blob: 5ae71accba3491c21f2d41d2019f8ad75fff2f39 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
Owen Anderson1636de92007-09-07 04:06:50 +000019#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohman12a9c082008-02-06 22:27:42 +000027#include "llvm/CodeGen/PseudoSourceValue.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028#include "llvm/CodeGen/SelectionDAG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39 cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44 setPow2DivIsCheap();
45
46 // Use _setjmp/_longjmp instead of setjmp/longjmp.
47 setUseUnderscoreSetJmp(true);
48 setUseUnderscoreLongJmp(true);
49
50 // Set up the register classes.
51 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
Duncan Sands082524c2008-01-23 20:39:46 +000056 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000057 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
Duncan Sands082524c2008-01-23 20:39:46 +000058
Chris Lattner3bc08502008-01-17 19:59:44 +000059 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061 // PowerPC has pre-inc load and store's.
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
Dale Johannesen472d15d2007-10-06 01:24:11 +000073 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74 setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75 setConvertAction(MVT::ppcf128, MVT::f32, Expand);
Dale Johannesen3d8578b2007-10-10 01:01:31 +000076 // This is used in the ppcf128->int sequence. Note it has different semantics
77 // from FP_ROUND: that rounds to nearest, this rounds to zero.
78 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
Dale Johannesen472d15d2007-10-06 01:24:11 +000079
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080 // PowerPC has no intrinsics for these particular operations
81 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
82 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
83 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
Andrew Lenharth0531ec52008-02-16 14:46:26 +000084 setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
85
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086 // PowerPC has no SREM/UREM instructions
87 setOperationAction(ISD::SREM, MVT::i32, Expand);
88 setOperationAction(ISD::UREM, MVT::i32, Expand);
89 setOperationAction(ISD::SREM, MVT::i64, Expand);
90 setOperationAction(ISD::UREM, MVT::i64, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +000091
92 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
93 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
94 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
95 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
96 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
97 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
98 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
99 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
100 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000101
Dan Gohman2f7b1982007-10-11 23:21:31 +0000102 // We don't support sin/cos/sqrt/fmod/pow
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103 setOperationAction(ISD::FSIN , MVT::f64, Expand);
104 setOperationAction(ISD::FCOS , MVT::f64, Expand);
105 setOperationAction(ISD::FREM , MVT::f64, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000106 setOperationAction(ISD::FPOW , MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107 setOperationAction(ISD::FSIN , MVT::f32, Expand);
108 setOperationAction(ISD::FCOS , MVT::f32, Expand);
109 setOperationAction(ISD::FREM , MVT::f32, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000110 setOperationAction(ISD::FPOW , MVT::f32, Expand);
Dale Johannesen436e3802008-01-18 19:55:37 +0000111
Dan Gohman819574c2008-01-31 00:41:03 +0000112 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000113
114 // If we're enabling GP optimizations, use hardware square root
115 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
116 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
117 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
118 }
119
120 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
121 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
122
123 // PowerPC does not have BSWAP, CTPOP or CTTZ
124 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
125 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
126 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
127 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
128 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
129 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
130
131 // PowerPC does not have ROTR
132 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
133
134 // PowerPC does not have Select
135 setOperationAction(ISD::SELECT, MVT::i32, Expand);
136 setOperationAction(ISD::SELECT, MVT::i64, Expand);
137 setOperationAction(ISD::SELECT, MVT::f32, Expand);
138 setOperationAction(ISD::SELECT, MVT::f64, Expand);
139
140 // PowerPC wants to turn select_cc of FP into fsel when possible.
141 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
142 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
143
144 // PowerPC wants to optimize integer setcc a bit
145 setOperationAction(ISD::SETCC, MVT::i32, Custom);
146
147 // PowerPC does not have BRCOND which requires SetCC
148 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
149
150 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
151
152 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
153 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
154
155 // PowerPC does not have [U|S]INT_TO_FP
156 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
157 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
158
159 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
160 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
161 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
162 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
163
164 // We cannot sextinreg(i1). Expand to shifts.
165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
166
167 // Support label based line numbers.
168 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
169 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Nicolas Geoffray61864762007-12-21 12:19:44 +0000170
171 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
172 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
173 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
174 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
175
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000176
177 // We want to legalize GlobalAddress and ConstantPool nodes into the
178 // appropriate instructions to materialize the address.
179 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
181 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
182 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
183 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
184 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
185 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
186 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
187
188 // RET must be custom lowered, to meet ABI requirements
189 setOperationAction(ISD::RET , MVT::Other, Custom);
Duncan Sands38947cd2007-07-27 12:58:54 +0000190
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
192 setOperationAction(ISD::VASTART , MVT::Other, Custom);
193
194 // VAARG is custom lowered with ELF 32 ABI
195 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
196 setOperationAction(ISD::VAARG, MVT::Other, Custom);
197 else
198 setOperationAction(ISD::VAARG, MVT::Other, Expand);
199
200 // Use the default implementation.
201 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
202 setOperationAction(ISD::VAEND , MVT::Other, Expand);
203 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
204 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
205 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
206 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
207
208 // We want to custom lower some of our intrinsics.
209 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
210
211 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
212 // They also have instructions for converting between i64 and fp.
213 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
214 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
215 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
216 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
218
219 // FIXME: disable this lowered code. This generates 64-bit register values,
220 // and we don't model the fact that the top part is clobbered by calls. We
221 // need to flag these together so that the value isn't live across a call.
222 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
223
224 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
226 } else {
227 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
229 }
230
231 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000232 // 64-bit PowerPC implementations can support i64 types directly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000233 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
234 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
236 } else {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000237 // 32-bit PowerPC wants to expand i64 shifts itself.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
239 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
240 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
241 }
242
243 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
244 // First set operation action for all vector types to expand. Then we
245 // will selectively turn on ones that can be effectively codegen'd.
246 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
247 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
248 // add/sub are legal for all supported vector VT's.
249 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
250 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
251
252 // We promote all shuffles to v16i8.
253 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
254 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
255
256 // We promote all non-typed operations to v4i32.
257 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
258 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
259 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
260 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
261 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
262 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
263 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
264 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
265 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
266 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
267 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
268 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
269
270 // No other operations are legal.
271 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
272 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
273 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
274 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
275 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
276 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
Evan Chengc5912e32007-07-30 07:51:22 +0000277 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000278 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
279 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
280 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +0000281 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
282 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
283 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
284 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000285 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohman4e22ac42007-10-12 14:08:57 +0000286 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
287 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
288 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
289 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000290 }
291
292 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
293 // with merges, splats, etc.
294 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
295
296 setOperationAction(ISD::AND , MVT::v4i32, Legal);
297 setOperationAction(ISD::OR , MVT::v4i32, Legal);
298 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
299 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
300 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
301 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
302
303 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
304 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
305 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
306 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
307
308 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
309 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
310 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
311 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
312
313 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
314 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
315
316 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
317 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
318 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
319 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
320 }
321
322 setSetCCResultType(MVT::i32);
323 setShiftAmountType(MVT::i32);
324 setSetCCResultContents(ZeroOrOneSetCCResult);
325
326 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
327 setStackPointerRegisterToSaveRestore(PPC::X1);
328 setExceptionPointerRegister(PPC::X3);
329 setExceptionSelectorRegister(PPC::X4);
330 } else {
331 setStackPointerRegisterToSaveRestore(PPC::R1);
332 setExceptionPointerRegister(PPC::R3);
333 setExceptionSelectorRegister(PPC::R4);
334 }
335
336 // We have target-specific dag combine patterns for the following nodes:
337 setTargetDAGCombine(ISD::SINT_TO_FP);
338 setTargetDAGCombine(ISD::STORE);
339 setTargetDAGCombine(ISD::BR_CC);
340 setTargetDAGCombine(ISD::BSWAP);
341
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000342 // Darwin long double math library functions have $LDBL128 appended.
343 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
Duncan Sands37a3f472008-01-10 10:28:30 +0000344 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000345 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
346 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
Duncan Sands37a3f472008-01-10 10:28:30 +0000347 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
348 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000349 }
350
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000351 computeRegisterProperties();
352}
353
Dale Johannesen88945f82008-02-28 22:31:51 +0000354/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
355/// function arguments in the caller parameter area.
356unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
357 TargetMachine &TM = getTargetMachine();
358 // Darwin passes everything on 4 byte boundary.
359 if (TM.getSubtarget<PPCSubtarget>().isDarwin())
360 return 4;
361 // FIXME Elf TBD
362 return 4;
363}
364
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000365const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
366 switch (Opcode) {
367 default: return 0;
368 case PPCISD::FSEL: return "PPCISD::FSEL";
369 case PPCISD::FCFID: return "PPCISD::FCFID";
370 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
371 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
372 case PPCISD::STFIWX: return "PPCISD::STFIWX";
373 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
374 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
375 case PPCISD::VPERM: return "PPCISD::VPERM";
376 case PPCISD::Hi: return "PPCISD::Hi";
377 case PPCISD::Lo: return "PPCISD::Lo";
378 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
379 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
380 case PPCISD::SRL: return "PPCISD::SRL";
381 case PPCISD::SRA: return "PPCISD::SRA";
382 case PPCISD::SHL: return "PPCISD::SHL";
383 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
384 case PPCISD::STD_32: return "PPCISD::STD_32";
385 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
386 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
387 case PPCISD::MTCTR: return "PPCISD::MTCTR";
388 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
389 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
390 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
391 case PPCISD::MFCR: return "PPCISD::MFCR";
392 case PPCISD::VCMP: return "PPCISD::VCMP";
393 case PPCISD::VCMPo: return "PPCISD::VCMPo";
394 case PPCISD::LBRX: return "PPCISD::LBRX";
395 case PPCISD::STBRX: return "PPCISD::STBRX";
396 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
Chris Lattnere2a6e9f2008-01-18 18:51:16 +0000397 case PPCISD::MFFS: return "PPCISD::MFFS";
398 case PPCISD::MTFSB0: return "PPCISD::MTFSB0";
399 case PPCISD::MTFSB1: return "PPCISD::MTFSB1";
400 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
401 case PPCISD::MTFSF: return "PPCISD::MTFSF";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 }
403}
404
405//===----------------------------------------------------------------------===//
406// Node matching predicates, for use by the tblgen matching code.
407//===----------------------------------------------------------------------===//
408
409/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
410static bool isFloatingPointZero(SDOperand Op) {
411 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000412 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000413 else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
414 // Maybe this has already been legalized into the constant pool?
415 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
416 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000417 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 }
419 return false;
420}
421
422/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
423/// true if Op is undef or if it matches the specified value.
424static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
425 return Op.getOpcode() == ISD::UNDEF ||
426 cast<ConstantSDNode>(Op)->getValue() == Val;
427}
428
429/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
430/// VPKUHUM instruction.
431bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
432 if (!isUnary) {
433 for (unsigned i = 0; i != 16; ++i)
434 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
435 return false;
436 } else {
437 for (unsigned i = 0; i != 8; ++i)
438 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
439 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
440 return false;
441 }
442 return true;
443}
444
445/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
446/// VPKUWUM instruction.
447bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
448 if (!isUnary) {
449 for (unsigned i = 0; i != 16; i += 2)
450 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
451 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
452 return false;
453 } else {
454 for (unsigned i = 0; i != 8; i += 2)
455 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
456 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
457 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
458 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
459 return false;
460 }
461 return true;
462}
463
464/// isVMerge - Common function, used to match vmrg* shuffles.
465///
466static bool isVMerge(SDNode *N, unsigned UnitSize,
467 unsigned LHSStart, unsigned RHSStart) {
468 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
469 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
470 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
471 "Unsupported merge size!");
472
473 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
474 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
475 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
476 LHSStart+j+i*UnitSize) ||
477 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
478 RHSStart+j+i*UnitSize))
479 return false;
480 }
481 return true;
482}
483
484/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
485/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
486bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
487 if (!isUnary)
488 return isVMerge(N, UnitSize, 8, 24);
489 return isVMerge(N, UnitSize, 8, 8);
490}
491
492/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
493/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
494bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
495 if (!isUnary)
496 return isVMerge(N, UnitSize, 0, 16);
497 return isVMerge(N, UnitSize, 0, 0);
498}
499
500
501/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
502/// amount, otherwise return -1.
503int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
504 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
505 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
506 // Find the first non-undef value in the shuffle mask.
507 unsigned i;
508 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
509 /*search*/;
510
511 if (i == 16) return -1; // all undef.
512
513 // Otherwise, check to see if the rest of the elements are consequtively
514 // numbered from this value.
515 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
516 if (ShiftAmt < i) return -1;
517 ShiftAmt -= i;
518
519 if (!isUnary) {
520 // Check the rest of the elements to see if they are consequtive.
521 for (++i; i != 16; ++i)
522 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
523 return -1;
524 } else {
525 // Check the rest of the elements to see if they are consequtive.
526 for (++i; i != 16; ++i)
527 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
528 return -1;
529 }
530
531 return ShiftAmt;
532}
533
534/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
535/// specifies a splat of a single element that is suitable for input to
536/// VSPLTB/VSPLTH/VSPLTW.
537bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
538 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
539 N->getNumOperands() == 16 &&
540 (EltSize == 1 || EltSize == 2 || EltSize == 4));
541
542 // This is a splat operation if each element of the permute is the same, and
543 // if the value doesn't reference the second vector.
544 unsigned ElementBase = 0;
545 SDOperand Elt = N->getOperand(0);
546 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
547 ElementBase = EltV->getValue();
548 else
549 return false; // FIXME: Handle UNDEF elements too!
550
551 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
552 return false;
553
554 // Check that they are consequtive.
555 for (unsigned i = 1; i != EltSize; ++i) {
556 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
557 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
558 return false;
559 }
560
561 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
562 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
563 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
564 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
565 "Invalid VECTOR_SHUFFLE mask!");
566 for (unsigned j = 0; j != EltSize; ++j)
567 if (N->getOperand(i+j) != N->getOperand(j))
568 return false;
569 }
570
571 return true;
572}
573
Evan Chengc5912e32007-07-30 07:51:22 +0000574/// isAllNegativeZeroVector - Returns true if all elements of build_vector
575/// are -0.0.
576bool PPC::isAllNegativeZeroVector(SDNode *N) {
577 assert(N->getOpcode() == ISD::BUILD_VECTOR);
578 if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
579 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000580 return CFP->getValueAPF().isNegZero();
Evan Chengc5912e32007-07-30 07:51:22 +0000581 return false;
582}
583
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000584/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
585/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
586unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
587 assert(isSplatShuffleMask(N, EltSize));
588 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
589}
590
591/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
592/// by using a vspltis[bhw] instruction of the specified element size, return
593/// the constant being splatted. The ByteSize field indicates the number of
594/// bytes of each element [124] -> [bhw].
595SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
596 SDOperand OpVal(0, 0);
597
598 // If ByteSize of the splat is bigger than the element size of the
599 // build_vector, then we have a case where we are checking for a splat where
600 // multiple elements of the buildvector are folded together into a single
601 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
602 unsigned EltSize = 16/N->getNumOperands();
603 if (EltSize < ByteSize) {
604 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
605 SDOperand UniquedVals[4];
606 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
607
608 // See if all of the elements in the buildvector agree across.
609 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
610 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
611 // If the element isn't a constant, bail fully out.
612 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
613
614
615 if (UniquedVals[i&(Multiple-1)].Val == 0)
616 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
617 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
618 return SDOperand(); // no match.
619 }
620
621 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
622 // either constant or undef values that are identical for each chunk. See
623 // if these chunks can form into a larger vspltis*.
624
625 // Check to see if all of the leading entries are either 0 or -1. If
626 // neither, then this won't fit into the immediate field.
627 bool LeadingZero = true;
628 bool LeadingOnes = true;
629 for (unsigned i = 0; i != Multiple-1; ++i) {
630 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
631
632 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
633 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
634 }
635 // Finally, check the least significant entry.
636 if (LeadingZero) {
637 if (UniquedVals[Multiple-1].Val == 0)
638 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
639 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
640 if (Val < 16)
641 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
642 }
643 if (LeadingOnes) {
644 if (UniquedVals[Multiple-1].Val == 0)
645 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
646 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
647 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
648 return DAG.getTargetConstant(Val, MVT::i32);
649 }
650
651 return SDOperand();
652 }
653
654 // Check to see if this buildvec has a single non-undef value in its elements.
655 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
656 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
657 if (OpVal.Val == 0)
658 OpVal = N->getOperand(i);
659 else if (OpVal != N->getOperand(i))
660 return SDOperand();
661 }
662
663 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
664
665 unsigned ValSizeInBytes = 0;
666 uint64_t Value = 0;
667 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
668 Value = CN->getValue();
669 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
670 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
671 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +0000672 Value = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000673 ValSizeInBytes = 4;
674 }
675
676 // If the splat value is larger than the element value, then we can never do
677 // this splat. The only case that we could fit the replicated bits into our
678 // immediate field for would be zero, and we prefer to use vxor for it.
679 if (ValSizeInBytes < ByteSize) return SDOperand();
680
681 // If the element value is larger than the splat value, cut it in half and
682 // check to see if the two halves are equal. Continue doing this until we
683 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
684 while (ValSizeInBytes > ByteSize) {
685 ValSizeInBytes >>= 1;
686
687 // If the top half equals the bottom half, we're still ok.
688 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
689 (Value & ((1 << (8*ValSizeInBytes))-1)))
690 return SDOperand();
691 }
692
693 // Properly sign extend the value.
694 int ShAmt = (4-ByteSize)*8;
695 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
696
697 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
698 if (MaskVal == 0) return SDOperand();
699
700 // Finally, if this value fits in a 5 bit sext field, return it
701 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
702 return DAG.getTargetConstant(MaskVal, MVT::i32);
703 return SDOperand();
704}
705
706//===----------------------------------------------------------------------===//
707// Addressing Mode Selection
708//===----------------------------------------------------------------------===//
709
710/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
711/// or 64-bit immediate, and if the value can be accurately represented as a
712/// sign extension from a 16-bit value. If so, this returns true and the
713/// immediate.
714static bool isIntS16Immediate(SDNode *N, short &Imm) {
715 if (N->getOpcode() != ISD::Constant)
716 return false;
717
718 Imm = (short)cast<ConstantSDNode>(N)->getValue();
719 if (N->getValueType(0) == MVT::i32)
720 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
721 else
722 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
723}
724static bool isIntS16Immediate(SDOperand Op, short &Imm) {
725 return isIntS16Immediate(Op.Val, Imm);
726}
727
728
729/// SelectAddressRegReg - Given the specified addressed, check to see if it
730/// can be represented as an indexed [r+r] operation. Returns false if it
731/// can be more efficiently represented with [r+imm].
732bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
733 SDOperand &Index,
734 SelectionDAG &DAG) {
735 short imm = 0;
736 if (N.getOpcode() == ISD::ADD) {
737 if (isIntS16Immediate(N.getOperand(1), imm))
738 return false; // r+i
739 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
740 return false; // r+i
741
742 Base = N.getOperand(0);
743 Index = N.getOperand(1);
744 return true;
745 } else if (N.getOpcode() == ISD::OR) {
746 if (isIntS16Immediate(N.getOperand(1), imm))
747 return false; // r+i can fold it if we can.
748
749 // If this is an or of disjoint bitfields, we can codegen this as an add
750 // (for better address arithmetic) if the LHS and RHS of the OR are provably
751 // disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000752 APInt LHSKnownZero, LHSKnownOne;
753 APInt RHSKnownZero, RHSKnownOne;
754 DAG.ComputeMaskedBits(N.getOperand(0),
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000755 APInt::getAllOnesValue(N.getOperand(0)
756 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000757 LHSKnownZero, LHSKnownOne);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758
Dan Gohman63f4e462008-02-27 01:23:58 +0000759 if (LHSKnownZero.getBoolValue()) {
760 DAG.ComputeMaskedBits(N.getOperand(1),
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000761 APInt::getAllOnesValue(N.getOperand(1)
762 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000763 RHSKnownZero, RHSKnownOne);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764 // If all of the bits are known zero on the LHS or RHS, the add won't
765 // carry.
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000766 if (~(LHSKnownZero | RHSKnownZero) == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000767 Base = N.getOperand(0);
768 Index = N.getOperand(1);
769 return true;
770 }
771 }
772 }
773
774 return false;
775}
776
777/// Returns true if the address N can be represented by a base register plus
778/// a signed 16-bit displacement [r+imm], and if it is not better
779/// represented as reg+reg.
780bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
781 SDOperand &Base, SelectionDAG &DAG){
782 // If this can be more profitably realized as r+r, fail.
783 if (SelectAddressRegReg(N, Disp, Base, DAG))
784 return false;
785
786 if (N.getOpcode() == ISD::ADD) {
787 short imm = 0;
788 if (isIntS16Immediate(N.getOperand(1), imm)) {
789 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
790 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
791 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
792 } else {
793 Base = N.getOperand(0);
794 }
795 return true; // [r+i]
796 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
797 // Match LOAD (ADD (X, Lo(G))).
798 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
799 && "Cannot handle constant offsets yet!");
800 Disp = N.getOperand(1).getOperand(0); // The global address.
801 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
802 Disp.getOpcode() == ISD::TargetConstantPool ||
803 Disp.getOpcode() == ISD::TargetJumpTable);
804 Base = N.getOperand(0);
805 return true; // [&g+r]
806 }
807 } else if (N.getOpcode() == ISD::OR) {
808 short imm = 0;
809 if (isIntS16Immediate(N.getOperand(1), imm)) {
810 // If this is an or of disjoint bitfields, we can codegen this as an add
811 // (for better address arithmetic) if the LHS and RHS of the OR are
812 // provably disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000813 APInt LHSKnownZero, LHSKnownOne;
814 DAG.ComputeMaskedBits(N.getOperand(0),
815 APInt::getAllOnesValue(32),
816 LHSKnownZero, LHSKnownOne);
817 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000818 // If all of the bits are known zero on the LHS or RHS, the add won't
819 // carry.
820 Base = N.getOperand(0);
821 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
822 return true;
823 }
824 }
825 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
826 // Loading from a constant address.
827
828 // If this address fits entirely in a 16-bit sext immediate field, codegen
829 // this as "d, 0"
830 short Imm;
831 if (isIntS16Immediate(CN, Imm)) {
832 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
833 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
834 return true;
835 }
836
837 // Handle 32-bit sext immediates with LIS + addr mode.
838 if (CN->getValueType(0) == MVT::i32 ||
839 (int64_t)CN->getValue() == (int)CN->getValue()) {
840 int Addr = (int)CN->getValue();
841
842 // Otherwise, break this down into an LIS + disp.
843 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
844
845 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
846 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
847 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
848 return true;
849 }
850 }
851
852 Disp = DAG.getTargetConstant(0, getPointerTy());
853 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
854 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
855 else
856 Base = N;
857 return true; // [r+0]
858}
859
860/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
861/// represented as an indexed [r+r] operation.
862bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
863 SDOperand &Index,
864 SelectionDAG &DAG) {
865 // Check to see if we can easily represent this as an [r+r] address. This
866 // will fail if it thinks that the address is more profitably represented as
867 // reg+imm, e.g. where imm = 0.
868 if (SelectAddressRegReg(N, Base, Index, DAG))
869 return true;
870
871 // If the operand is an addition, always emit this as [r+r], since this is
872 // better (for code size, and execution, as the memop does the add for free)
873 // than emitting an explicit add.
874 if (N.getOpcode() == ISD::ADD) {
875 Base = N.getOperand(0);
876 Index = N.getOperand(1);
877 return true;
878 }
879
880 // Otherwise, do it the hard way, using R0 as the base register.
881 Base = DAG.getRegister(PPC::R0, N.getValueType());
882 Index = N;
883 return true;
884}
885
886/// SelectAddressRegImmShift - Returns true if the address N can be
887/// represented by a base register plus a signed 14-bit displacement
888/// [r+imm*4]. Suitable for use by STD and friends.
889bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
890 SDOperand &Base,
891 SelectionDAG &DAG) {
892 // If this can be more profitably realized as r+r, fail.
893 if (SelectAddressRegReg(N, Disp, Base, DAG))
894 return false;
895
896 if (N.getOpcode() == ISD::ADD) {
897 short imm = 0;
898 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
899 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
900 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
901 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
902 } else {
903 Base = N.getOperand(0);
904 }
905 return true; // [r+i]
906 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
907 // Match LOAD (ADD (X, Lo(G))).
908 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
909 && "Cannot handle constant offsets yet!");
910 Disp = N.getOperand(1).getOperand(0); // The global address.
911 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
912 Disp.getOpcode() == ISD::TargetConstantPool ||
913 Disp.getOpcode() == ISD::TargetJumpTable);
914 Base = N.getOperand(0);
915 return true; // [&g+r]
916 }
917 } else if (N.getOpcode() == ISD::OR) {
918 short imm = 0;
919 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
920 // If this is an or of disjoint bitfields, we can codegen this as an add
921 // (for better address arithmetic) if the LHS and RHS of the OR are
922 // provably disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000923 APInt LHSKnownZero, LHSKnownOne;
924 DAG.ComputeMaskedBits(N.getOperand(0),
925 APInt::getAllOnesValue(32),
926 LHSKnownZero, LHSKnownOne);
927 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000928 // If all of the bits are known zero on the LHS or RHS, the add won't
929 // carry.
930 Base = N.getOperand(0);
931 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
932 return true;
933 }
934 }
935 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
936 // Loading from a constant address. Verify low two bits are clear.
937 if ((CN->getValue() & 3) == 0) {
938 // If this address fits entirely in a 14-bit sext immediate field, codegen
939 // this as "d, 0"
940 short Imm;
941 if (isIntS16Immediate(CN, Imm)) {
942 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
943 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
944 return true;
945 }
946
947 // Fold the low-part of 32-bit absolute addresses into addr mode.
948 if (CN->getValueType(0) == MVT::i32 ||
949 (int64_t)CN->getValue() == (int)CN->getValue()) {
950 int Addr = (int)CN->getValue();
951
952 // Otherwise, break this down into an LIS + disp.
953 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
954
955 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
956 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
957 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
958 return true;
959 }
960 }
961 }
962
963 Disp = DAG.getTargetConstant(0, getPointerTy());
964 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
965 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
966 else
967 Base = N;
968 return true; // [r+0]
969}
970
971
972/// getPreIndexedAddressParts - returns true by value, base pointer and
973/// offset pointer and addressing mode by reference if the node's address
974/// can be legally represented as pre-indexed load / store address.
975bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
976 SDOperand &Offset,
977 ISD::MemIndexedMode &AM,
978 SelectionDAG &DAG) {
979 // Disabled by default for now.
980 if (!EnablePPCPreinc) return false;
981
982 SDOperand Ptr;
983 MVT::ValueType VT;
984 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
985 Ptr = LD->getBasePtr();
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000986 VT = LD->getMemoryVT();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000987
988 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
989 ST = ST;
990 Ptr = ST->getBasePtr();
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000991 VT = ST->getMemoryVT();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000992 } else
993 return false;
994
995 // PowerPC doesn't have preinc load/store instructions for vectors.
996 if (MVT::isVector(VT))
997 return false;
998
999 // TODO: Check reg+reg first.
1000
1001 // LDU/STU use reg+imm*4, others use reg+imm.
1002 if (VT != MVT::i64) {
1003 // reg + imm
1004 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1005 return false;
1006 } else {
1007 // reg + imm * 4.
1008 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1009 return false;
1010 }
1011
1012 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1013 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1014 // sext i32 to i64 when addr mode is r+i.
Dan Gohman9a4c92c2008-01-30 00:15:11 +00001015 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001016 LD->getExtensionType() == ISD::SEXTLOAD &&
1017 isa<ConstantSDNode>(Offset))
1018 return false;
1019 }
1020
1021 AM = ISD::PRE_INC;
1022 return true;
1023}
1024
1025//===----------------------------------------------------------------------===//
1026// LowerOperation implementation
1027//===----------------------------------------------------------------------===//
1028
Dale Johannesen8be83a72008-03-04 23:17:14 +00001029SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1030 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001031 MVT::ValueType PtrVT = Op.getValueType();
1032 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1033 Constant *C = CP->getConstVal();
1034 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1035 SDOperand Zero = DAG.getConstant(0, PtrVT);
1036
1037 const TargetMachine &TM = DAG.getTarget();
1038
1039 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1040 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1041
1042 // If this is a non-darwin platform, we don't support non-static relo models
1043 // yet.
1044 if (TM.getRelocationModel() == Reloc::Static ||
1045 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1046 // Generate non-pic code that has direct accesses to the constant pool.
1047 // The address of the global is just (hi(&g)+lo(&g)).
1048 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1049 }
1050
1051 if (TM.getRelocationModel() == Reloc::PIC_) {
1052 // With PIC, the first instruction is actually "GR+hi(&G)".
1053 Hi = DAG.getNode(ISD::ADD, PtrVT,
1054 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1055 }
1056
1057 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1058 return Lo;
1059}
1060
Dale Johannesen8be83a72008-03-04 23:17:14 +00001061SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001062 MVT::ValueType PtrVT = Op.getValueType();
1063 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1064 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1065 SDOperand Zero = DAG.getConstant(0, PtrVT);
1066
1067 const TargetMachine &TM = DAG.getTarget();
1068
1069 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1070 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1071
1072 // If this is a non-darwin platform, we don't support non-static relo models
1073 // yet.
1074 if (TM.getRelocationModel() == Reloc::Static ||
1075 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1076 // Generate non-pic code that has direct accesses to the constant pool.
1077 // The address of the global is just (hi(&g)+lo(&g)).
1078 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1079 }
1080
1081 if (TM.getRelocationModel() == Reloc::PIC_) {
1082 // With PIC, the first instruction is actually "GR+hi(&G)".
1083 Hi = DAG.getNode(ISD::ADD, PtrVT,
1084 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1085 }
1086
1087 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1088 return Lo;
1089}
1090
Dale Johannesen8be83a72008-03-04 23:17:14 +00001091SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1092 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001093 assert(0 && "TLS not implemented for PPC.");
1094}
1095
Dale Johannesen8be83a72008-03-04 23:17:14 +00001096SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1097 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001098 MVT::ValueType PtrVT = Op.getValueType();
1099 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1100 GlobalValue *GV = GSDN->getGlobal();
1101 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
Evan Chenga5a257d2008-02-02 05:06:29 +00001102 // If it's a debug information descriptor, don't mess with it.
1103 if (DAG.isVerifiedDebugInfoDesc(Op))
1104 return GA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001105 SDOperand Zero = DAG.getConstant(0, PtrVT);
1106
1107 const TargetMachine &TM = DAG.getTarget();
1108
1109 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1110 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1111
1112 // If this is a non-darwin platform, we don't support non-static relo models
1113 // yet.
1114 if (TM.getRelocationModel() == Reloc::Static ||
1115 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1116 // Generate non-pic code that has direct accesses to globals.
1117 // The address of the global is just (hi(&g)+lo(&g)).
1118 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1119 }
1120
1121 if (TM.getRelocationModel() == Reloc::PIC_) {
1122 // With PIC, the first instruction is actually "GR+hi(&G)".
1123 Hi = DAG.getNode(ISD::ADD, PtrVT,
1124 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1125 }
1126
1127 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1128
1129 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1130 return Lo;
1131
1132 // If the global is weak or external, we have to go through the lazy
1133 // resolution stub.
1134 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1135}
1136
Dale Johannesen8be83a72008-03-04 23:17:14 +00001137SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001138 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1139
1140 // If we're comparing for equality to zero, expose the fact that this is
1141 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1142 // fold the new nodes.
1143 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1144 if (C->isNullValue() && CC == ISD::SETEQ) {
1145 MVT::ValueType VT = Op.getOperand(0).getValueType();
1146 SDOperand Zext = Op.getOperand(0);
1147 if (VT < MVT::i32) {
1148 VT = MVT::i32;
1149 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1150 }
1151 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1152 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1153 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1154 DAG.getConstant(Log2b, MVT::i32));
1155 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1156 }
1157 // Leave comparisons against 0 and -1 alone for now, since they're usually
1158 // optimized. FIXME: revisit this when we can custom lower all setcc
1159 // optimizations.
1160 if (C->isAllOnesValue() || C->isNullValue())
1161 return SDOperand();
1162 }
1163
1164 // If we have an integer seteq/setne, turn it into a compare against zero
1165 // by xor'ing the rhs with the lhs, which is faster than setting a
1166 // condition register, reading it back out, and masking the correct bit. The
1167 // normal approach here uses sub to do this instead of xor. Using xor exposes
1168 // the result to other bit-twiddling opportunities.
1169 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1170 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1171 MVT::ValueType VT = Op.getValueType();
1172 SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1173 Op.getOperand(1));
1174 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1175 }
1176 return SDOperand();
1177}
1178
Dale Johannesen8be83a72008-03-04 23:17:14 +00001179SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001180 int VarArgsFrameIndex,
1181 int VarArgsStackOffset,
1182 unsigned VarArgsNumGPR,
1183 unsigned VarArgsNumFPR,
1184 const PPCSubtarget &Subtarget) {
1185
1186 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1187}
1188
Dale Johannesen8be83a72008-03-04 23:17:14 +00001189SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001190 int VarArgsFrameIndex,
1191 int VarArgsStackOffset,
1192 unsigned VarArgsNumGPR,
1193 unsigned VarArgsNumFPR,
1194 const PPCSubtarget &Subtarget) {
1195
1196 if (Subtarget.isMachoABI()) {
1197 // vastart just stores the address of the VarArgsFrameIndex slot into the
1198 // memory location argument.
1199 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1200 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
Dan Gohman12a9c082008-02-06 22:27:42 +00001201 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1202 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001203 }
1204
1205 // For ELF 32 ABI we follow the layout of the va_list struct.
1206 // We suppose the given va_list is already allocated.
1207 //
1208 // typedef struct {
1209 // char gpr; /* index into the array of 8 GPRs
1210 // * stored in the register save area
1211 // * gpr=0 corresponds to r3,
1212 // * gpr=1 to r4, etc.
1213 // */
1214 // char fpr; /* index into the array of 8 FPRs
1215 // * stored in the register save area
1216 // * fpr=0 corresponds to f1,
1217 // * fpr=1 to f2, etc.
1218 // */
1219 // char *overflow_arg_area;
1220 // /* location on stack that holds
1221 // * the next overflow argument
1222 // */
1223 // char *reg_save_area;
1224 // /* where r3:r10 and f1:f8 (if saved)
1225 // * are stored
1226 // */
1227 // } va_list[1];
1228
1229
1230 SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1231 SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1232
1233
1234 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1235
Dan Gohman12a9c082008-02-06 22:27:42 +00001236 SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001237 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1238
Dan Gohman12a9c082008-02-06 22:27:42 +00001239 uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1240 SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1241
1242 uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1243 SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1244
1245 uint64_t FPROffset = 1;
1246 SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247
Dan Gohman12a9c082008-02-06 22:27:42 +00001248 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249
1250 // Store first byte : number of int regs
1251 SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
Dan Gohman12a9c082008-02-06 22:27:42 +00001252 Op.getOperand(1), SV, 0);
1253 uint64_t nextOffset = FPROffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001254 SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1255 ConstFPROffset);
1256
1257 // Store second byte : number of float regs
Dan Gohman12a9c082008-02-06 22:27:42 +00001258 SDOperand secondStore =
1259 DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1260 nextOffset += StackOffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001261 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1262
1263 // Store second word : arguments given on stack
Dan Gohman12a9c082008-02-06 22:27:42 +00001264 SDOperand thirdStore =
1265 DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1266 nextOffset += FrameOffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1268
1269 // Store third word : arguments given in registers
Dan Gohman12a9c082008-02-06 22:27:42 +00001270 return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271
1272}
1273
1274#include "PPCGenCallingConv.inc"
1275
1276/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1277/// depending on which subtarget is selected.
1278static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1279 if (Subtarget.isMachoABI()) {
1280 static const unsigned FPR[] = {
1281 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1282 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1283 };
1284 return FPR;
1285 }
1286
1287
1288 static const unsigned FPR[] = {
1289 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1290 PPC::F8
1291 };
1292 return FPR;
1293}
1294
Dale Johannesen8be83a72008-03-04 23:17:14 +00001295SDOperand PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1296 SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 int &VarArgsFrameIndex,
1298 int &VarArgsStackOffset,
1299 unsigned &VarArgsNumGPR,
1300 unsigned &VarArgsNumFPR,
1301 const PPCSubtarget &Subtarget) {
1302 // TODO: add description of PPC stack frame format, or at least some docs.
1303 //
1304 MachineFunction &MF = DAG.getMachineFunction();
1305 MachineFrameInfo *MFI = MF.getFrameInfo();
Chris Lattner1b989192007-12-31 04:13:23 +00001306 MachineRegisterInfo &RegInfo = MF.getRegInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001307 SmallVector<SDOperand, 8> ArgValues;
1308 SDOperand Root = Op.getOperand(0);
1309
1310 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1311 bool isPPC64 = PtrVT == MVT::i64;
1312 bool isMachoABI = Subtarget.isMachoABI();
1313 bool isELF32_ABI = Subtarget.isELF32_ABI();
1314 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1315
1316 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1317
1318 static const unsigned GPR_32[] = { // 32-bit registers.
1319 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1320 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1321 };
1322 static const unsigned GPR_64[] = { // 64-bit registers.
1323 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1324 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1325 };
1326
1327 static const unsigned *FPR = GetFPR(Subtarget);
1328
1329 static const unsigned VR[] = {
1330 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1331 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1332 };
1333
Owen Anderson1636de92007-09-07 04:06:50 +00001334 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001335 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001336 const unsigned Num_VR_Regs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001337
1338 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1339
1340 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1341
1342 // Add DAG nodes to load the arguments or copy them out of registers. On
1343 // entry to a function on PPC, the arguments start after the linkage area,
1344 // although the first ones are often in registers.
1345 //
1346 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1347 // represented with two words (long long or double) must be copied to an
1348 // even GPR_idx value or to an even ArgOffset value.
1349
1350 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1351 SDOperand ArgVal;
1352 bool needsLoad = false;
1353 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1354 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1355 unsigned ArgSize = ObjSize;
1356 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1357 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1358 // See if next argument requires stack alignment in ELF
1359 bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1360 (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1361 (!(Flags & AlignFlag)));
1362
1363 unsigned CurArgOffset = ArgOffset;
1364 switch (ObjectVT) {
1365 default: assert(0 && "Unhandled argument type!");
1366 case MVT::i32:
1367 // Double word align in ELF
1368 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1369 if (GPR_idx != Num_GPR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001370 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1371 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001372 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1373 ++GPR_idx;
1374 } else {
1375 needsLoad = true;
1376 ArgSize = PtrByteSize;
1377 }
1378 // Stack align in ELF
1379 if (needsLoad && Expand && isELF32_ABI)
1380 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1381 // All int arguments reserve stack space in Macho ABI.
1382 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1383 break;
1384
1385 case MVT::i64: // PPC64
1386 if (GPR_idx != Num_GPR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001387 unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1388 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001389 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1390 ++GPR_idx;
1391 } else {
1392 needsLoad = true;
1393 }
1394 // All int arguments reserve stack space in Macho ABI.
1395 if (isMachoABI || needsLoad) ArgOffset += 8;
1396 break;
1397
1398 case MVT::f32:
1399 case MVT::f64:
1400 // Every 4 bytes of argument space consumes one of the GPRs available for
1401 // argument passing.
1402 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1403 ++GPR_idx;
1404 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1405 ++GPR_idx;
1406 }
1407 if (FPR_idx != Num_FPR_Regs) {
1408 unsigned VReg;
1409 if (ObjectVT == MVT::f32)
Chris Lattner1b989192007-12-31 04:13:23 +00001410 VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001411 else
Chris Lattner1b989192007-12-31 04:13:23 +00001412 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1413 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001414 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1415 ++FPR_idx;
1416 } else {
1417 needsLoad = true;
1418 }
1419
1420 // Stack align in ELF
1421 if (needsLoad && Expand && isELF32_ABI)
1422 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1423 // All FP arguments reserve stack space in Macho ABI.
1424 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1425 break;
1426 case MVT::v4f32:
1427 case MVT::v4i32:
1428 case MVT::v8i16:
1429 case MVT::v16i8:
1430 // Note that vector arguments in registers don't reserve stack space.
1431 if (VR_idx != Num_VR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001432 unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1433 RegInfo.addLiveIn(VR[VR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001434 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1435 ++VR_idx;
1436 } else {
1437 // This should be simple, but requires getting 16-byte aligned stack
1438 // values.
1439 assert(0 && "Loading VR argument not implemented yet!");
1440 needsLoad = true;
1441 }
1442 break;
1443 }
1444
1445 // We need to load the argument to a virtual register if we determined above
Chris Lattner60069452008-02-13 07:35:30 +00001446 // that we ran out of physical registers of the appropriate type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001447 if (needsLoad) {
Chris Lattner60069452008-02-13 07:35:30 +00001448 int FI = MFI->CreateFixedObject(ObjSize,
1449 CurArgOffset + (ArgSize - ObjSize));
1450 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1451 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001452 }
1453
1454 ArgValues.push_back(ArgVal);
1455 }
1456
1457 // If the function takes variable number of arguments, make a frame index for
1458 // the start of the first vararg value... for expansion of llvm.va_start.
1459 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1460 if (isVarArg) {
1461
1462 int depth;
1463 if (isELF32_ABI) {
1464 VarArgsNumGPR = GPR_idx;
1465 VarArgsNumFPR = FPR_idx;
1466
1467 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1468 // pointer.
1469 depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1470 Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1471 MVT::getSizeInBits(PtrVT)/8);
1472
1473 VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1474 ArgOffset);
1475
1476 }
1477 else
1478 depth = ArgOffset;
1479
1480 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1481 depth);
1482 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1483
1484 SmallVector<SDOperand, 8> MemOps;
1485
1486 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1487 // stored to the VarArgsFrameIndex on the stack.
1488 if (isELF32_ABI) {
1489 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1490 SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1491 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1492 MemOps.push_back(Store);
1493 // Increment the address by four for the next argument to store
1494 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1495 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1496 }
1497 }
1498
1499 // If this function is vararg, store any remaining integer argument regs
1500 // to their spots on the stack so that they may be loaded by deferencing the
1501 // result of va_next.
1502 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1503 unsigned VReg;
1504 if (isPPC64)
Chris Lattner1b989192007-12-31 04:13:23 +00001505 VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001506 else
Chris Lattner1b989192007-12-31 04:13:23 +00001507 VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001508
Chris Lattner1b989192007-12-31 04:13:23 +00001509 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001510 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1511 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1512 MemOps.push_back(Store);
1513 // Increment the address by four for the next argument to store
1514 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1515 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1516 }
1517
1518 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1519 // on the stack.
1520 if (isELF32_ABI) {
1521 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1522 SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1523 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1524 MemOps.push_back(Store);
1525 // Increment the address by eight for the next argument to store
1526 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1527 PtrVT);
1528 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1529 }
1530
1531 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1532 unsigned VReg;
Chris Lattner1b989192007-12-31 04:13:23 +00001533 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001534
Chris Lattner1b989192007-12-31 04:13:23 +00001535 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001536 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1537 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1538 MemOps.push_back(Store);
1539 // Increment the address by eight for the next argument to store
1540 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1541 PtrVT);
1542 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1543 }
1544 }
1545
1546 if (!MemOps.empty())
1547 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1548 }
1549
1550 ArgValues.push_back(Root);
1551
1552 // Return the new list of results.
1553 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1554 Op.Val->value_end());
1555 return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1556}
1557
1558/// isCallCompatibleAddress - Return the immediate to use if the specified
1559/// 32-bit value is representable in the immediate field of a BxA instruction.
1560static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1561 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1562 if (!C) return 0;
1563
1564 int Addr = C->getValue();
1565 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1566 (Addr << 6 >> 6) != Addr)
1567 return 0; // Top 6 bits have to be sext of immediate.
1568
Evan Cheng282c6462007-10-22 19:46:19 +00001569 return DAG.getConstant((int)C->getValue() >> 2,
1570 DAG.getTargetLoweringInfo().getPointerTy()).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001571}
1572
Dale Johannesen8be83a72008-03-04 23:17:14 +00001573/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1574/// by "Src" to address "Dst" of size "Size". Alignment information is
1575/// specified by the specific parameter attribute. The copy will be passed as
1576/// a byval function parameter.
1577/// Sometimes what we are copying is the end of a larger object, the part that
1578/// does not fit in registers.
1579static SDOperand
1580CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1581 unsigned Flags, SelectionDAG &DAG, unsigned Size) {
1582 unsigned Align = 1 <<
1583 ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs);
1584 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1585 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1586 SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32);
1587 return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1588}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001589
Dale Johannesen8be83a72008-03-04 23:17:14 +00001590SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
1591 const PPCSubtarget &Subtarget) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001592 SDOperand Chain = Op.getOperand(0);
1593 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1594 SDOperand Callee = Op.getOperand(4);
1595 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1596
1597 bool isMachoABI = Subtarget.isMachoABI();
1598 bool isELF32_ABI = Subtarget.isELF32_ABI();
1599
1600 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1601 bool isPPC64 = PtrVT == MVT::i64;
1602 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1603
1604 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1605 // SelectExpr to use to put the arguments in the appropriate registers.
1606 std::vector<SDOperand> args_to_use;
1607
1608 // Count how many bytes are to be pushed on the stack, including the linkage
1609 // area, and parameter passing area. We start with 24/48 bytes, which is
1610 // prereserved space for [SP][CR][LR][3 x unused].
1611 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1612
1613 // Add up all the space actually used.
1614 for (unsigned i = 0; i != NumOps; ++i) {
Dale Johannesen8be83a72008-03-04 23:17:14 +00001615 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001616 unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
Dale Johannesen8be83a72008-03-04 23:17:14 +00001617 if (Flags & ISD::ParamFlags::ByVal)
1618 ArgSize = (Flags & ISD::ParamFlags::ByValSize) >>
1619 ISD::ParamFlags::ByValSizeOffs;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001620 ArgSize = std::max(ArgSize, PtrByteSize);
1621 NumBytes += ArgSize;
1622 }
1623
1624 // The prolog code of the callee may store up to 8 GPR argument registers to
1625 // the stack, allowing va_start to index over them in memory if its varargs.
1626 // Because we cannot tell if this is needed on the caller side, we have to
1627 // conservatively assume that it is needed. As such, make sure we have at
1628 // least enough stack space for the caller to store the 8 GPRs.
1629 NumBytes = std::max(NumBytes,
1630 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1631
1632 // Adjust the stack pointer for the new arguments...
1633 // These operations are automatically eliminated by the prolog/epilog pass
1634 Chain = DAG.getCALLSEQ_START(Chain,
1635 DAG.getConstant(NumBytes, PtrVT));
1636
1637 // Set up a copy of the stack pointer for use loading and storing any
1638 // arguments that may not fit in the registers available for argument
1639 // passing.
1640 SDOperand StackPtr;
1641 if (isPPC64)
1642 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1643 else
1644 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1645
1646 // Figure out which arguments are going to go in registers, and which in
1647 // memory. Also, if this is a vararg function, floating point operations
1648 // must be stored to our stack, and loaded into integer regs as well, if
1649 // any integer regs are available for argument passing.
1650 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1651 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1652
1653 static const unsigned GPR_32[] = { // 32-bit registers.
1654 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1655 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1656 };
1657 static const unsigned GPR_64[] = { // 64-bit registers.
1658 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1659 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1660 };
1661 static const unsigned *FPR = GetFPR(Subtarget);
1662
1663 static const unsigned VR[] = {
1664 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1665 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1666 };
Owen Anderson1636de92007-09-07 04:06:50 +00001667 const unsigned NumGPRs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001668 const unsigned NumFPRs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001669 const unsigned NumVRs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001670
1671 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1672
1673 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1674 SmallVector<SDOperand, 8> MemOpChains;
1675 for (unsigned i = 0; i != NumOps; ++i) {
1676 bool inMem = false;
1677 SDOperand Arg = Op.getOperand(5+2*i);
1678 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1679 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1680 // See if next argument requires stack alignment in ELF
1681 unsigned next = 5+2*(i+1)+1;
1682 bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1683 (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1684 (!(Flags & AlignFlag)));
1685
1686 // PtrOff will be used to store the current argument to the stack if a
1687 // register cannot be found for it.
1688 SDOperand PtrOff;
1689
1690 // Stack align in ELF 32
1691 if (isELF32_ABI && Expand)
1692 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1693 StackPtr.getValueType());
1694 else
1695 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1696
1697 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1698
1699 // On PPC64, promote integers to 64-bit values.
1700 if (isPPC64 && Arg.getValueType() == MVT::i32) {
1701 unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1702
1703 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1704 }
Dale Johannesen8be83a72008-03-04 23:17:14 +00001705
1706 // FIXME Elf untested, what are alignment rules?
1707 if (Flags & ISD::ParamFlags::ByVal) {
1708 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1709 ISD::ParamFlags::ByValSizeOffs;
1710 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1711 for (unsigned j=0; j<Size; j+=PtrByteSize) {
1712 SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
1713 SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
1714 if (GPR_idx != NumGPRs) {
1715 SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
1716 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1717 if (isMachoABI)
1718 ArgOffset += PtrByteSize;
1719 } else {
1720 SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1721 MemOpChains.push_back(CreateCopyOfByValArgument(AddArg, AddPtr,
1722 Chain, Flags, DAG, Size - j));
1723 ArgOffset += ((Size - j + 3)/4)*4;
1724 }
1725 }
1726 continue;
1727 }
1728
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001729 switch (Arg.getValueType()) {
1730 default: assert(0 && "Unexpected ValueType for argument!");
1731 case MVT::i32:
1732 case MVT::i64:
1733 // Double word align in ELF
1734 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1735 if (GPR_idx != NumGPRs) {
1736 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1737 } else {
1738 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1739 inMem = true;
1740 }
1741 if (inMem || isMachoABI) {
1742 // Stack align in ELF
1743 if (isELF32_ABI && Expand)
1744 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1745
1746 ArgOffset += PtrByteSize;
1747 }
1748 break;
1749 case MVT::f32:
1750 case MVT::f64:
1751 if (isVarArg) {
1752 // Float varargs need to be promoted to double.
1753 if (Arg.getValueType() == MVT::f32)
1754 Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1755 }
1756
1757 if (FPR_idx != NumFPRs) {
1758 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1759
1760 if (isVarArg) {
1761 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1762 MemOpChains.push_back(Store);
1763
1764 // Float varargs are always shadowed in available integer registers
1765 if (GPR_idx != NumGPRs) {
1766 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1767 MemOpChains.push_back(Load.getValue(1));
1768 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1769 Load));
1770 }
1771 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1772 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1773 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1774 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1775 MemOpChains.push_back(Load.getValue(1));
1776 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1777 Load));
1778 }
1779 } else {
1780 // If we have any FPRs remaining, we may also have GPRs remaining.
1781 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1782 // GPRs.
1783 if (isMachoABI) {
1784 if (GPR_idx != NumGPRs)
1785 ++GPR_idx;
1786 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1787 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
1788 ++GPR_idx;
1789 }
1790 }
1791 } else {
1792 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1793 inMem = true;
1794 }
1795 if (inMem || isMachoABI) {
1796 // Stack align in ELF
1797 if (isELF32_ABI && Expand)
1798 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1799 if (isPPC64)
1800 ArgOffset += 8;
1801 else
1802 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1803 }
1804 break;
1805 case MVT::v4f32:
1806 case MVT::v4i32:
1807 case MVT::v8i16:
1808 case MVT::v16i8:
1809 assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1810 assert(VR_idx != NumVRs &&
1811 "Don't support passing more than 12 vector args yet!");
1812 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1813 break;
1814 }
1815 }
1816 if (!MemOpChains.empty())
1817 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1818 &MemOpChains[0], MemOpChains.size());
1819
1820 // Build a sequence of copy-to-reg nodes chained together with token chain
1821 // and flag operands which copy the outgoing args into the appropriate regs.
1822 SDOperand InFlag;
1823 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1824 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1825 InFlag);
1826 InFlag = Chain.getValue(1);
1827 }
1828
1829 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1830 if (isVarArg && isELF32_ABI) {
1831 SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1832 Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1833 InFlag = Chain.getValue(1);
1834 }
1835
1836 std::vector<MVT::ValueType> NodeTys;
1837 NodeTys.push_back(MVT::Other); // Returns a chain
1838 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
1839
1840 SmallVector<SDOperand, 8> Ops;
1841 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1842
1843 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1844 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1845 // node so that legalize doesn't hack it.
Nicolas Geoffray455a2e02007-12-21 12:22:29 +00001846 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1847 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1848 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001849 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1850 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1851 // If this is an absolute destination address, use the munged value.
1852 Callee = SDOperand(Dest, 0);
1853 else {
1854 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
1855 // to do the call, we can't use PPCISD::CALL.
1856 SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1857 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1858 InFlag = Chain.getValue(1);
1859
1860 // Copy the callee address into R12 on darwin.
1861 if (isMachoABI) {
1862 Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1863 InFlag = Chain.getValue(1);
1864 }
1865
1866 NodeTys.clear();
1867 NodeTys.push_back(MVT::Other);
1868 NodeTys.push_back(MVT::Flag);
1869 Ops.push_back(Chain);
1870 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1871 Callee.Val = 0;
1872 }
1873
1874 // If this is a direct call, pass the chain and the callee.
1875 if (Callee.Val) {
1876 Ops.push_back(Chain);
1877 Ops.push_back(Callee);
1878 }
1879
1880 // Add argument registers to the end of the list so that they are known live
1881 // into the call.
1882 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1883 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1884 RegsToPass[i].second.getValueType()));
1885
1886 if (InFlag.Val)
1887 Ops.push_back(InFlag);
1888 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1889 InFlag = Chain.getValue(1);
1890
Bill Wendling22f8deb2007-11-13 00:44:25 +00001891 Chain = DAG.getCALLSEQ_END(Chain,
1892 DAG.getConstant(NumBytes, PtrVT),
1893 DAG.getConstant(0, PtrVT),
1894 InFlag);
1895 if (Op.Val->getValueType(0) != MVT::Other)
1896 InFlag = Chain.getValue(1);
1897
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001898 SDOperand ResultVals[3];
1899 unsigned NumResults = 0;
1900 NodeTys.clear();
1901
1902 // If the call has results, copy the values out of the ret val registers.
1903 switch (Op.Val->getValueType(0)) {
1904 default: assert(0 && "Unexpected ret value!");
1905 case MVT::Other: break;
1906 case MVT::i32:
1907 if (Op.Val->getValueType(1) == MVT::i32) {
1908 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1909 ResultVals[0] = Chain.getValue(0);
1910 Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1911 Chain.getValue(2)).getValue(1);
1912 ResultVals[1] = Chain.getValue(0);
1913 NumResults = 2;
1914 NodeTys.push_back(MVT::i32);
1915 } else {
1916 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1917 ResultVals[0] = Chain.getValue(0);
1918 NumResults = 1;
1919 }
1920 NodeTys.push_back(MVT::i32);
1921 break;
1922 case MVT::i64:
1923 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1924 ResultVals[0] = Chain.getValue(0);
1925 NumResults = 1;
1926 NodeTys.push_back(MVT::i64);
1927 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001928 case MVT::f64:
Dale Johannesenac77b272007-10-05 20:04:43 +00001929 if (Op.Val->getValueType(1) == MVT::f64) {
1930 Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1931 ResultVals[0] = Chain.getValue(0);
1932 Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1933 Chain.getValue(2)).getValue(1);
1934 ResultVals[1] = Chain.getValue(0);
1935 NumResults = 2;
1936 NodeTys.push_back(MVT::f64);
1937 NodeTys.push_back(MVT::f64);
1938 break;
1939 }
1940 // else fall through
1941 case MVT::f32:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001942 Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1943 InFlag).getValue(1);
1944 ResultVals[0] = Chain.getValue(0);
1945 NumResults = 1;
1946 NodeTys.push_back(Op.Val->getValueType(0));
1947 break;
1948 case MVT::v4f32:
1949 case MVT::v4i32:
1950 case MVT::v8i16:
1951 case MVT::v16i8:
1952 Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1953 InFlag).getValue(1);
1954 ResultVals[0] = Chain.getValue(0);
1955 NumResults = 1;
1956 NodeTys.push_back(Op.Val->getValueType(0));
1957 break;
1958 }
1959
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001960 NodeTys.push_back(MVT::Other);
1961
1962 // If the function returns void, just return the chain.
1963 if (NumResults == 0)
1964 return Chain;
1965
1966 // Otherwise, merge everything together with a MERGE_VALUES node.
1967 ResultVals[NumResults++] = Chain;
1968 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1969 ResultVals, NumResults);
1970 return Res.getValue(Op.ResNo);
1971}
1972
Dale Johannesen8be83a72008-03-04 23:17:14 +00001973SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
1974 TargetMachine &TM) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001975 SmallVector<CCValAssign, 16> RVLocs;
1976 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1977 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1978 CCState CCInfo(CC, isVarArg, TM, RVLocs);
1979 CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1980
1981 // If this is the first return lowered for this function, add the regs to the
1982 // liveout set for the function.
Chris Lattner1b989192007-12-31 04:13:23 +00001983 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001984 for (unsigned i = 0; i != RVLocs.size(); ++i)
Chris Lattner1b989192007-12-31 04:13:23 +00001985 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001986 }
1987
1988 SDOperand Chain = Op.getOperand(0);
1989 SDOperand Flag;
1990
1991 // Copy the result values into the output registers.
1992 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1993 CCValAssign &VA = RVLocs[i];
1994 assert(VA.isRegLoc() && "Can only return in registers!");
1995 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1996 Flag = Chain.getValue(1);
1997 }
1998
1999 if (Flag.Val)
2000 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2001 else
2002 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2003}
2004
Dale Johannesen8be83a72008-03-04 23:17:14 +00002005SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002006 const PPCSubtarget &Subtarget) {
2007 // When we pop the dynamic allocation we need to restore the SP link.
2008
2009 // Get the corect type for pointers.
2010 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2011
2012 // Construct the stack pointer operand.
2013 bool IsPPC64 = Subtarget.isPPC64();
2014 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2015 SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2016
2017 // Get the operands for the STACKRESTORE.
2018 SDOperand Chain = Op.getOperand(0);
2019 SDOperand SaveSP = Op.getOperand(1);
2020
2021 // Load the old link SP.
2022 SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2023
2024 // Restore the stack pointer.
2025 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2026
2027 // Store the old link SP.
2028 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2029}
2030
Dale Johannesen8be83a72008-03-04 23:17:14 +00002031SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2032 SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002033 const PPCSubtarget &Subtarget) {
2034 MachineFunction &MF = DAG.getMachineFunction();
2035 bool IsPPC64 = Subtarget.isPPC64();
2036 bool isMachoABI = Subtarget.isMachoABI();
2037
2038 // Get current frame pointer save index. The users of this index will be
2039 // primarily DYNALLOC instructions.
2040 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2041 int FPSI = FI->getFramePointerSaveIndex();
2042
2043 // If the frame pointer save index hasn't been defined yet.
2044 if (!FPSI) {
2045 // Find out what the fix offset of the frame pointer save area.
2046 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2047
2048 // Allocate the frame index for frame pointer save area.
2049 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2050 // Save the result.
2051 FI->setFramePointerSaveIndex(FPSI);
2052 }
2053
2054 // Get the inputs.
2055 SDOperand Chain = Op.getOperand(0);
2056 SDOperand Size = Op.getOperand(1);
2057
2058 // Get the corect type for pointers.
2059 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2060 // Negate the size.
2061 SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2062 DAG.getConstant(0, PtrVT), Size);
2063 // Construct a node for the frame pointer save index.
2064 SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2065 // Build a DYNALLOC node.
2066 SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2067 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2068 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2069}
2070
2071
2072/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2073/// possible.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002074SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002075 // Not FP? Not a fsel.
2076 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2077 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2078 return SDOperand();
2079
2080 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2081
2082 // Cannot handle SETEQ/SETNE.
2083 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2084
2085 MVT::ValueType ResVT = Op.getValueType();
2086 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2087 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2088 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
2089
2090 // If the RHS of the comparison is a 0.0, we don't need to do the
2091 // subtraction at all.
2092 if (isFloatingPointZero(RHS))
2093 switch (CC) {
2094 default: break; // SETUO etc aren't handled by fsel.
2095 case ISD::SETULT:
2096 case ISD::SETOLT:
2097 case ISD::SETLT:
2098 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2099 case ISD::SETUGE:
2100 case ISD::SETOGE:
2101 case ISD::SETGE:
2102 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2103 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2104 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2105 case ISD::SETUGT:
2106 case ISD::SETOGT:
2107 case ISD::SETGT:
2108 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2109 case ISD::SETULE:
2110 case ISD::SETOLE:
2111 case ISD::SETLE:
2112 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2113 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2114 return DAG.getNode(PPCISD::FSEL, ResVT,
2115 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2116 }
2117
Chris Lattnera216bee2007-10-15 20:14:52 +00002118 SDOperand Cmp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002119 switch (CC) {
2120 default: break; // SETUO etc aren't handled by fsel.
2121 case ISD::SETULT:
2122 case ISD::SETOLT:
2123 case ISD::SETLT:
2124 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2125 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2126 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2127 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2128 case ISD::SETUGE:
2129 case ISD::SETOGE:
2130 case ISD::SETGE:
2131 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2132 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2133 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2134 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2135 case ISD::SETUGT:
2136 case ISD::SETOGT:
2137 case ISD::SETGT:
2138 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2139 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2140 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2141 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2142 case ISD::SETULE:
2143 case ISD::SETOLE:
2144 case ISD::SETLE:
2145 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2146 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2147 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2148 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2149 }
2150 return SDOperand();
2151}
2152
Chris Lattner28771092007-11-28 18:44:47 +00002153// FIXME: Split this code up when LegalizeDAGTypes lands.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002154SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002155 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2156 SDOperand Src = Op.getOperand(0);
2157 if (Src.getValueType() == MVT::f32)
2158 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2159
2160 SDOperand Tmp;
2161 switch (Op.getValueType()) {
2162 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2163 case MVT::i32:
2164 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2165 break;
2166 case MVT::i64:
2167 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2168 break;
2169 }
2170
2171 // Convert the FP value to an int value through memory.
Chris Lattnera216bee2007-10-15 20:14:52 +00002172 SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2173
2174 // Emit a store to the stack slot.
2175 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2176
2177 // Result is a load from the stack slot. If loading 4 bytes, make sure to
2178 // add in a bias.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002179 if (Op.getValueType() == MVT::i32)
Chris Lattnera216bee2007-10-15 20:14:52 +00002180 FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2181 DAG.getConstant(4, FIPtr.getValueType()));
2182 return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002183}
2184
Dale Johannesen8be83a72008-03-04 23:17:14 +00002185SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2186 SelectionDAG &DAG) {
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002187 assert(Op.getValueType() == MVT::ppcf128);
2188 SDNode *Node = Op.Val;
2189 assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
Chris Lattnerc882caf2007-10-19 04:08:28 +00002190 assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002191 SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2192 SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2193
2194 // This sequence changes FPSCR to do round-to-zero, adds the two halves
2195 // of the long double, and puts FPSCR back the way it was. We do not
2196 // actually model FPSCR.
2197 std::vector<MVT::ValueType> NodeTys;
2198 SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2199
2200 NodeTys.push_back(MVT::f64); // Return register
2201 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
2202 Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2203 MFFSreg = Result.getValue(0);
2204 InFlag = Result.getValue(1);
2205
2206 NodeTys.clear();
2207 NodeTys.push_back(MVT::Flag); // Returns a flag
2208 Ops[0] = DAG.getConstant(31, MVT::i32);
2209 Ops[1] = InFlag;
2210 Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2211 InFlag = Result.getValue(0);
2212
2213 NodeTys.clear();
2214 NodeTys.push_back(MVT::Flag); // Returns a flag
2215 Ops[0] = DAG.getConstant(30, MVT::i32);
2216 Ops[1] = InFlag;
2217 Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2218 InFlag = Result.getValue(0);
2219
2220 NodeTys.clear();
2221 NodeTys.push_back(MVT::f64); // result of add
2222 NodeTys.push_back(MVT::Flag); // Returns a flag
2223 Ops[0] = Lo;
2224 Ops[1] = Hi;
2225 Ops[2] = InFlag;
2226 Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2227 FPreg = Result.getValue(0);
2228 InFlag = Result.getValue(1);
2229
2230 NodeTys.clear();
2231 NodeTys.push_back(MVT::f64);
2232 Ops[0] = DAG.getConstant(1, MVT::i32);
2233 Ops[1] = MFFSreg;
2234 Ops[2] = FPreg;
2235 Ops[3] = InFlag;
2236 Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2237 FPreg = Result.getValue(0);
2238
2239 // We know the low half is about to be thrown away, so just use something
2240 // convenient.
2241 return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2242}
2243
Dale Johannesen8be83a72008-03-04 23:17:14 +00002244SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002245 if (Op.getOperand(0).getValueType() == MVT::i64) {
2246 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2247 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2248 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002249 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002250 return FP;
2251 }
2252
2253 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2254 "Unhandled SINT_TO_FP type in custom expander!");
2255 // Since we only generate this in 64-bit mode, we can take advantage of
2256 // 64-bit registers. In particular, sign extend the input value into the
2257 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2258 // then lfd it and fcfid it.
2259 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2260 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2261 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2262 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2263
2264 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2265 Op.getOperand(0));
2266
2267 // STD the extended value into the stack slot.
Dan Gohmanfb020b62008-02-07 18:41:25 +00002268 MemOperand MO(PseudoSourceValue::getFixedStack(),
Dan Gohman12a9c082008-02-06 22:27:42 +00002269 MemOperand::MOStore, FrameIdx, 8, 8);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002270 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2271 DAG.getEntryNode(), Ext64, FIdx,
Dan Gohman12a9c082008-02-06 22:27:42 +00002272 DAG.getMemOperand(MO));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002273 // Load the value as a double.
2274 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2275
2276 // FCFID it and return it.
2277 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2278 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002279 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002280 return FP;
2281}
2282
Dale Johannesen8be83a72008-03-04 23:17:14 +00002283SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
Dale Johannesen436e3802008-01-18 19:55:37 +00002284 /*
2285 The rounding mode is in bits 30:31 of FPSR, and has the following
2286 settings:
2287 00 Round to nearest
2288 01 Round to 0
2289 10 Round to +inf
2290 11 Round to -inf
2291
2292 FLT_ROUNDS, on the other hand, expects the following:
2293 -1 Undefined
2294 0 Round to 0
2295 1 Round to nearest
2296 2 Round to +inf
2297 3 Round to -inf
2298
2299 To perform the conversion, we do:
2300 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2301 */
2302
2303 MachineFunction &MF = DAG.getMachineFunction();
2304 MVT::ValueType VT = Op.getValueType();
2305 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2306 std::vector<MVT::ValueType> NodeTys;
2307 SDOperand MFFSreg, InFlag;
2308
2309 // Save FP Control Word to register
2310 NodeTys.push_back(MVT::f64); // return register
2311 NodeTys.push_back(MVT::Flag); // unused in this context
2312 SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2313
2314 // Save FP register to stack slot
2315 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2316 SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2317 SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2318 StackSlot, NULL, 0);
2319
2320 // Load FP Control Word from low 32 bits of stack slot.
2321 SDOperand Four = DAG.getConstant(4, PtrVT);
2322 SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2323 SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2324
2325 // Transform as necessary
2326 SDOperand CWD1 =
2327 DAG.getNode(ISD::AND, MVT::i32,
2328 CWD, DAG.getConstant(3, MVT::i32));
2329 SDOperand CWD2 =
2330 DAG.getNode(ISD::SRL, MVT::i32,
2331 DAG.getNode(ISD::AND, MVT::i32,
2332 DAG.getNode(ISD::XOR, MVT::i32,
2333 CWD, DAG.getConstant(3, MVT::i32)),
2334 DAG.getConstant(3, MVT::i32)),
2335 DAG.getConstant(1, MVT::i8));
2336
2337 SDOperand RetVal =
2338 DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2339
2340 return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2341 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2342}
2343
Dale Johannesen8be83a72008-03-04 23:17:14 +00002344SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002345 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2346 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2347
2348 // Expand into a bunch of logical ops. Note that these ops
2349 // depend on the PPC behavior for oversized shift amounts.
2350 SDOperand Lo = Op.getOperand(0);
2351 SDOperand Hi = Op.getOperand(1);
2352 SDOperand Amt = Op.getOperand(2);
2353
2354 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2355 DAG.getConstant(32, MVT::i32), Amt);
2356 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2357 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2358 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2359 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2360 DAG.getConstant(-32U, MVT::i32));
2361 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2362 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2363 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2364 SDOperand OutOps[] = { OutLo, OutHi };
2365 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2366 OutOps, 2);
2367}
2368
Dale Johannesen8be83a72008-03-04 23:17:14 +00002369SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002370 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2371 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2372
2373 // Otherwise, expand into a bunch of logical ops. Note that these ops
2374 // depend on the PPC behavior for oversized shift amounts.
2375 SDOperand Lo = Op.getOperand(0);
2376 SDOperand Hi = Op.getOperand(1);
2377 SDOperand Amt = Op.getOperand(2);
2378
2379 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2380 DAG.getConstant(32, MVT::i32), Amt);
2381 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2382 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2383 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2384 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2385 DAG.getConstant(-32U, MVT::i32));
2386 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2387 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2388 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2389 SDOperand OutOps[] = { OutLo, OutHi };
2390 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2391 OutOps, 2);
2392}
2393
Dale Johannesen8be83a72008-03-04 23:17:14 +00002394SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002395 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2396 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2397
2398 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2399 SDOperand Lo = Op.getOperand(0);
2400 SDOperand Hi = Op.getOperand(1);
2401 SDOperand Amt = Op.getOperand(2);
2402
2403 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2404 DAG.getConstant(32, MVT::i32), Amt);
2405 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2406 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2407 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2408 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2409 DAG.getConstant(-32U, MVT::i32));
2410 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2411 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2412 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2413 Tmp4, Tmp6, ISD::SETLE);
2414 SDOperand OutOps[] = { OutLo, OutHi };
2415 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2416 OutOps, 2);
2417}
2418
2419//===----------------------------------------------------------------------===//
2420// Vector related lowering.
2421//
2422
2423// If this is a vector of constants or undefs, get the bits. A bit in
2424// UndefBits is set if the corresponding element of the vector is an
2425// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2426// zero. Return true if this is not an array of constants, false if it is.
2427//
2428static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2429 uint64_t UndefBits[2]) {
2430 // Start with zero'd results.
2431 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2432
2433 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2434 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2435 SDOperand OpVal = BV->getOperand(i);
2436
2437 unsigned PartNo = i >= e/2; // In the upper 128 bits?
2438 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
2439
2440 uint64_t EltBits = 0;
2441 if (OpVal.getOpcode() == ISD::UNDEF) {
2442 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2443 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2444 continue;
2445 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2446 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2447 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2448 assert(CN->getValueType(0) == MVT::f32 &&
2449 "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +00002450 EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002451 } else {
2452 // Nonconstant element.
2453 return true;
2454 }
2455
2456 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2457 }
2458
2459 //printf("%llx %llx %llx %llx\n",
2460 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2461 return false;
2462}
2463
2464// If this is a splat (repetition) of a value across the whole vector, return
2465// the smallest size that splats it. For example, "0x01010101010101..." is a
2466// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2467// SplatSize = 1 byte.
2468static bool isConstantSplat(const uint64_t Bits128[2],
2469 const uint64_t Undef128[2],
2470 unsigned &SplatBits, unsigned &SplatUndef,
2471 unsigned &SplatSize) {
2472
2473 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2474 // the same as the lower 64-bits, ignoring undefs.
2475 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2476 return false; // Can't be a splat if two pieces don't match.
2477
2478 uint64_t Bits64 = Bits128[0] | Bits128[1];
2479 uint64_t Undef64 = Undef128[0] & Undef128[1];
2480
2481 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2482 // undefs.
2483 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2484 return false; // Can't be a splat if two pieces don't match.
2485
2486 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2487 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2488
2489 // If the top 16-bits are different than the lower 16-bits, ignoring
2490 // undefs, we have an i32 splat.
2491 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2492 SplatBits = Bits32;
2493 SplatUndef = Undef32;
2494 SplatSize = 4;
2495 return true;
2496 }
2497
2498 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
2499 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2500
2501 // If the top 8-bits are different than the lower 8-bits, ignoring
2502 // undefs, we have an i16 splat.
2503 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2504 SplatBits = Bits16;
2505 SplatUndef = Undef16;
2506 SplatSize = 2;
2507 return true;
2508 }
2509
2510 // Otherwise, we have an 8-bit splat.
2511 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
2512 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2513 SplatSize = 1;
2514 return true;
2515}
2516
2517/// BuildSplatI - Build a canonical splati of Val with an element size of
2518/// SplatSize. Cast the result to VT.
2519static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2520 SelectionDAG &DAG) {
2521 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2522
2523 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2524 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2525 };
2526
2527 MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2528
2529 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2530 if (Val == -1)
2531 SplatSize = 1;
2532
2533 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2534
2535 // Build a canonical splat for this value.
2536 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2537 SmallVector<SDOperand, 8> Ops;
2538 Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2539 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2540 &Ops[0], Ops.size());
2541 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2542}
2543
2544/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2545/// specified intrinsic ID.
2546static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2547 SelectionDAG &DAG,
2548 MVT::ValueType DestVT = MVT::Other) {
2549 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2550 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2551 DAG.getConstant(IID, MVT::i32), LHS, RHS);
2552}
2553
2554/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2555/// specified intrinsic ID.
2556static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2557 SDOperand Op2, SelectionDAG &DAG,
2558 MVT::ValueType DestVT = MVT::Other) {
2559 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2560 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2561 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2562}
2563
2564
2565/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2566/// amount. The result has the specified value type.
2567static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2568 MVT::ValueType VT, SelectionDAG &DAG) {
2569 // Force LHS/RHS to be the right type.
2570 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2571 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2572
2573 SDOperand Ops[16];
2574 for (unsigned i = 0; i != 16; ++i)
2575 Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2576 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2577 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2578 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2579}
2580
2581// If this is a case we can't handle, return null and let the default
2582// expansion code take care of it. If we CAN select this case, and if it
2583// selects to a single instruction, return Op. Otherwise, if we can codegen
2584// this case more efficiently than a constant pool load, lower it to the
2585// sequence of ops that should be used.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002586SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
2587 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002588 // If this is a vector of constants or undefs, get the bits. A bit in
2589 // UndefBits is set if the corresponding element of the vector is an
2590 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2591 // zero.
2592 uint64_t VectorBits[2];
2593 uint64_t UndefBits[2];
2594 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2595 return SDOperand(); // Not a constant vector.
2596
2597 // If this is a splat (repetition) of a value across the whole vector, return
2598 // the smallest size that splats it. For example, "0x01010101010101..." is a
2599 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2600 // SplatSize = 1 byte.
2601 unsigned SplatBits, SplatUndef, SplatSize;
2602 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2603 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2604
2605 // First, handle single instruction cases.
2606
2607 // All zeros?
2608 if (SplatBits == 0) {
2609 // Canonicalize all zero vectors to be v4i32.
2610 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2611 SDOperand Z = DAG.getConstant(0, MVT::i32);
2612 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2613 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2614 }
2615 return Op;
2616 }
2617
2618 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2619 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2620 if (SextVal >= -16 && SextVal <= 15)
2621 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2622
2623
2624 // Two instruction sequences.
2625
2626 // If this value is in the range [-32,30] and is even, use:
2627 // tmp = VSPLTI[bhw], result = add tmp, tmp
2628 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2629 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2630 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2631 }
2632
2633 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2634 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2635 // for fneg/fabs.
2636 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2637 // Make -1 and vspltisw -1:
2638 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2639
2640 // Make the VSLW intrinsic, computing 0x8000_0000.
2641 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2642 OnesV, DAG);
2643
2644 // xor by OnesV to invert it.
2645 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2646 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2647 }
2648
2649 // Check to see if this is a wide variety of vsplti*, binop self cases.
2650 unsigned SplatBitSize = SplatSize*8;
2651 static const signed char SplatCsts[] = {
2652 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2653 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2654 };
2655
Owen Anderson1636de92007-09-07 04:06:50 +00002656 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002657 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2658 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2659 int i = SplatCsts[idx];
2660
2661 // Figure out what shift amount will be used by altivec if shifted by i in
2662 // this splat size.
2663 unsigned TypeShiftAmt = i & (SplatBitSize-1);
2664
2665 // vsplti + shl self.
2666 if (SextVal == (i << (int)TypeShiftAmt)) {
2667 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2668 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2669 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2670 Intrinsic::ppc_altivec_vslw
2671 };
2672 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2673 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2674 }
2675
2676 // vsplti + srl self.
2677 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2678 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2679 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2680 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2681 Intrinsic::ppc_altivec_vsrw
2682 };
2683 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2684 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2685 }
2686
2687 // vsplti + sra self.
2688 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2689 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2690 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2691 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2692 Intrinsic::ppc_altivec_vsraw
2693 };
2694 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2695 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2696 }
2697
2698 // vsplti + rol self.
2699 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2700 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2701 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2702 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2703 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2704 Intrinsic::ppc_altivec_vrlw
2705 };
2706 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2707 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2708 }
2709
2710 // t = vsplti c, result = vsldoi t, t, 1
2711 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2712 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2713 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2714 }
2715 // t = vsplti c, result = vsldoi t, t, 2
2716 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2717 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2718 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2719 }
2720 // t = vsplti c, result = vsldoi t, t, 3
2721 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2722 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2723 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2724 }
2725 }
2726
2727 // Three instruction sequences.
2728
2729 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2730 if (SextVal >= 0 && SextVal <= 31) {
2731 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2732 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002733 LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002734 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2735 }
2736 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2737 if (SextVal >= -31 && SextVal <= 0) {
2738 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2739 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002740 LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002741 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2742 }
2743 }
2744
2745 return SDOperand();
2746}
2747
2748/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2749/// the specified operations to build the shuffle.
2750static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2751 SDOperand RHS, SelectionDAG &DAG) {
2752 unsigned OpNum = (PFEntry >> 26) & 0x0F;
2753 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2754 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
2755
2756 enum {
2757 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2758 OP_VMRGHW,
2759 OP_VMRGLW,
2760 OP_VSPLTISW0,
2761 OP_VSPLTISW1,
2762 OP_VSPLTISW2,
2763 OP_VSPLTISW3,
2764 OP_VSLDOI4,
2765 OP_VSLDOI8,
2766 OP_VSLDOI12
2767 };
2768
2769 if (OpNum == OP_COPY) {
2770 if (LHSID == (1*9+2)*9+3) return LHS;
2771 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2772 return RHS;
2773 }
2774
2775 SDOperand OpLHS, OpRHS;
2776 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2777 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2778
2779 unsigned ShufIdxs[16];
2780 switch (OpNum) {
2781 default: assert(0 && "Unknown i32 permute!");
2782 case OP_VMRGHW:
2783 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
2784 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2785 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
2786 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2787 break;
2788 case OP_VMRGLW:
2789 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2790 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2791 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2792 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2793 break;
2794 case OP_VSPLTISW0:
2795 for (unsigned i = 0; i != 16; ++i)
2796 ShufIdxs[i] = (i&3)+0;
2797 break;
2798 case OP_VSPLTISW1:
2799 for (unsigned i = 0; i != 16; ++i)
2800 ShufIdxs[i] = (i&3)+4;
2801 break;
2802 case OP_VSPLTISW2:
2803 for (unsigned i = 0; i != 16; ++i)
2804 ShufIdxs[i] = (i&3)+8;
2805 break;
2806 case OP_VSPLTISW3:
2807 for (unsigned i = 0; i != 16; ++i)
2808 ShufIdxs[i] = (i&3)+12;
2809 break;
2810 case OP_VSLDOI4:
2811 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2812 case OP_VSLDOI8:
2813 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2814 case OP_VSLDOI12:
2815 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2816 }
2817 SDOperand Ops[16];
2818 for (unsigned i = 0; i != 16; ++i)
2819 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2820
2821 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2822 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2823}
2824
2825/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
2826/// is a shuffle we can handle in a single instruction, return it. Otherwise,
2827/// return the code it can be lowered into. Worst case, it can always be
2828/// lowered into a vperm.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002829SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
2830 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002831 SDOperand V1 = Op.getOperand(0);
2832 SDOperand V2 = Op.getOperand(1);
2833 SDOperand PermMask = Op.getOperand(2);
2834
2835 // Cases that are handled by instructions that take permute immediates
2836 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2837 // selected by the instruction selector.
2838 if (V2.getOpcode() == ISD::UNDEF) {
2839 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2840 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2841 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2842 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2843 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2844 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2845 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2846 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2847 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2848 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2849 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2850 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2851 return Op;
2852 }
2853 }
2854
2855 // Altivec has a variety of "shuffle immediates" that take two vector inputs
2856 // and produce a fixed permutation. If any of these match, do not lower to
2857 // VPERM.
2858 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2859 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2860 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2861 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2862 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2863 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2864 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2865 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2866 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2867 return Op;
2868
2869 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
2870 // perfect shuffle table to emit an optimal matching sequence.
2871 unsigned PFIndexes[4];
2872 bool isFourElementShuffle = true;
2873 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2874 unsigned EltNo = 8; // Start out undef.
2875 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
2876 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2877 continue; // Undef, ignore it.
2878
2879 unsigned ByteSource =
2880 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2881 if ((ByteSource & 3) != j) {
2882 isFourElementShuffle = false;
2883 break;
2884 }
2885
2886 if (EltNo == 8) {
2887 EltNo = ByteSource/4;
2888 } else if (EltNo != ByteSource/4) {
2889 isFourElementShuffle = false;
2890 break;
2891 }
2892 }
2893 PFIndexes[i] = EltNo;
2894 }
2895
2896 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2897 // perfect shuffle vector to determine if it is cost effective to do this as
2898 // discrete instructions, or whether we should use a vperm.
2899 if (isFourElementShuffle) {
2900 // Compute the index in the perfect shuffle table.
2901 unsigned PFTableIndex =
2902 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2903
2904 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2905 unsigned Cost = (PFEntry >> 30);
2906
2907 // Determining when to avoid vperm is tricky. Many things affect the cost
2908 // of vperm, particularly how many times the perm mask needs to be computed.
2909 // For example, if the perm mask can be hoisted out of a loop or is already
2910 // used (perhaps because there are multiple permutes with the same shuffle
2911 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
2912 // the loop requires an extra register.
2913 //
2914 // As a compromise, we only emit discrete instructions if the shuffle can be
2915 // generated in 3 or fewer operations. When we have loop information
2916 // available, if this block is within a loop, we should avoid using vperm
2917 // for 3-operation perms and use a constant pool load instead.
2918 if (Cost < 3)
2919 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2920 }
2921
2922 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2923 // vector that will get spilled to the constant pool.
2924 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2925
2926 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2927 // that it is in input element units, not in bytes. Convert now.
2928 MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2929 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2930
2931 SmallVector<SDOperand, 16> ResultMask;
2932 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2933 unsigned SrcElt;
2934 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2935 SrcElt = 0;
2936 else
2937 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2938
2939 for (unsigned j = 0; j != BytesPerElement; ++j)
2940 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2941 MVT::i8));
2942 }
2943
2944 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2945 &ResultMask[0], ResultMask.size());
2946 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2947}
2948
2949/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2950/// altivec comparison. If it is, return true and fill in Opc/isDot with
2951/// information about the intrinsic.
2952static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2953 bool &isDot) {
2954 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2955 CompareOpc = -1;
2956 isDot = false;
2957 switch (IntrinsicID) {
2958 default: return false;
2959 // Comparison predicates.
2960 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
2961 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2962 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
2963 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
2964 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2965 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2966 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2967 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2968 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2969 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2970 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2971 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2972 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2973
2974 // Normal Comparisons.
2975 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
2976 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
2977 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
2978 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
2979 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
2980 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
2981 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
2982 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
2983 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
2984 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
2985 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
2986 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
2987 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
2988 }
2989 return true;
2990}
2991
2992/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2993/// lower, do it, otherwise return null.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002994SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
2995 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002996 // If this is a lowered altivec predicate compare, CompareOpc is set to the
2997 // opcode number of the comparison.
2998 int CompareOpc;
2999 bool isDot;
3000 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3001 return SDOperand(); // Don't custom lower most intrinsics.
3002
3003 // If this is a non-dot comparison, make the VCMP node and we are done.
3004 if (!isDot) {
3005 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3006 Op.getOperand(1), Op.getOperand(2),
3007 DAG.getConstant(CompareOpc, MVT::i32));
3008 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3009 }
3010
3011 // Create the PPCISD altivec 'dot' comparison node.
3012 SDOperand Ops[] = {
3013 Op.getOperand(2), // LHS
3014 Op.getOperand(3), // RHS
3015 DAG.getConstant(CompareOpc, MVT::i32)
3016 };
3017 std::vector<MVT::ValueType> VTs;
3018 VTs.push_back(Op.getOperand(2).getValueType());
3019 VTs.push_back(MVT::Flag);
3020 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3021
3022 // Now that we have the comparison, emit a copy from the CR to a GPR.
3023 // This is flagged to the above dot comparison.
3024 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3025 DAG.getRegister(PPC::CR6, MVT::i32),
3026 CompNode.getValue(1));
3027
3028 // Unpack the result based on how the target uses it.
3029 unsigned BitNo; // Bit # of CR6.
3030 bool InvertBit; // Invert result?
3031 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3032 default: // Can't happen, don't crash on invalid number though.
3033 case 0: // Return the value of the EQ bit of CR6.
3034 BitNo = 0; InvertBit = false;
3035 break;
3036 case 1: // Return the inverted value of the EQ bit of CR6.
3037 BitNo = 0; InvertBit = true;
3038 break;
3039 case 2: // Return the value of the LT bit of CR6.
3040 BitNo = 2; InvertBit = false;
3041 break;
3042 case 3: // Return the inverted value of the LT bit of CR6.
3043 BitNo = 2; InvertBit = true;
3044 break;
3045 }
3046
3047 // Shift the bit into the low position.
3048 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3049 DAG.getConstant(8-(3-BitNo), MVT::i32));
3050 // Isolate the bit.
3051 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3052 DAG.getConstant(1, MVT::i32));
3053
3054 // If we are supposed to, toggle the bit.
3055 if (InvertBit)
3056 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3057 DAG.getConstant(1, MVT::i32));
3058 return Flags;
3059}
3060
Dale Johannesen8be83a72008-03-04 23:17:14 +00003061SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3062 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003063 // Create a stack slot that is 16-byte aligned.
3064 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3065 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3066 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3067 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3068
3069 // Store the input value into Value#0 of the stack slot.
3070 SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3071 Op.getOperand(0), FIdx, NULL, 0);
3072 // Load it out.
3073 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3074}
3075
Dale Johannesen8be83a72008-03-04 23:17:14 +00003076SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003077 if (Op.getValueType() == MVT::v4i32) {
3078 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3079
3080 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
3081 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3082
3083 SDOperand RHSSwap = // = vrlw RHS, 16
3084 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3085
3086 // Shrinkify inputs to v8i16.
3087 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3088 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3089 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3090
3091 // Low parts multiplied together, generating 32-bit results (we ignore the
3092 // top parts).
3093 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3094 LHS, RHS, DAG, MVT::v4i32);
3095
3096 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3097 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3098 // Shift the high parts up 16 bits.
3099 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3100 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3101 } else if (Op.getValueType() == MVT::v8i16) {
3102 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3103
3104 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3105
3106 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3107 LHS, RHS, Zero, DAG);
3108 } else if (Op.getValueType() == MVT::v16i8) {
3109 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3110
3111 // Multiply the even 8-bit parts, producing 16-bit sums.
3112 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3113 LHS, RHS, DAG, MVT::v8i16);
3114 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3115
3116 // Multiply the odd 8-bit parts, producing 16-bit sums.
3117 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3118 LHS, RHS, DAG, MVT::v8i16);
3119 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3120
3121 // Merge the results together.
3122 SDOperand Ops[16];
3123 for (unsigned i = 0; i != 8; ++i) {
3124 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
3125 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3126 }
3127 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3128 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3129 } else {
3130 assert(0 && "Unknown mul to lower!");
3131 abort();
3132 }
3133}
3134
3135/// LowerOperation - Provide custom lowering hooks for some operations.
3136///
3137SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3138 switch (Op.getOpcode()) {
3139 default: assert(0 && "Wasn't expecting to be able to lower this!");
3140 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3141 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
3142 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3143 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
3144 case ISD::SETCC: return LowerSETCC(Op, DAG);
3145 case ISD::VASTART:
3146 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3147 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3148
3149 case ISD::VAARG:
3150 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3151 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3152
3153 case ISD::FORMAL_ARGUMENTS:
3154 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3155 VarArgsStackOffset, VarArgsNumGPR,
3156 VarArgsNumFPR, PPCSubTarget);
3157
3158 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget);
3159 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
3160 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3161 case ISD::DYNAMIC_STACKALLOC:
3162 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3163
3164 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
3165 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
3166 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00003167 case ISD::FP_ROUND_INREG: return LowerFP_ROUND_INREG(Op, DAG);
Dan Gohman819574c2008-01-31 00:41:03 +00003168 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003169
3170 // Lower 64-bit shifts.
3171 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
3172 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
3173 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
3174
3175 // Vector-related lowering.
3176 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3177 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3178 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3179 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
3180 case ISD::MUL: return LowerMUL(Op, DAG);
3181
Chris Lattnerf8b93372007-12-08 06:59:59 +00003182 // Frame & Return address.
3183 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003184 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3185 }
3186 return SDOperand();
3187}
3188
Chris Lattner28771092007-11-28 18:44:47 +00003189SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3190 switch (N->getOpcode()) {
3191 default: assert(0 && "Wasn't expecting to be able to lower this!");
3192 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3193 }
3194}
3195
3196
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003197//===----------------------------------------------------------------------===//
3198// Other Lowering Code
3199//===----------------------------------------------------------------------===//
3200
3201MachineBasicBlock *
Evan Chenge637db12008-01-30 18:18:23 +00003202PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3203 MachineBasicBlock *BB) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003204 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3205 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3206 MI->getOpcode() == PPC::SELECT_CC_I8 ||
3207 MI->getOpcode() == PPC::SELECT_CC_F4 ||
3208 MI->getOpcode() == PPC::SELECT_CC_F8 ||
3209 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3210 "Unexpected instr type to insert");
3211
3212 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3213 // control-flow pattern. The incoming instruction knows the destination vreg
3214 // to set, the condition code register to branch on, the true/false values to
3215 // select between, and a branch opcode to use.
3216 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3217 ilist<MachineBasicBlock>::iterator It = BB;
3218 ++It;
3219
3220 // thisMBB:
3221 // ...
3222 // TrueVal = ...
3223 // cmpTY ccX, r1, r2
3224 // bCC copy1MBB
3225 // fallthrough --> copy0MBB
3226 MachineBasicBlock *thisMBB = BB;
3227 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3228 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3229 unsigned SelectPred = MI->getOperand(4).getImm();
3230 BuildMI(BB, TII->get(PPC::BCC))
3231 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3232 MachineFunction *F = BB->getParent();
3233 F->getBasicBlockList().insert(It, copy0MBB);
3234 F->getBasicBlockList().insert(It, sinkMBB);
3235 // Update machine-CFG edges by first adding all successors of the current
3236 // block to the new block which will contain the Phi node for the select.
3237 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3238 e = BB->succ_end(); i != e; ++i)
3239 sinkMBB->addSuccessor(*i);
3240 // Next, remove all successors of the current block, and add the true
3241 // and fallthrough blocks as its successors.
3242 while(!BB->succ_empty())
3243 BB->removeSuccessor(BB->succ_begin());
3244 BB->addSuccessor(copy0MBB);
3245 BB->addSuccessor(sinkMBB);
3246
3247 // copy0MBB:
3248 // %FalseValue = ...
3249 // # fallthrough to sinkMBB
3250 BB = copy0MBB;
3251
3252 // Update machine-CFG edges
3253 BB->addSuccessor(sinkMBB);
3254
3255 // sinkMBB:
3256 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3257 // ...
3258 BB = sinkMBB;
3259 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3260 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3261 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3262
3263 delete MI; // The pseudo instruction is gone now.
3264 return BB;
3265}
3266
3267//===----------------------------------------------------------------------===//
3268// Target Optimization Hooks
3269//===----------------------------------------------------------------------===//
3270
3271SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3272 DAGCombinerInfo &DCI) const {
3273 TargetMachine &TM = getTargetMachine();
3274 SelectionDAG &DAG = DCI.DAG;
3275 switch (N->getOpcode()) {
3276 default: break;
3277 case PPCISD::SHL:
3278 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3279 if (C->getValue() == 0) // 0 << V -> 0.
3280 return N->getOperand(0);
3281 }
3282 break;
3283 case PPCISD::SRL:
3284 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3285 if (C->getValue() == 0) // 0 >>u V -> 0.
3286 return N->getOperand(0);
3287 }
3288 break;
3289 case PPCISD::SRA:
3290 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3291 if (C->getValue() == 0 || // 0 >>s V -> 0.
3292 C->isAllOnesValue()) // -1 >>s V -> -1.
3293 return N->getOperand(0);
3294 }
3295 break;
3296
3297 case ISD::SINT_TO_FP:
3298 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3299 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3300 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3301 // We allow the src/dst to be either f32/f64, but the intermediate
3302 // type must be i64.
Dale Johannesencbc03512007-10-23 23:20:14 +00003303 if (N->getOperand(0).getValueType() == MVT::i64 &&
3304 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003305 SDOperand Val = N->getOperand(0).getOperand(0);
3306 if (Val.getValueType() == MVT::f32) {
3307 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3308 DCI.AddToWorklist(Val.Val);
3309 }
3310
3311 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3312 DCI.AddToWorklist(Val.Val);
3313 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3314 DCI.AddToWorklist(Val.Val);
3315 if (N->getValueType(0) == MVT::f32) {
Chris Lattner5872a362008-01-17 07:00:52 +00003316 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3317 DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003318 DCI.AddToWorklist(Val.Val);
3319 }
3320 return Val;
3321 } else if (N->getOperand(0).getValueType() == MVT::i32) {
3322 // If the intermediate type is i32, we can avoid the load/store here
3323 // too.
3324 }
3325 }
3326 }
3327 break;
3328 case ISD::STORE:
3329 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3330 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
Chris Lattnerdf7a4ae2008-01-18 16:54:56 +00003331 !cast<StoreSDNode>(N)->isTruncatingStore() &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003332 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
Dale Johannesencbc03512007-10-23 23:20:14 +00003333 N->getOperand(1).getValueType() == MVT::i32 &&
3334 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003335 SDOperand Val = N->getOperand(1).getOperand(0);
3336 if (Val.getValueType() == MVT::f32) {
3337 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3338 DCI.AddToWorklist(Val.Val);
3339 }
3340 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3341 DCI.AddToWorklist(Val.Val);
3342
3343 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3344 N->getOperand(2), N->getOperand(3));
3345 DCI.AddToWorklist(Val.Val);
3346 return Val;
3347 }
3348
3349 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3350 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3351 N->getOperand(1).Val->hasOneUse() &&
3352 (N->getOperand(1).getValueType() == MVT::i32 ||
3353 N->getOperand(1).getValueType() == MVT::i16)) {
3354 SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3355 // Do an any-extend to 32-bits if this is a half-word input.
3356 if (BSwapOp.getValueType() == MVT::i16)
3357 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3358
3359 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3360 N->getOperand(2), N->getOperand(3),
3361 DAG.getValueType(N->getOperand(1).getValueType()));
3362 }
3363 break;
3364 case ISD::BSWAP:
3365 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3366 if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3367 N->getOperand(0).hasOneUse() &&
3368 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3369 SDOperand Load = N->getOperand(0);
3370 LoadSDNode *LD = cast<LoadSDNode>(Load);
3371 // Create the byte-swapping load.
3372 std::vector<MVT::ValueType> VTs;
3373 VTs.push_back(MVT::i32);
3374 VTs.push_back(MVT::Other);
Dan Gohman12a9c082008-02-06 22:27:42 +00003375 SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003376 SDOperand Ops[] = {
3377 LD->getChain(), // Chain
3378 LD->getBasePtr(), // Ptr
Dan Gohman12a9c082008-02-06 22:27:42 +00003379 MO, // MemOperand
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003380 DAG.getValueType(N->getValueType(0)) // VT
3381 };
3382 SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3383
3384 // If this is an i16 load, insert the truncate.
3385 SDOperand ResVal = BSLoad;
3386 if (N->getValueType(0) == MVT::i16)
3387 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3388
3389 // First, combine the bswap away. This makes the value produced by the
3390 // load dead.
3391 DCI.CombineTo(N, ResVal);
3392
3393 // Next, combine the load away, we give it a bogus result value but a real
3394 // chain result. The result value is dead because the bswap is dead.
3395 DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3396
3397 // Return N so it doesn't get rechecked!
3398 return SDOperand(N, 0);
3399 }
3400
3401 break;
3402 case PPCISD::VCMP: {
3403 // If a VCMPo node already exists with exactly the same operands as this
3404 // node, use its result instead of this node (VCMPo computes both a CR6 and
3405 // a normal output).
3406 //
3407 if (!N->getOperand(0).hasOneUse() &&
3408 !N->getOperand(1).hasOneUse() &&
3409 !N->getOperand(2).hasOneUse()) {
3410
3411 // Scan all of the users of the LHS, looking for VCMPo's that match.
3412 SDNode *VCMPoNode = 0;
3413
3414 SDNode *LHSN = N->getOperand(0).Val;
3415 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3416 UI != E; ++UI)
3417 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3418 (*UI)->getOperand(1) == N->getOperand(1) &&
3419 (*UI)->getOperand(2) == N->getOperand(2) &&
3420 (*UI)->getOperand(0) == N->getOperand(0)) {
3421 VCMPoNode = *UI;
3422 break;
3423 }
3424
3425 // If there is no VCMPo node, or if the flag value has a single use, don't
3426 // transform this.
3427 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3428 break;
3429
3430 // Look at the (necessarily single) use of the flag value. If it has a
3431 // chain, this transformation is more complex. Note that multiple things
3432 // could use the value result, which we should ignore.
3433 SDNode *FlagUser = 0;
3434 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3435 FlagUser == 0; ++UI) {
3436 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3437 SDNode *User = *UI;
3438 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3439 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3440 FlagUser = User;
3441 break;
3442 }
3443 }
3444 }
3445
3446 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3447 // give up for right now.
3448 if (FlagUser->getOpcode() == PPCISD::MFCR)
3449 return SDOperand(VCMPoNode, 0);
3450 }
3451 break;
3452 }
3453 case ISD::BR_CC: {
3454 // If this is a branch on an altivec predicate comparison, lower this so
3455 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3456 // lowering is done pre-legalize, because the legalizer lowers the predicate
3457 // compare down to code that is difficult to reassemble.
3458 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3459 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3460 int CompareOpc;
3461 bool isDot;
3462
3463 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3464 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3465 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3466 assert(isDot && "Can't compare against a vector result!");
3467
3468 // If this is a comparison against something other than 0/1, then we know
3469 // that the condition is never/always true.
3470 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3471 if (Val != 0 && Val != 1) {
3472 if (CC == ISD::SETEQ) // Cond never true, remove branch.
3473 return N->getOperand(0);
3474 // Always !=, turn it into an unconditional branch.
3475 return DAG.getNode(ISD::BR, MVT::Other,
3476 N->getOperand(0), N->getOperand(4));
3477 }
3478
3479 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3480
3481 // Create the PPCISD altivec 'dot' comparison node.
3482 std::vector<MVT::ValueType> VTs;
3483 SDOperand Ops[] = {
3484 LHS.getOperand(2), // LHS of compare
3485 LHS.getOperand(3), // RHS of compare
3486 DAG.getConstant(CompareOpc, MVT::i32)
3487 };
3488 VTs.push_back(LHS.getOperand(2).getValueType());
3489 VTs.push_back(MVT::Flag);
3490 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3491
3492 // Unpack the result based on how the target uses it.
3493 PPC::Predicate CompOpc;
3494 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3495 default: // Can't happen, don't crash on invalid number though.
3496 case 0: // Branch on the value of the EQ bit of CR6.
3497 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3498 break;
3499 case 1: // Branch on the inverted value of the EQ bit of CR6.
3500 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3501 break;
3502 case 2: // Branch on the value of the LT bit of CR6.
3503 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3504 break;
3505 case 3: // Branch on the inverted value of the LT bit of CR6.
3506 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3507 break;
3508 }
3509
3510 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3511 DAG.getConstant(CompOpc, MVT::i32),
3512 DAG.getRegister(PPC::CR6, MVT::i32),
3513 N->getOperand(4), CompNode.getValue(1));
3514 }
3515 break;
3516 }
3517 }
3518
3519 return SDOperand();
3520}
3521
3522//===----------------------------------------------------------------------===//
3523// Inline Assembly Support
3524//===----------------------------------------------------------------------===//
3525
3526void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
Dan Gohmand0dfc772008-02-13 22:28:48 +00003527 const APInt &Mask,
Dan Gohman229fa052008-02-13 00:35:47 +00003528 APInt &KnownZero,
3529 APInt &KnownOne,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003530 const SelectionDAG &DAG,
3531 unsigned Depth) const {
Dan Gohman229fa052008-02-13 00:35:47 +00003532 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003533 switch (Op.getOpcode()) {
3534 default: break;
3535 case PPCISD::LBRX: {
3536 // lhbrx is known to have the top bits cleared out.
3537 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3538 KnownZero = 0xFFFF0000;
3539 break;
3540 }
3541 case ISD::INTRINSIC_WO_CHAIN: {
3542 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3543 default: break;
3544 case Intrinsic::ppc_altivec_vcmpbfp_p:
3545 case Intrinsic::ppc_altivec_vcmpeqfp_p:
3546 case Intrinsic::ppc_altivec_vcmpequb_p:
3547 case Intrinsic::ppc_altivec_vcmpequh_p:
3548 case Intrinsic::ppc_altivec_vcmpequw_p:
3549 case Intrinsic::ppc_altivec_vcmpgefp_p:
3550 case Intrinsic::ppc_altivec_vcmpgtfp_p:
3551 case Intrinsic::ppc_altivec_vcmpgtsb_p:
3552 case Intrinsic::ppc_altivec_vcmpgtsh_p:
3553 case Intrinsic::ppc_altivec_vcmpgtsw_p:
3554 case Intrinsic::ppc_altivec_vcmpgtub_p:
3555 case Intrinsic::ppc_altivec_vcmpgtuh_p:
3556 case Intrinsic::ppc_altivec_vcmpgtuw_p:
3557 KnownZero = ~1U; // All bits but the low one are known to be zero.
3558 break;
3559 }
3560 }
3561 }
3562}
3563
3564
3565/// getConstraintType - Given a constraint, return the type of
3566/// constraint it is for this target.
3567PPCTargetLowering::ConstraintType
3568PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3569 if (Constraint.size() == 1) {
3570 switch (Constraint[0]) {
3571 default: break;
3572 case 'b':
3573 case 'r':
3574 case 'f':
3575 case 'v':
3576 case 'y':
3577 return C_RegisterClass;
3578 }
3579 }
3580 return TargetLowering::getConstraintType(Constraint);
3581}
3582
3583std::pair<unsigned, const TargetRegisterClass*>
3584PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3585 MVT::ValueType VT) const {
3586 if (Constraint.size() == 1) {
3587 // GCC RS6000 Constraint Letters
3588 switch (Constraint[0]) {
3589 case 'b': // R1-R31
3590 case 'r': // R0-R31
3591 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3592 return std::make_pair(0U, PPC::G8RCRegisterClass);
3593 return std::make_pair(0U, PPC::GPRCRegisterClass);
3594 case 'f':
3595 if (VT == MVT::f32)
3596 return std::make_pair(0U, PPC::F4RCRegisterClass);
3597 else if (VT == MVT::f64)
3598 return std::make_pair(0U, PPC::F8RCRegisterClass);
3599 break;
3600 case 'v':
3601 return std::make_pair(0U, PPC::VRRCRegisterClass);
3602 case 'y': // crrc
3603 return std::make_pair(0U, PPC::CRRCRegisterClass);
3604 }
3605 }
3606
3607 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3608}
3609
3610
Chris Lattnera531abc2007-08-25 00:47:38 +00003611/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3612/// vector. If it is invalid, don't add anything to Ops.
3613void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3614 std::vector<SDOperand>&Ops,
3615 SelectionDAG &DAG) {
3616 SDOperand Result(0,0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003617 switch (Letter) {
3618 default: break;
3619 case 'I':
3620 case 'J':
3621 case 'K':
3622 case 'L':
3623 case 'M':
3624 case 'N':
3625 case 'O':
3626 case 'P': {
3627 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
Chris Lattnera531abc2007-08-25 00:47:38 +00003628 if (!CST) return; // Must be an immediate to match.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003629 unsigned Value = CST->getValue();
3630 switch (Letter) {
3631 default: assert(0 && "Unknown constraint letter!");
3632 case 'I': // "I" is a signed 16-bit constant.
3633 if ((short)Value == (int)Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003634 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003635 break;
3636 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3637 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3638 if ((short)Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003639 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003640 break;
3641 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3642 if ((Value >> 16) == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003643 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003644 break;
3645 case 'M': // "M" is a constant that is greater than 31.
3646 if (Value > 31)
Chris Lattnera531abc2007-08-25 00:47:38 +00003647 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003648 break;
3649 case 'N': // "N" is a positive constant that is an exact power of two.
3650 if ((int)Value > 0 && isPowerOf2_32(Value))
Chris Lattnera531abc2007-08-25 00:47:38 +00003651 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003652 break;
3653 case 'O': // "O" is the constant zero.
3654 if (Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003655 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003656 break;
3657 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3658 if ((short)-Value == (int)-Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003659 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003660 break;
3661 }
3662 break;
3663 }
3664 }
3665
Chris Lattnera531abc2007-08-25 00:47:38 +00003666 if (Result.Val) {
3667 Ops.push_back(Result);
3668 return;
3669 }
3670
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003671 // Handle standard constraint letters.
Chris Lattnera531abc2007-08-25 00:47:38 +00003672 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003673}
3674
3675// isLegalAddressingMode - Return true if the addressing mode represented
3676// by AM is legal for this target, for a load/store of the specified type.
3677bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3678 const Type *Ty) const {
3679 // FIXME: PPC does not allow r+i addressing modes for vectors!
3680
3681 // PPC allows a sign-extended 16-bit immediate field.
3682 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3683 return false;
3684
3685 // No global is ever allowed as a base.
3686 if (AM.BaseGV)
3687 return false;
3688
3689 // PPC only support r+r,
3690 switch (AM.Scale) {
3691 case 0: // "r+i" or just "i", depending on HasBaseReg.
3692 break;
3693 case 1:
3694 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3695 return false;
3696 // Otherwise we have r+r or r+i.
3697 break;
3698 case 2:
3699 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3700 return false;
3701 // Allow 2*r as r+r.
3702 break;
3703 default:
3704 // No other scales are supported.
3705 return false;
3706 }
3707
3708 return true;
3709}
3710
3711/// isLegalAddressImmediate - Return true if the integer value can be used
3712/// as the offset of the target addressing mode for load / store of the
3713/// given type.
3714bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3715 // PPC allows a sign-extended 16-bit immediate field.
3716 return (V > -(1 << 16) && V < (1 << 16)-1);
3717}
3718
3719bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3720 return false;
3721}
3722
Chris Lattnerf8b93372007-12-08 06:59:59 +00003723SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3724 // Depths > 0 not supported yet!
3725 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3726 return SDOperand();
3727
3728 MachineFunction &MF = DAG.getMachineFunction();
3729 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3730 int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3731 if (RAIdx == 0) {
3732 bool isPPC64 = PPCSubTarget.isPPC64();
3733 int Offset =
3734 PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3735
3736 // Set up a frame object for the return address.
3737 RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3738
3739 // Remember it for next time.
3740 FuncInfo->setReturnAddrSaveIndex(RAIdx);
3741
3742 // Make sure the function really does not optimize away the store of the RA
3743 // to the stack.
3744 FuncInfo->setLRStoreRequired();
3745 }
3746
3747 // Just load the return address off the stack.
3748 SDOperand RetAddrFI = DAG.getFrameIndex(RAIdx, getPointerTy());
3749 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3750}
3751
3752SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003753 // Depths > 0 not supported yet!
3754 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3755 return SDOperand();
3756
3757 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3758 bool isPPC64 = PtrVT == MVT::i64;
3759
3760 MachineFunction &MF = DAG.getMachineFunction();
3761 MachineFrameInfo *MFI = MF.getFrameInfo();
3762 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3763 && MFI->getStackSize();
3764
3765 if (isPPC64)
3766 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
Bill Wendling5e28ab12007-08-30 00:59:19 +00003767 MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003768 else
3769 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3770 MVT::i32);
3771}