris Lattner261efe92003-11-25 01:02:51 +0000648 <pre>Instruction* pinst = i;</pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000649
Chris Lattner69bf8a92004-05-23 21:06:58 +0000650<p>It's also possible to turn a class pointer into the corresponding iterator,
651and this is a constant time operation (very efficient). The following code
652snippet illustrates use of the conversion constructors provided by LLVM
653iterators. By using these, you can explicitly grab the iterator of something
654without actually obtaining it via iteration over some structure:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000655
Chris Lattner261efe92003-11-25 01:02:51 +0000656 <pre>void printNextInstruction(Instruction* inst) {<br> BasicBlock::iterator it(inst);<br> ++it; // after this line, it refers to the instruction after *inst.<br> if (it != inst-&gt;getParent()-&gt;end()) cerr &lt;&lt; *it &lt;&lt; "\n";<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000657
Misha Brukman13fd15c2004-01-15 00:14:41 +0000658</div>
659
660<!--_______________________________________________________________________-->
661<div class="doc_subsubsection">
662 <a name="iterate_complex">Finding call sites: a slightly more complex
663 example</a>
664</div>
665
666<div class="doc_text">
667
668<p>Say that you're writing a FunctionPass and would like to count all the
669locations in the entire module (that is, across every <tt>Function</tt>) where a
670certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
671learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000672much more straight-forward manner, but this example will allow us to explore how
Misha Brukman13fd15c2004-01-15 00:14:41 +0000673you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudocode, this
674is what we want to do:</p>
675
Chris Lattner261efe92003-11-25 01:02:51 +0000676 <pre>initialize callCounter to zero<br>for each Function f in the Module<br> for each BasicBlock b in f<br> for each Instruction i in b<br> if (i is a CallInst and calls the given function)<br> increment callCounter<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000677
678<p>And the actual code is (remember, since we're writing a
679<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
680override the <tt>runOnFunction</tt> method...):</p>
681
Chris Lattner261efe92003-11-25 01:02:51 +0000682 <pre>Function* targetFunc = ...;<br><br>class OurFunctionPass : public FunctionPass {<br> public:<br> OurFunctionPass(): callCounter(0) { }<br><br> virtual runOnFunction(Function&amp; F) {<br> for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {<br> for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {<br> if (<a
683 href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
684 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {<br> // we know we've encountered a call instruction, so we<br> // need to determine if it's a call to the<br> // function pointed to by m_func or not.<br> <br> if (callInst-&gt;getCalledFunction() == targetFunc)<br> ++callCounter;<br> }<br> }<br> }<br> <br> private:<br> unsigned callCounter;<br>};<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000685
686</div>
687
Brian Gaekef1972c62003-11-07 19:25:45 +0000688<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000689<div class="doc_subsubsection">
690 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
691</div>
692
693<div class="doc_text">
694
695<p>You may have noticed that the previous example was a bit oversimplified in
696that it did not deal with call sites generated by 'invoke' instructions. In
697this, and in other situations, you may find that you want to treat
698<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
699most-specific common base class is <tt>Instruction</tt>, which includes lots of
700less closely-related things. For these cases, LLVM provides a handy wrapper
701class called <a
Misha Brukman384047f2004-06-03 23:29:12 +0000702href="http://llvm.cs.uiuc.edu/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
Chris Lattner69bf8a92004-05-23 21:06:58 +0000703It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
704methods that provide functionality common to <tt>CallInst</tt>s and
Misha Brukman13fd15c2004-01-15 00:14:41 +0000705<tt>InvokeInst</tt>s.</p>
706
Chris Lattner69bf8a92004-05-23 21:06:58 +0000707<p>This class has "value semantics": it should be passed by value, not by
708reference and it should not be dynamically allocated or deallocated using
709<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
710assignable and constructable, with costs equivalents to that of a bare pointer.
711If you look at its definition, it has only a single pointer member.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000712
713</div>
714
Chris Lattner1a3105b2002-09-09 05:49:39 +0000715<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000716<div class="doc_subsubsection">
717 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
718</div>
719
720<div class="doc_text">
721
722<p>Frequently, we might have an instance of the <a
Misha Brukman384047f2004-06-03 23:29:12 +0000723href="/doxygen/structllvm_1_1Value.html">Value Class</a> and we want to
724determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
725<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
726For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
727particular function <tt>foo</tt>. Finding all of the instructions that
728<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
729of <tt>F</tt>:</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000730
Chris Lattner261efe92003-11-25 01:02:51 +0000731 <pre>Function* F = ...;<br><br>for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {<br> if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {<br> cerr &lt;&lt; "F is used in instruction:\n";<br> cerr &lt;&lt; *Inst &lt;&lt; "\n";<br> }<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000732
733<p>Alternately, it's common to have an instance of the <a
Misha Brukman384047f2004-06-03 23:29:12 +0000734href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
Misha Brukman13fd15c2004-01-15 00:14:41 +0000735<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
736<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
737<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
738all of the values that a particular instruction uses (that is, the operands of
739the particular <tt>Instruction</tt>):</p>
740
Chris Lattner261efe92003-11-25 01:02:51 +0000741 <pre>Instruction* pi = ...;<br><br>for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {<br> Value* v = *i;<br> ...<br>}<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000742
Chris Lattner1a3105b2002-09-09 05:49:39 +0000743<!--
744 def-use chains ("finding all users of"): Value::use_begin/use_end
745 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
Misha Brukman13fd15c2004-01-15 00:14:41 +0000746-->
747
748</div>
749
750<!-- ======================================================================= -->
751<div class="doc_subsection">
752 <a name="simplechanges">Making simple changes</a>
753</div>
754
755<div class="doc_text">
756
757<p>There are some primitive transformation operations present in the LLVM
Joel Stanley753eb712002-09-11 22:32:24 +0000758infrastructure that are worth knowing about. When performing
Chris Lattner261efe92003-11-25 01:02:51 +0000759transformations, it's fairly common to manipulate the contents of basic
760blocks. This section describes some of the common methods for doing so
Misha Brukman13fd15c2004-01-15 00:14:41 +0000761and gives example code.</p>
762
763</div>
764
Chris Lattner261efe92003-11-25 01:02:51 +0000765<!--_______________________________________________________________________-->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000766<div class="doc_subsubsection">
767 <a name="schanges_creating">Creating and inserting new
768 <tt>Instruction</tt>s</a>
769</div>
770
771<div class="doc_text">
772
773<p><i>Instantiating Instructions</i></p>
774
Chris Lattner69bf8a92004-05-23 21:06:58 +0000775<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
Misha Brukman13fd15c2004-01-15 00:14:41 +0000776constructor for the kind of instruction to instantiate and provide the necessary
777parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
778(const-ptr-to) <tt>Type</tt>. Thus:</p>
779
780<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
781
782<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
783one integer in the current stack frame, at runtime. Each <tt>Instruction</tt>
784subclass is likely to have varying default parameters which change the semantics
785of the instruction, so refer to the <a
Misha Brukman31ca1de2004-06-03 23:35:54 +0000786href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
Misha Brukman13fd15c2004-01-15 00:14:41 +0000787Instruction</a> that you're interested in instantiating.</p>
788
789<p><i>Naming values</i></p>
790
791<p>It is very useful to name the values of instructions when you're able to, as
792this facilitates the debugging of your transformations. If you end up looking
793at generated LLVM machine code, you definitely want to have logical names
794associated with the results of instructions! By supplying a value for the
795<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
796associate a logical name with the result of the instruction's execution at
797runtime. For example, say that I'm writing a transformation that dynamically
798allocates space for an integer on the stack, and that integer is going to be
799used as some kind of index by some other code. To accomplish this, I place an
800<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
801<tt>Function</tt>, and I'm intending to use it within the same
802<tt>Function</tt>. I might do:</p>
803
804 <pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
805
806<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
807execution value, which is a pointer to an integer on the runtime stack.</p>
808
809<p><i>Inserting instructions</i></p>
810
811<p>There are essentially two ways to insert an <tt>Instruction</tt>
812into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
813
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000814<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000815 <li>Insertion into an explicit instruction list
816
817 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
818 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
819 before <tt>*pi</tt>, we do the following: </p>
820
Alkis Evlogimenos9a5dc4f2004-05-27 00:57:51 +0000821 <pre> BasicBlock *pb = ...;<br> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().insert(pi, newInst); // inserts newInst before pi in pb<br></pre>
822
823 <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
824 the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
825 classes provide constructors which take a pointer to a
826 <tt>BasicBlock</tt> to be appended to. For example code that
827 looked like: </p>
828
829 <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().push_back(newInst); // appends newInst to pb<br></pre>
830
831 <p>becomes: </p>
832
833 <pre> BasicBlock *pb = ...;<br> Instruction *newInst = new Instruction(..., pb);<br></pre>
834
835 <p>which is much cleaner, especially if you are creating
836 long instruction streams.</p></li>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000837
838 <li>Insertion into an implicit instruction list
839
840 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
841 are implicitly associated with an existing instruction list: the instruction
842 list of the enclosing basic block. Thus, we could have accomplished the same
843 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
844 </p>
845
846 <pre> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);<br></pre>
847
848 <p>In fact, this sequence of steps occurs so frequently that the
849 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
850 constructors which take (as a default parameter) a pointer to an
851 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
852 precede. That is, <tt>Instruction</tt> constructors are capable of
853 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
854 provided instruction, immediately before that instruction. Using an
855 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
856 parameter, the above code becomes:</p>
857
858 <pre>Instruction* pi = ...;<br>Instruction* newInst = new Instruction(..., pi);<br></pre>
859
860 <p>which is much cleaner, especially if you're creating a lot of
861instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
862</ul>
863
864</div>
865
866<!--_______________________________________________________________________-->
867<div class="doc_subsubsection">
868 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
869</div>
870
871<div class="doc_text">
872
873<p>Deleting an instruction from an existing sequence of instructions that form a
Chris Lattner69bf8a92004-05-23 21:06:58 +0000874<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
Misha Brukman13fd15c2004-01-15 00:14:41 +0000875you must have a pointer to the instruction that you wish to delete. Second, you
876need to obtain the pointer to that instruction's basic block. You use the
877pointer to the basic block to get its list of instructions and then use the
878erase function to remove your instruction. For example:</p>
879
Chris Lattner261efe92003-11-25 01:02:51 +0000880 <pre> <a href="#Instruction">Instruction</a> *I = .. ;<br> <a
881 href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();<br> BB-&gt;getInstList().erase(I);<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000882
883</div>
884
885<!--_______________________________________________________________________-->
886<div class="doc_subsubsection">
887 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
888 <tt>Value</tt></a>
889</div>
890
891<div class="doc_text">
892
893<p><i>Replacing individual instructions</i></p>
894
895<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
Chris Lattner261efe92003-11-25 01:02:51 +0000896permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000897and <tt>ReplaceInstWithInst</tt>.</p>
898
Chris Lattner261efe92003-11-25 01:02:51 +0000899<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000900
Chris Lattner261efe92003-11-25 01:02:51 +0000901<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000902 <li><tt>ReplaceInstWithValue</tt>
903
904 <p>This function replaces all uses (within a basic block) of a given
905 instruction with a value, and then removes the original instruction. The
906 following example illustrates the replacement of the result of a particular
Chris Lattner58360822005-01-17 00:12:04 +0000907 <tt>AllocaInst</tt> that allocates memory for a single integer with a null
Misha Brukman13fd15c2004-01-15 00:14:41 +0000908 pointer to an integer.</p>
909
910 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> Constant::getNullValue(PointerType::get(Type::IntTy)));<br></pre></li>
911
912 <li><tt>ReplaceInstWithInst</tt>
913
914 <p>This function replaces a particular instruction with another
915 instruction. The following example illustrates the replacement of one
916 <tt>AllocaInst</tt> with another.</p>
917
918 <pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));<br></pre></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000919</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000920
921<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
922
923<p>You can use <tt>Value::replaceAllUsesWith</tt> and
924<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
Misha Brukman384047f2004-06-03 23:29:12 +0000925doxygen documentation for the <a href="/doxygen/structllvm_1_1Value.html">Value Class</a>
926and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
Misha Brukman13fd15c2004-01-15 00:14:41 +0000927information.</p>
928
929<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
930include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
931ReplaceInstWithValue, ReplaceInstWithInst -->
932
933</div>
934
Chris Lattner9355b472002-09-06 02:50:58 +0000935<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +0000936<div class="doc_section">
937 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
938</div>
939<!-- *********************************************************************** -->
940
941<div class="doc_text">
942
943<p>The Core LLVM classes are the primary means of representing the program
Chris Lattner261efe92003-11-25 01:02:51 +0000944being inspected or transformed. The core LLVM classes are defined in
945header files in the <tt>include/llvm/</tt> directory, and implemented in
Misha Brukman13fd15c2004-01-15 00:14:41 +0000946the <tt>lib/VMCore</tt> directory.</p>
947
948</div>
949
950<!-- ======================================================================= -->
951<div class="doc_subsection">
952 <a name="Value">The <tt>Value</tt> class</a>
953</div>
954
955<div>
956
957<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
958<br>
Misha Brukman384047f2004-06-03 23:29:12 +0000959doxygen info: <a href="/doxygen/structllvm_1_1Value.html">Value Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000960
961<p>The <tt>Value</tt> class is the most important class in the LLVM Source
962base. It represents a typed value that may be used (among other things) as an
963operand to an instruction. There are many different types of <tt>Value</tt>s,
964such as <a href="#Constant"><tt>Constant</tt></a>s,<a
965href="#Argument"><tt>Argument</tt></a>s. Even <a
966href="#Instruction"><tt>Instruction</tt></a>s and <a
967href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
968
969<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
970for a program. For example, an incoming argument to a function (represented
971with an instance of the <a href="#Argument">Argument</a> class) is "used" by
972every instruction in the function that references the argument. To keep track
973of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
974href="#User"><tt>User</tt></a>s that is using it (the <a
975href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
976graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
977def-use information in the program, and is accessible through the <tt>use_</tt>*
978methods, shown below.</p>
979
980<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
981and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
982method. In addition, all LLVM values can be named. The "name" of the
983<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
984
Chris Lattner261efe92003-11-25 01:02:51 +0000985 <pre> %<b>foo</b> = add int 1, 2<br></pre>
Misha Brukman13fd15c2004-01-15 00:14:41 +0000986
987<p><a name="#nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
988that the name of any value may be missing (an empty string), so names should
989<b>ONLY</b> be used for debugging (making the source code easier to read,
990debugging printouts), they should not be used to keep track of values or map
991between them. For this purpose, use a <tt>std::map</tt> of pointers to the
992<tt>Value</tt> itself instead.</p>
993
994<p>One important aspect of LLVM is that there is no distinction between an SSA
995variable and the operation that produces it. Because of this, any reference to
996the value produced by an instruction (or the value available as an incoming
Chris Lattnerd5fc4fc2004-03-18 14:58:55 +0000997argument, for example) is represented as a direct pointer to the instance of
998the class that
Misha Brukman13fd15c2004-01-15 00:14:41 +0000999represents this value. Although this may take some getting used to, it
1000simplifies the representation and makes it easier to manipulate.</p>
1001
1002</div>
1003
1004<!-- _______________________________________________________________________ -->
1005<div class="doc_subsubsection">
1006 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
1007</div>
1008
1009<div class="doc_text">
1010
Chris Lattner261efe92003-11-25 01:02:51 +00001011<ul>
1012 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
1013use-list<br>
1014 <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
1015the use-list<br>
1016 <tt>unsigned use_size()</tt> - Returns the number of users of the
1017value.<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001018 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
Chris Lattner261efe92003-11-25 01:02:51 +00001019 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
1020the use-list.<br>
1021 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
1022use-list.<br>
1023 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
1024element in the list.
1025 <p> These methods are the interface to access the def-use
1026information in LLVM. As with all other iterators in LLVM, the naming
1027conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001028 </li>
1029 <li><tt><a href="#Type">Type</a> *getType() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001030 <p>This method returns the Type of the Value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001031 </li>
1032 <li><tt>bool hasName() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001033 <tt>std::string getName() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001034 <tt>void setName(const std::string &amp;Name)</tt>
1035 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
1036be aware of the <a href="#nameWarning">precaution above</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001037 </li>
1038 <li><tt>void replaceAllUsesWith(Value *V)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001039
1040 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
1041 href="#User"><tt>User</tt>s</a> of the current value to refer to
1042 "<tt>V</tt>" instead. For example, if you detect that an instruction always
1043 produces a constant value (for example through constant folding), you can
1044 replace all uses of the instruction with the constant like this:</p>
1045
Chris Lattner261efe92003-11-25 01:02:51 +00001046 <pre> Inst-&gt;replaceAllUsesWith(ConstVal);<br></pre>
Chris Lattner261efe92003-11-25 01:02:51 +00001047</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001048
1049</div>
1050
1051<!-- ======================================================================= -->
1052<div class="doc_subsection">
1053 <a name="User">The <tt>User</tt> class</a>
1054</div>
1055
1056<div class="doc_text">
1057
1058<p>
1059<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00001060doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001061Superclass: <a href="#Value"><tt>Value</tt></a></p>
1062
1063<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
1064refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
1065that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
1066referring to. The <tt>User</tt> class itself is a subclass of
1067<tt>Value</tt>.</p>
1068
1069<p>The operands of a <tt>User</tt> point directly to the LLVM <a
1070href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
1071Single Assignment (SSA) form, there can only be one definition referred to,
1072allowing this direct connection. This connection provides the use-def
1073information in LLVM.</p>
1074
1075</div>
1076
1077<!-- _______________________________________________________________________ -->
1078<div class="doc_subsubsection">
1079 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
1080</div>
1081
1082<div class="doc_text">
1083
1084<p>The <tt>User</tt> class exposes the operand list in two ways: through
1085an index access interface and through an iterator based interface.</p>
1086
Chris Lattner261efe92003-11-25 01:02:51 +00001087<ul>
Chris Lattner261efe92003-11-25 01:02:51 +00001088 <li><tt>Value *getOperand(unsigned i)</tt><br>
1089 <tt>unsigned getNumOperands()</tt>
1090 <p> These two methods expose the operands of the <tt>User</tt> in a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001091convenient form for direct access.</p></li>
1092
Chris Lattner261efe92003-11-25 01:02:51 +00001093 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
1094list<br>
Chris Lattner58360822005-01-17 00:12:04 +00001095 <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
1096the operand list.<br>
1097 <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
Chris Lattner261efe92003-11-25 01:02:51 +00001098operand list.
1099 <p> Together, these methods make up the iterator based interface to
Misha Brukman13fd15c2004-01-15 00:14:41 +00001100the operands of a <tt>User</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001101</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001102
1103</div>
1104
1105<!-- ======================================================================= -->
1106<div class="doc_subsection">
1107 <a name="Instruction">The <tt>Instruction</tt> class</a>
1108</div>
1109
1110<div class="doc_text">
1111
1112<p><tt>#include "</tt><tt><a
1113href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
Misha Brukman31ca1de2004-06-03 23:35:54 +00001114doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001115Superclasses: <a href="#User"><tt>User</tt></a>, <a
1116href="#Value"><tt>Value</tt></a></p>
1117
1118<p>The <tt>Instruction</tt> class is the common base class for all LLVM
1119instructions. It provides only a few methods, but is a very commonly used
1120class. The primary data tracked by the <tt>Instruction</tt> class itself is the
1121opcode (instruction type) and the parent <a
1122href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
1123into. To represent a specific type of instruction, one of many subclasses of
1124<tt>Instruction</tt> are used.</p>
1125
1126<p> Because the <tt>Instruction</tt> class subclasses the <a
1127href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
1128way as for other <a href="#User"><tt>User</tt></a>s (with the
1129<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
1130<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
1131the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
1132file contains some meta-data about the various different types of instructions
1133in LLVM. It describes the enum values that are used as opcodes (for example
1134<tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>), as well as the
1135concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
1136example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
1137href="#SetCondInst">SetCondInst</a></tt>). Unfortunately, the use of macros in
1138this file confuses doxygen, so these enum values don't show up correctly in the
Misha Brukman31ca1de2004-06-03 23:35:54 +00001139<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001140
1141</div>
1142
1143<!-- _______________________________________________________________________ -->
1144<div class="doc_subsubsection">
1145 <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
1146 class</a>
1147</div>
1148
1149<div class="doc_text">
1150
Chris Lattner261efe92003-11-25 01:02:51 +00001151<ul>
1152 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001153 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
1154this <tt>Instruction</tt> is embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001155 <li><tt>bool mayWriteToMemory()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001156 <p>Returns true if the instruction writes to memory, i.e. it is a
1157 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001158 <li><tt>unsigned getOpcode()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001159 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001160 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001161 <p>Returns another instance of the specified instruction, identical
Chris Lattner261efe92003-11-25 01:02:51 +00001162in all ways to the original except that the instruction has no parent
1163(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
Misha Brukman13fd15c2004-01-15 00:14:41 +00001164and it has no name</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001165</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001166
1167</div>
1168
1169<!-- ======================================================================= -->
1170<div class="doc_subsection">
1171 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
1172</div>
1173
1174<div class="doc_text">
1175
Misha Brukman384047f2004-06-03 23:29:12 +00001176<p><tt>#include "<a
1177href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
1178doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
1179Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001180Superclass: <a href="#Value"><tt>Value</tt></a></p>
1181
1182<p>This class represents a single entry multiple exit section of the code,
1183commonly known as a basic block by the compiler community. The
1184<tt>BasicBlock</tt> class maintains a list of <a
1185href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
1186Matching the language definition, the last element of this list of instructions
1187is always a terminator instruction (a subclass of the <a
1188href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
1189
1190<p>In addition to tracking the list of instructions that make up the block, the
1191<tt>BasicBlock</tt> class also keeps track of the <a
1192href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
1193
1194<p>Note that <tt>BasicBlock</tt>s themselves are <a
1195href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
1196like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
1197<tt>label</tt>.</p>
1198
1199</div>
1200
1201<!-- _______________________________________________________________________ -->
1202<div class="doc_subsubsection">
1203 <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
1204 class</a>
1205</div>
1206
1207<div class="doc_text">
1208
Chris Lattner261efe92003-11-25 01:02:51 +00001209<ul>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001210
1211<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
Chris Lattner261efe92003-11-25 01:02:51 +00001212 href="#Function">Function</a> *Parent = 0)</tt>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001213
1214<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
1215insertion into a function. The constructor optionally takes a name for the new
1216block, and a <a href="#Function"><tt>Function</tt></a> to insert it into. If
1217the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
1218automatically inserted at the end of the specified <a
1219href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
1220manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
1221
1222<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
1223<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
1224<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
Chris Lattner77d69242005-03-15 05:19:20 +00001225<tt>size()</tt>, <tt>empty()</tt>
Misha Brukmanb0e7e452004-10-29 04:33:19 +00001226STL-style functions for accessing the instruction list.
1227
1228<p>These methods and typedefs are forwarding functions that have the same
1229semantics as the standard library methods of the same names. These methods
1230expose the underlying instruction list of a basic block in a way that is easy to
1231manipulate. To get the full complement of container operations (including
1232operations to update the list), you must use the <tt>getInstList()</tt>
1233method.</p></li>
1234
1235<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
1236
1237<p>This method is used to get access to the underlying container that actually
1238holds the Instructions. This method must be used when there isn't a forwarding
1239function in the <tt>BasicBlock</tt> class for the operation that you would like
1240to perform. Because there are no forwarding functions for "updating"
1241operations, you need to use this if you want to update the contents of a
1242<tt>BasicBlock</tt>.</p></li>
1243
1244<li><tt><a href="#Function">Function</a> *getParent()</tt>
1245
1246<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
1247embedded into, or a null pointer if it is homeless.</p></li>
1248
1249<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
1250
1251<p> Returns a pointer to the terminator instruction that appears at the end of
1252the <tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
1253instruction in the block is not a terminator, then a null pointer is
1254returned.</p></li>
1255
Chris Lattner261efe92003-11-25 01:02:51 +00001256</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001257
1258</div>
1259
1260<!-- ======================================================================= -->
1261<div class="doc_subsection">
1262 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
1263</div>
1264
1265<div class="doc_text">
1266
1267<p><tt>#include "<a
1268href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
Misha Brukman384047f2004-06-03 23:29:12 +00001269doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
1270Class</a><br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001271Superclasses: <a href="#User"><tt>User</tt></a>, <a
1272href="#Value"><tt>Value</tt></a></p>
1273
1274<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
1275href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
1276visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
1277Because they are visible at global scope, they are also subject to linking with
1278other globals defined in different translation units. To control the linking
1279process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
1280<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
Reid Spencer8b2da7a2004-07-18 13:10:31 +00001281defined by the <tt>LinkageTypes</tt> enumeration.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001282
1283<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
1284<tt>static</tt> in C), it is not visible to code outside the current translation
1285unit, and does not participate in linking. If it has external linkage, it is
1286visible to external code, and does participate in linking. In addition to
1287linkage information, <tt>GlobalValue</tt>s keep track of which <a
1288href="#Module"><tt>Module</tt></a> they are currently part of.</p>
1289
1290<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
1291by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
1292global is always a pointer to its contents. It is important to remember this
1293when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
1294be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
1295subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
1296int]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
1297the address of the first element of this array and the value of the
1298<tt>GlobalVariable</tt> are the same, they have different types. The
1299<tt>GlobalVariable</tt>'s type is <tt>[24 x int]</tt>. The first element's type
1300is <tt>int.</tt> Because of this, accessing a global value requires you to
1301dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
1302can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
1303Language Reference Manual</a>.</p>
1304
1305</div>
1306
1307<!-- _______________________________________________________________________ -->
1308<div class="doc_subsubsection">
1309 <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
1310 class</a>
1311</div>
1312
1313<div class="doc_text">
1314
Chris Lattner261efe92003-11-25 01:02:51 +00001315<ul>
1316 <li><tt>bool hasInternalLinkage() const</tt><br>
Chris Lattner9355b472002-09-06 02:50:58 +00001317 <tt>bool hasExternalLinkage() const</tt><br>
Chris Lattner261efe92003-11-25 01:02:51 +00001318 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
1319 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
1320 <p> </p>
1321 </li>
1322 <li><tt><a href="#Module">Module</a> *getParent()</tt>
1323 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
Misha Brukman13fd15c2004-01-15 00:14:41 +00001324GlobalValue is currently embedded into.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001325</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001326
1327</div>
1328
1329<!-- ======================================================================= -->
1330<div class="doc_subsection">
1331 <a name="Function">The <tt>Function</tt> class</a>
1332</div>
1333
1334<div class="doc_text">
1335
1336<p><tt>#include "<a
1337href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
Misha Brukman31ca1de2004-06-03 23:35:54 +00001338info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
1339Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
Misha Brukman13fd15c2004-01-15 00:14:41 +00001340href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
1341
1342<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
1343actually one of the more complex classes in the LLVM heirarchy because it must
1344keep track of a large amount of data. The <tt>Function</tt> class keeps track
1345of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
1346href="#Argument"><tt>Argument</tt></a>s, and a <a
1347href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
1348
1349<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
1350commonly used part of <tt>Function</tt> objects. The list imposes an implicit
1351ordering of the blocks in the function, which indicate how the code will be
1352layed out by the backend. Additionally, the first <a
1353href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
1354<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
1355block. There are no implicit exit nodes, and in fact there may be multiple exit
1356nodes from a single <tt>Function</tt>. If the <a
1357href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
1358the <tt>Function</tt> is actually a function declaration: the actual body of the
1359function hasn't been linked in yet.</p>
1360
1361<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
1362<tt>Function</tt> class also keeps track of the list of formal <a
1363href="#Argument"><tt>Argument</tt></a>s that the function receives. This
1364container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
1365nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
1366the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
1367
1368<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
1369LLVM feature that is only used when you have to look up a value by name. Aside
1370from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
1371internally to make sure that there are not conflicts between the names of <a
1372href="#Instruction"><tt>Instruction</tt></a>s, <a
1373href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
1374href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
1375
Reid Spencer8b2da7a2004-07-18 13:10:31 +00001376<p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
1377and therefore also a <a href="#Constant">Constant</a>. The value of the function
1378is its address (after linking) which is guaranteed to be constant.</p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001379</div>
1380
1381<!-- _______________________________________________________________________ -->
1382<div class="doc_subsubsection">
1383 <a name="m_Function">Important Public Members of the <tt>Function</tt>
1384 class</a>
1385</div>
1386
1387<div class="doc_text">
1388
Chris Lattner261efe92003-11-25 01:02:51 +00001389<ul>
1390 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
Chris Lattnerac479e52004-08-04 05:10:48 +00001391 *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001392
1393 <p>Constructor used when you need to create new <tt>Function</tt>s to add
1394 the the program. The constructor must specify the type of the function to
Chris Lattnerac479e52004-08-04 05:10:48 +00001395 create and what type of linkage the function should have. The <a
1396 href="#FunctionType"><tt>FunctionType</tt></a> argument
Misha Brukman13fd15c2004-01-15 00:14:41 +00001397 specifies the formal arguments and return value for the function. The same
1398 <a href="#FunctionTypel"><tt>FunctionType</tt></a> value can be used to
1399 create multiple functions. The <tt>Parent</tt> argument specifies the Module
1400 in which the function is defined. If this argument is provided, the function
1401 will automatically be inserted into that module's list of
1402 functions.</p></li>
1403
Chris Lattner261efe92003-11-25 01:02:51 +00001404 <li><tt>bool isExternal()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001405
1406 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
1407 function is "external", it does not have a body, and thus must be resolved
1408 by linking with a function defined in a different translation unit.</p></li>
1409
Chris Lattner261efe92003-11-25 01:02:51 +00001410 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
Chris Lattner9355b472002-09-06 02:50:58 +00001411 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001412
Chris Lattner77d69242005-03-15 05:19:20 +00001413 <tt>begin()</tt>, <tt>end()</tt>
1414 <tt>size()</tt>, <tt>empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001415
1416 <p>These are forwarding methods that make it easy to access the contents of
1417 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
1418 list.</p></li>
1419
Chris Lattner261efe92003-11-25 01:02:51 +00001420 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001421
1422 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
1423 is necessary to use when you need to update the list or perform a complex
1424 action that doesn't have a forwarding method.</p></li>
1425
Chris Lattner89cc2652005-03-15 04:48:32 +00001426 <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
Chris Lattner261efe92003-11-25 01:02:51 +00001427iterator<br>
Chris Lattner89cc2652005-03-15 04:48:32 +00001428 <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001429
Chris Lattner77d69242005-03-15 05:19:20 +00001430 <tt>arg_begin()</tt>, <tt>arg_end()</tt>
Chris Lattner89cc2652005-03-15 04:48:32 +00001431 <tt>arg_size()</tt>, <tt>arg_empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001432
1433 <p>These are forwarding methods that make it easy to access the contents of
1434 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
1435 list.</p></li>
1436
Chris Lattner261efe92003-11-25 01:02:51 +00001437 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001438
1439 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
1440 necessary to use when you need to update the list or perform a complex
1441 action that doesn't have a forwarding method.</p></li>
1442
Chris Lattner261efe92003-11-25 01:02:51 +00001443 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001444
1445 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
1446 function. Because the entry block for the function is always the first
1447 block, this returns the first block of the <tt>Function</tt>.</p></li>
1448
Chris Lattner261efe92003-11-25 01:02:51 +00001449 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
1450 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001451
1452 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
1453 <tt>Function</tt> and returns the return type of the function, or the <a
1454 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
1455 function.</p></li>
1456
Chris Lattner261efe92003-11-25 01:02:51 +00001457 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001458
Chris Lattner261efe92003-11-25 01:02:51 +00001459 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001460 for this <tt>Function</tt>.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001461</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001462
1463</div>
1464
1465<!-- ======================================================================= -->
1466<div class="doc_subsection">
1467 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
1468</div>
1469
1470<div class="doc_text">
1471
1472<p><tt>#include "<a
1473href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
1474<br>
Tanya Lattnera3da7772004-06-22 08:02:25 +00001475doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
Misha Brukman13fd15c2004-01-15 00:14:41 +00001476Class</a><br> Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1477href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
1478
1479<p>Global variables are represented with the (suprise suprise)
1480<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
1481subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
1482always referenced by their address (global values must live in memory, so their
1483"name" refers to their address). See <a
1484href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global variables
1485may have an initial value (which must be a <a
1486href="#Constant"><tt>Constant</tt></a>), and if they have an initializer, they
1487may be marked as "constant" themselves (indicating that their contents never
1488change at runtime).</p>
1489
1490</div>
1491
1492<!-- _______________________________________________________________________ -->
1493<div class="doc_subsubsection">
1494 <a name="m_GlobalVariable">Important Public Members of the
1495 <tt>GlobalVariable</tt> class</a>
1496</div>
1497
1498<div class="doc_text">
1499
Chris Lattner261efe92003-11-25 01:02:51 +00001500<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001501 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
1502 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
1503 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
1504
1505 <p>Create a new global variable of the specified type. If
1506 <tt>isConstant</tt> is true then the global variable will be marked as
1507 unchanging for the program. The Linkage parameter specifies the type of
1508 linkage (internal, external, weak, linkonce, appending) for the variable. If
1509 the linkage is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then
1510 the resultant global variable will have internal linkage. AppendingLinkage
1511 concatenates together all instances (in different translation units) of the
1512 variable into a single variable but is only applicable to arrays. &nbsp;See
1513 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
1514 further details on linkage types. Optionally an initializer, a name, and the
1515 module to put the variable into may be specified for the global variable as
1516 well.</p></li>
1517
Chris Lattner261efe92003-11-25 01:02:51 +00001518 <li><tt>bool isConstant() const</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001519
1520 <p>Returns true if this is a global variable that is known not to
1521 be modified at runtime.</p></li>
1522
Chris Lattner261efe92003-11-25 01:02:51 +00001523 <li><tt>bool hasInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001524
1525 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
1526
Chris Lattner261efe92003-11-25 01:02:51 +00001527 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001528
1529 <p>Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal
1530 to call this method if there is no initializer.</p></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001531</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001532
1533</div>
1534
1535<!-- ======================================================================= -->
1536<div class="doc_subsection">
1537 <a name="Module">The <tt>Module</tt> class</a>
1538</div>
1539
1540<div class="doc_text">
1541
1542<p><tt>#include "<a
1543href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
Tanya Lattnera3da7772004-06-22 08:02:25 +00001544<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001545
1546<p>The <tt>Module</tt> class represents the top level structure present in LLVM
1547programs. An LLVM module is effectively either a translation unit of the
1548original program or a combination of several translation units merged by the
1549linker. The <tt>Module</tt> class keeps track of a list of <a
1550href="#Function"><tt>Function</tt></a>s, a list of <a
1551href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
1552href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
1553helpful member functions that try to make common operations easy.</p>
1554
1555</div>
1556
1557<!-- _______________________________________________________________________ -->
1558<div class="doc_subsubsection">
1559 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
1560</div>
1561
1562<div class="doc_text">
1563
Chris Lattner261efe92003-11-25 01:02:51 +00001564<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001565 <li><tt>Module::Module(std::string name = "")</tt></li>
Chris Lattner261efe92003-11-25 01:02:51 +00001566</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001567
1568<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
1569provide a name for it (probably based on the name of the translation unit).</p>
1570
Chris Lattner261efe92003-11-25 01:02:51 +00001571<ul>
1572 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
Chris Lattner0377de42002-09-06 14:50:55 +00001573 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001574
Chris Lattner77d69242005-03-15 05:19:20 +00001575 <tt>begin()</tt>, <tt>end()</tt>
1576 <tt>size()</tt>, <tt>empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001577
1578 <p>These are forwarding methods that make it easy to access the contents of
1579 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
1580 list.</p></li>
1581
Chris Lattner261efe92003-11-25 01:02:51 +00001582 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001583
1584 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
1585 necessary to use when you need to update the list or perform a complex
1586 action that doesn't have a forwarding method.</p>
1587
1588 <p><!-- Global Variable --></p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001589</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001590
1591<hr>
1592
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001593<ul>
Chris Lattner89cc2652005-03-15 04:48:32 +00001594 <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001595
Chris Lattner89cc2652005-03-15 04:48:32 +00001596 <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001597
Chris Lattner77d69242005-03-15 05:19:20 +00001598 <tt>global_begin()</tt>, <tt>global_end()</tt>
Chris Lattner89cc2652005-03-15 04:48:32 +00001599 <tt>global_size()</tt>, <tt>global_empty()</tt>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001600
1601 <p> These are forwarding methods that make it easy to access the contents of
1602 a <tt>Module</tt> object's <a
1603 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
1604
1605 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
1606
1607 <p>Returns the list of <a
1608 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
1609 use when you need to update the list or perform a complex action that
1610 doesn't have a forwarding method.</p>
1611
1612 <p><!-- Symbol table stuff --> </p></li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001613</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001614
1615<hr>
1616
1617<ul>
1618 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
1619
1620 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
1621 for this <tt>Module</tt>.</p>
1622
1623 <p><!-- Convenience methods --></p></li>
1624</ul>
1625
1626<hr>
1627
1628<ul>
1629 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
1630 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
1631
1632 <p>Look up the specified function in the <tt>Module</tt> <a
1633 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
1634 <tt>null</tt>.</p></li>
1635
1636 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
1637 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
1638
1639 <p>Look up the specified function in the <tt>Module</tt> <a
1640 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
1641 external declaration for the function and return it.</p></li>
1642
1643 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
1644
1645 <p>If there is at least one entry in the <a
1646 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
1647 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
1648 string.</p></li>
1649
1650 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
1651 href="#Type">Type</a> *Ty)</tt>
1652
1653 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
1654 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
1655 name, true is returned and the <a
1656 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
1657</ul>
1658
1659</div>
1660
1661<!-- ======================================================================= -->
1662<div class="doc_subsection">
1663 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
1664</div>
1665
1666<div class="doc_text">
1667
1668<p>Constant represents a base class for different types of constants. It
1669is subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
1670ConstantArray etc for representing the various types of Constants.</p>
1671
1672</div>
1673
1674<!-- _______________________________________________________________________ -->
1675<div class="doc_subsubsection">
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00001676 <a name="m_Constant">Important Public Methods</a>
1677</div>
1678<div class="doc_text">
Misha Brukman13fd15c2004-01-15 00:14:41 +00001679</div>
1680
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00001681<!-- _______________________________________________________________________ -->
1682<div class="doc_subsubsection">Important Subclasses of Constant </div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001683<div class="doc_text">
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001684<ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00001685 <li>ConstantSInt : This subclass of Constant represents a signed integer
1686 constant.
Chris Lattner261efe92003-11-25 01:02:51 +00001687 <ul>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00001688 <li><tt>int64_t getValue() const</tt>: Returns the underlying value of
1689 this constant. </li>
Chris Lattner261efe92003-11-25 01:02:51 +00001690 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001691 </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00001692 <li>ConstantUInt : This class represents an unsigned integer.
1693 <ul>
1694 <li><tt>uint64_t getValue() const</tt>: Returns the underlying value of
1695 this constant. </li>
1696 </ul>
1697 </li>
1698 <li>ConstantFP : This class represents a floating point constant.
1699 <ul>
1700 <li><tt>double getValue() const</tt>: Returns the underlying value of
1701 this constant. </li>
1702 </ul>
1703 </li>
1704 <li>ConstantBool : This represents a boolean constant.
1705 <ul>
1706 <li><tt>bool getValue() const</tt>: Returns the underlying value of this
1707 constant. </li>
1708 </ul>
1709 </li>
1710 <li>ConstantArray : This represents a constant array.
1711 <ul>
1712 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
Chris Lattner58360822005-01-17 00:12:04 +00001713 a vector of component constants that makeup this array. </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00001714 </ul>
1715 </li>
1716 <li>ConstantStruct : This represents a constant struct.
1717 <ul>
1718 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
Chris Lattner58360822005-01-17 00:12:04 +00001719 a vector of component constants that makeup this array. </li>
Reid Spencerfe8f4ff2004-11-01 09:02:53 +00001720 </ul>
1721 </li>
1722 <li>GlobalValue : This represents either a global variable or a function. In
1723 either case, the value is a constant fixed address (after linking).
1724 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001725</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001726</div>
1727
1728<!-- ======================================================================= -->
1729<div class="doc_subsection">
1730 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
1731</div>
1732
1733<div class="doc_text">
1734
1735<p>Type as noted earlier is also a subclass of a Value class. Any primitive
1736type (like int, short etc) in LLVM is an instance of Type Class. All other
1737types are instances of subclasses of type like FunctionType, ArrayType
1738etc. DerivedType is the interface for all such dervied types including
1739FunctionType, ArrayType, PointerType, StructType. Types can have names. They can
1740be recursive (StructType). There exists exactly one instance of any type
1741structure at a time. This allows using pointer equality of Type *s for comparing
1742types.</p>
1743
1744</div>
1745
1746<!-- _______________________________________________________________________ -->
1747<div class="doc_subsubsection">
1748 <a name="m_Value">Important Public Methods</a>
1749</div>
1750
1751<div class="doc_text">
1752
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001753<ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001754
Misha Brukman13fd15c2004-01-15 00:14:41 +00001755 <li><tt>bool isSigned() const</tt>: Returns whether an integral numeric type
1756 is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is
1757 not true for Float and Double. </li>
1758
1759 <li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is
1760 unsigned. This is not quite the complement of isSigned... nonnumeric types
1761 return false as they do with isSigned. This returns true for UByteTy,
1762 UShortTy, UIntTy, and ULongTy. </li>
1763
Chris Lattner4573f1b2004-07-08 17:49:37 +00001764 <li><tt>bool isInteger() const</tt>: Equivalent to isSigned() || isUnsigned().</li>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001765
1766 <li><tt>bool isIntegral() const</tt>: Returns true if this is an integral
1767 type, which is either Bool type or one of the Integer types.</li>
1768
1769 <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
1770 floating point types.</li>
1771
Misha Brukman13fd15c2004-01-15 00:14:41 +00001772 <li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if
1773 this type can be converted to 'Ty' without any reinterpretation of bits. For
Chris Lattner69bf8a92004-05-23 21:06:58 +00001774 example, uint to int or one pointer type to another.</li>
Reid Spencerc7d1d822004-11-01 09:16:30 +00001775</ul>
1776</div>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001777
Reid Spencerc7d1d822004-11-01 09:16:30 +00001778<!-- _______________________________________________________________________ -->
1779<div class="doc_subsubsection">
1780 <a name="m_Value">Important Derived Types</a>
1781</div>
1782<div class="doc_text">
1783<ul>
1784 <li>SequentialType : This is subclassed by ArrayType and PointerType
Chris Lattner261efe92003-11-25 01:02:51 +00001785 <ul>
Reid Spencerc7d1d822004-11-01 09:16:30 +00001786 <li><tt>const Type * getElementType() const</tt>: Returns the type of each
1787 of the elements in the sequential type. </li>
1788 </ul>
1789 </li>
1790 <li>ArrayType : This is a subclass of SequentialType and defines interface for
1791 array types.
1792 <ul>
1793 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
1794 elements in the array. </li>
1795 </ul>
1796 </li>
1797 <li>PointerType : Subclass of SequentialType for pointer types. </li>
1798 <li>StructType : subclass of DerivedTypes for struct types </li>
1799 <li>FunctionType : subclass of DerivedTypes for function types.
1800 <ul>
1801 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
1802 function</li>
1803 <li><tt> const Type * getReturnType() const</tt>: Returns the
1804 return type of the function.</li>
1805 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
1806 the type of the ith parameter.</li>
1807 <li><tt> const unsigned getNumParams() const</tt>: Returns the
1808 number of formal parameters.</li>
Chris Lattner261efe92003-11-25 01:02:51 +00001809 </ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001810 </li>
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001811</ul>
Misha Brukman13fd15c2004-01-15 00:14:41 +00001812</div>
1813
1814<!-- ======================================================================= -->
1815<div class="doc_subsection">
1816 <a name="Argument">The <tt>Argument</tt> class</a>
1817</div>
1818
1819<div class="doc_text">
1820
1821<p>This subclass of Value defines the interface for incoming formal
Chris Lattner58360822005-01-17 00:12:04 +00001822arguments to a function. A Function maintains a list of its formal
Misha Brukman13fd15c2004-01-15 00:14:41 +00001823arguments. An argument has a pointer to the parent Function.</p>
1824
1825</div>
1826
Reid Spencer096603a2004-05-26 08:41:35 +00001827<!-- ======================================================================= -->
1828<div class="doc_subsection">
1829 <a name="SymbolTable">The <tt>SymbolTable</tt> class</a>
1830</div>
1831<div class="doc_text">
1832<p>This class provides a symbol table that the
1833<a href="#Function"><tt>Function</tt></a> and <a href="#Module">
1834<tt>Module</tt></a> classes use for naming definitions. The symbol table can
1835provide a name for any <a href="#Value"><tt>Value</tt></a> or
1836<a href="#Type"><tt>Type</tt></a>. <tt>SymbolTable</tt> is an abstract data
1837type. It hides the data it contains and provides access to it through a
1838controlled interface.</p>
1839
1840<p>To use the <tt>SymbolTable</tt> well, you need to understand the
1841structure of the information it holds. The class contains two
1842<tt>std::map</tt> objects. The first, <tt>pmap</tt>, is a map of
1843<tt>Type*</tt> to maps of name (<tt>std::string</tt>) to <tt>Value*</tt>.
1844The second, <tt>tmap</tt>, is a map of names to <tt>Type*</tt>. Thus, Values
1845are stored in two-dimensions and accessed by <tt>Type</tt> and name. Types,
1846however, are stored in a single dimension and accessed only by name.</p>
1847
1848<p>The interface of this class provides three basic types of operations:
1849<ol>
1850 <li><em>Accessors</em>. Accessors provide read-only access to information
1851 such as finding a value for a name with the
1852 <a href="#SymbolTable_lookup">lookup</a> method.</li>
1853 <li><em>Mutators</em>. Mutators allow the user to add information to the
1854 <tt>SymbolTable</tt> with methods like
1855 <a href="#SymbolTable_insert"><tt>insert</tt></a>.</li>
1856 <li><em>Iterators</em>. Iterators allow the user to traverse the content
1857 of the symbol table in well defined ways, such as the method
1858 <a href="#SymbolTable_type_begin"><tt>type_begin</tt></a>.</li>
1859</ol>
1860
1861<h3>Accessors</h3>
1862<dl>
1863 <dt><tt>Value* lookup(const Type* Ty, const std::string&amp; name) const</tt>:
1864 </dt>
1865 <dd>The <tt>lookup</tt> method searches the type plane given by the
1866 <tt>Ty</tt> parameter for a <tt>Value</tt> with the provided <tt>name</tt>.
1867 If a suitable <tt>Value</tt> is not found, null is returned.</dd>
1868
1869 <dt><tt>Type* lookupType( const std::string&amp; name) const</tt>:</dt>
1870 <dd>The <tt>lookupType</tt> method searches through the types for a
1871 <tt>Type</tt> with the provided <tt>name</tt>. If a suitable <tt>Type</tt>
1872 is not found, null is returned.</dd>
1873
1874 <dt><tt>bool hasTypes() const</tt>:</dt>
1875 <dd>This function returns true if an entry has been made into the type
1876 map.</dd>
1877
1878 <dt><tt>bool isEmpty() const</tt>:</dt>
1879 <dd>This function returns true if both the value and types maps are
1880 empty</dd>
Reid Spencer096603a2004-05-26 08:41:35 +00001881</dl>
1882
1883<h3>Mutators</h3>
1884<dl>
1885 <dt><tt>void insert(Value *Val)</tt>:</dt>
1886 <dd>This method adds the provided value to the symbol table. The Value must
1887 have both a name and a type which are extracted and used to place the value
1888 in the correct type plane under the value's name.</dd>
1889
1890 <dt><tt>void insert(const std::string&amp; Name, Value *Val)</tt>:</dt>
1891 <dd> Inserts a constant or type into the symbol table with the specified
1892 name. There can be a many to one mapping between names and constants
1893 or types.</dd>
1894
1895 <dt><tt>void insert(const std::string&amp; Name, Type *Typ)</tt>:</dt>
1896 <dd> Inserts a type into the symbol table with the specified name. There
1897 can be a many-to-one mapping between names and types. This method
1898 allows a type with an existing entry in the symbol table to get
1899 a new name.</dd>
1900
1901 <dt><tt>void remove(Value* Val)</tt>:</dt>
1902 <dd> This method removes a named value from the symbol table. The
1903 type and name of the Value are extracted from \p N and used to
1904 lookup the Value in the correct type plane. If the Value is
1905 not in the symbol table, this method silently ignores the
1906 request.</dd>
1907
1908 <dt><tt>void remove(Type* Typ)</tt>:</dt>
1909 <dd> This method removes a named type from the symbol table. The
1910 name of the type is extracted from \P T and used to look up
1911 the Type in the type map. If the Type is not in the symbol
1912 table, this method silently ignores the request.</dd>
1913
1914 <dt><tt>Value* remove(const std::string&amp; Name, Value *Val)</tt>:</dt>
1915 <dd> Remove a constant or type with the specified name from the
1916 symbol table.</dd>
1917
1918 <dt><tt>Type* remove(const std::string&amp; Name, Type* T)</tt>:</dt>
1919 <dd> Remove a type with the specified name from the symbol table.
1920 Returns the removed Type.</dd>
1921
1922 <dt><tt>Value *value_remove(const value_iterator&amp; It)</tt>:</dt>
1923 <dd> Removes a specific value from the symbol table.
1924 Returns the removed value.</dd>
1925
1926 <dt><tt>bool strip()</tt>:</dt>
1927 <dd> This method will strip the symbol table of its names leaving
1928 the type and values. </dd>
1929
1930 <dt><tt>void clear()</tt>:</dt>
1931 <dd>Empty the symbol table completely.</dd>
1932</dl>
1933
1934<h3>Iteration</h3>
1935<p>The following functions describe three types of iterators you can obtain
1936the beginning or end of the sequence for both const and non-const. It is
1937important to keep track of the different kinds of iterators. There are
1938three idioms worth pointing out:</p>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001939<table>
Reid Spencer096603a2004-05-26 08:41:35 +00001940 <tr><th>Units</th><th>Iterator</th><th>Idiom</th></tr>
1941 <tr>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001942 <td align="left">Planes Of name/Value maps</td><td>PI</td>
Reid Spencerc7d1d822004-11-01 09:16:30 +00001943 <td align="left"><pre><tt>
Reid Spencer096603a2004-05-26 08:41:35 +00001944for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
Reid Spencerd3f876c2004-11-01 08:19:36 +00001945 PE = ST.plane_end(); PI != PE; ++PI ) {
Reid Spencer096603a2004-05-26 08:41:35 +00001946 PI-&gt;first // This is the Type* of the plane
1947 PI-&gt;second // This is the SymbolTable::ValueMap of name/Value pairs
Reid Spencerc7d1d822004-11-01 09:16:30 +00001948 </tt></pre></td>
Reid Spencer096603a2004-05-26 08:41:35 +00001949 </tr>
1950 <tr>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001951 <td align="left">All name/Type Pairs</td><td>TI</td>
Reid Spencerc7d1d822004-11-01 09:16:30 +00001952 <td align="left"><pre><tt>
Reid Spencer096603a2004-05-26 08:41:35 +00001953for (SymbolTable::type_const_iterator TI = ST.type_begin(),
1954 TE = ST.type_end(); TI != TE; ++TI )
1955 TI-&gt;first // This is the name of the type
1956 TI-&gt;second // This is the Type* value associated with the name
Reid Spencerc7d1d822004-11-01 09:16:30 +00001957 </tt></pre></td>
Reid Spencer096603a2004-05-26 08:41:35 +00001958 </tr>
1959 <tr>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001960 <td align="left">name/Value pairs in a plane</td><td>VI</td>
Reid Spencerc7d1d822004-11-01 09:16:30 +00001961 <td align="left"><pre><tt>
Reid Spencer096603a2004-05-26 08:41:35 +00001962for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType),
1963 VE = ST.value_end(SomeType); VI != VE; ++VI )
1964 VI-&gt;first // This is the name of the Value
1965 VI-&gt;second // This is the Value* value associated with the name
Reid Spencerc7d1d822004-11-01 09:16:30 +00001966 </tt></pre></td>
Reid Spencer096603a2004-05-26 08:41:35 +00001967 </tr>
1968</table>
Reid Spencerc7d1d822004-11-01 09:16:30 +00001969
Reid Spencer096603a2004-05-26 08:41:35 +00001970<p>Using the recommended iterator names and idioms will help you avoid
1971making mistakes. Of particular note, make sure that whenever you use
1972value_begin(SomeType) that you always compare the resulting iterator
1973with value_end(SomeType) not value_end(SomeOtherType) or else you
1974will loop infinitely.</p>
1975
1976<dl>
1977
1978 <dt><tt>plane_iterator plane_begin()</tt>:</dt>
1979 <dd>Get an iterator that starts at the beginning of the type planes.
1980 The iterator will iterate over the Type/ValueMap pairs in the
1981 type planes. </dd>
1982
1983 <dt><tt>plane_const_iterator plane_begin() const</tt>:</dt>
1984 <dd>Get a const_iterator that starts at the beginning of the type
1985 planes. The iterator will iterate over the Type/ValueMap pairs
1986 in the type planes. </dd>
1987
1988 <dt><tt>plane_iterator plane_end()</tt>:</dt>
1989 <dd>Get an iterator at the end of the type planes. This serves as
1990 the marker for end of iteration over the type planes.</dd>
1991
1992 <dt><tt>plane_const_iterator plane_end() const</tt>:</dt>
1993 <dd>Get a const_iterator at the end of the type planes. This serves as
1994 the marker for end of iteration over the type planes.</dd>
1995
1996 <dt><tt>value_iterator value_begin(const Type *Typ)</tt>:</dt>
1997 <dd>Get an iterator that starts at the beginning of a type plane.
1998 The iterator will iterate over the name/value pairs in the type plane.
1999 Note: The type plane must already exist before using this.</dd>
2000
2001 <dt><tt>value_const_iterator value_begin(const Type *Typ) const</tt>:</dt>
2002 <dd>Get a const_iterator that starts at the beginning of a type plane.
2003 The iterator will iterate over the name/value pairs in the type plane.
2004 Note: The type plane must already exist before using this.</dd>
2005
2006 <dt><tt>value_iterator value_end(const Type *Typ)</tt>:</dt>
2007 <dd>Get an iterator to the end of a type plane. This serves as the marker
2008 for end of iteration of the type plane.
2009 Note: The type plane must already exist before using this.</dd>
2010
2011 <dt><tt>value_const_iterator value_end(const Type *Typ) const</tt>:</dt>
2012 <dd>Get a const_iterator to the end of a type plane. This serves as the
2013 marker for end of iteration of the type plane.
2014 Note: the type plane must already exist before using this.</dd>
2015
2016 <dt><tt>type_iterator type_begin()</tt>:</dt>
2017 <dd>Get an iterator to the start of the name/Type map.</dd>
2018
2019 <dt><tt>type_const_iterator type_begin() cons</tt>:</dt>
2020 <dd> Get a const_iterator to the start of the name/Type map.</dd>
2021
2022 <dt><tt>type_iterator type_end()</tt>:</dt>
2023 <dd>Get an iterator to the end of the name/Type map. This serves as the
2024 marker for end of iteration of the types.</dd>
2025
2026 <dt><tt>type_const_iterator type_end() const</tt>:</dt>
2027 <dd>Get a const-iterator to the end of the name/Type map. This serves
2028 as the marker for end of iteration of the types.</dd>
2029
2030 <dt><tt>plane_const_iterator find(const Type* Typ ) const</tt>:</dt>
2031 <dd>This method returns a plane_const_iterator for iteration over
2032 the type planes starting at a specific plane, given by \p Ty.</dd>
2033
2034 <dt><tt>plane_iterator find( const Type* Typ </tt>:</dt>
2035 <dd>This method returns a plane_iterator for iteration over the
2036 type planes starting at a specific plane, given by \p Ty.</dd>
2037
Reid Spencer096603a2004-05-26 08:41:35 +00002038</dl>
2039</div>
2040
Chris Lattner9355b472002-09-06 02:50:58 +00002041<!-- *********************************************************************** -->
Misha Brukman13fd15c2004-01-15 00:14:41 +00002042<hr>
2043<address>
2044 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2045 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
2046 <a href="http://validator.w3.org/check/referer"><img
2047 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
2048
2049 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
2050 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
2051 <a href="http://llvm.cs.uiuc.edu">The LLVM Compiler Infrastructure</a><br>
2052 Last modified: $Date$
2053</address>
2054
Chris Lattner261efe92003-11-25 01:02:51 +00002055</body>
2056</html>
Reid Spencer096603a2004-05-26 08:41:35 +00002057<!-- vim: sw=2 noai
2058-->