blob: 37f8bdfbffed9fb967143d360552be7a31cc1118 [file] [log] [blame]
Chris Lattner6148c022001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner6148c022001-12-03 17:28:42 +00009//
Chris Lattner40bf8b42004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
Chris Lattner40bf8b42004-04-02 20:24:31 +000014// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16// 1. The exit condition for the loop is canonicalized to compare the
17// induction value against the exit value. This turns loops like:
18// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19// 2. Any use outside of the loop of an expression derived from the indvar
20// is changed to compute the derived value outside of the loop, eliminating
21// the dependence on the exit value of the induction variable. If the only
22// purpose of the loop is to compute the exit value of some derived
23// expression, this transformation will make the loop dead.
24//
Chris Lattner6148c022001-12-03 17:28:42 +000025//===----------------------------------------------------------------------===//
26
Chris Lattner0e5f4992006-12-19 21:40:18 +000027#define DEBUG_TYPE "indvars"
Chris Lattner022103b2002-05-07 20:03:00 +000028#include "llvm/Transforms/Scalar.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000029#include "llvm/BasicBlock.h"
Chris Lattner59fdaee2004-04-15 15:21:43 +000030#include "llvm/Constants.h"
Chris Lattner18b3c972003-12-22 05:02:01 +000031#include "llvm/Instructions.h"
Devang Patel7b9f6b12010-03-15 22:23:03 +000032#include "llvm/IntrinsicInst.h"
Owen Andersond672ecb2009-07-03 00:17:18 +000033#include "llvm/LLVMContext.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000034#include "llvm/Type.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000035#include "llvm/Analysis/Dominators.h"
Nate Begeman36f891b2005-07-30 00:12:19 +000036#include "llvm/Analysis/ScalarEvolutionExpander.h"
John Criswell47df12d2003-12-18 17:19:19 +000037#include "llvm/Analysis/LoopInfo.h"
Devang Patel5ee99972007-03-07 06:39:01 +000038#include "llvm/Analysis/LoopPass.h"
Chris Lattner455889a2002-02-12 22:39:50 +000039#include "llvm/Support/CFG.h"
Andrew Trick56caa092011-06-28 03:01:46 +000040#include "llvm/Support/CommandLine.h"
Chris Lattneree4f13a2007-01-07 01:14:12 +000041#include "llvm/Support/Debug.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000042#include "llvm/Support/raw_ostream.h"
John Criswell47df12d2003-12-18 17:19:19 +000043#include "llvm/Transforms/Utils/Local.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000044#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Andrew Trick4b4bb712011-08-10 03:46:27 +000045#include "llvm/Transforms/Utils/SimplifyIndVar.h"
Andrew Trick37da4082011-05-04 02:10:13 +000046#include "llvm/Target/TargetData.h"
Andrew Trick037d1c02011-07-06 20:50:43 +000047#include "llvm/ADT/DenseMap.h"
Reid Spencera54b7cb2007-01-12 07:05:14 +000048#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000049#include "llvm/ADT/Statistic.h"
John Criswell47df12d2003-12-18 17:19:19 +000050using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000051
Andrew Trick2fabd462011-06-21 03:22:38 +000052STATISTIC(NumWidened , "Number of indvars widened");
Andrew Trick2fabd462011-06-21 03:22:38 +000053STATISTIC(NumReplaced , "Number of exit values replaced");
54STATISTIC(NumLFTR , "Number of loop exit tests replaced");
Andrew Trick2fabd462011-06-21 03:22:38 +000055STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
Andrew Trick037d1c02011-07-06 20:50:43 +000056STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
Chris Lattner3324e712003-12-22 03:58:44 +000057
Benjamin Kramer0861f572011-11-26 23:01:57 +000058// Trip count verification can be enabled by default under NDEBUG if we
59// implement a strong expression equivalence checker in SCEV. Until then, we
60// use the verify-indvars flag, which may assert in some cases.
61static cl::opt<bool> VerifyIndvars(
62 "verify-indvars", cl::Hidden,
63 cl::desc("Verify the ScalarEvolution result after running indvars"));
Andrew Trick37da4082011-05-04 02:10:13 +000064
Chris Lattner0e5f4992006-12-19 21:40:18 +000065namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000066 class IndVarSimplify : public LoopPass {
Chris Lattner40bf8b42004-04-02 20:24:31 +000067 LoopInfo *LI;
68 ScalarEvolution *SE;
Dan Gohmande53dc02009-06-27 05:16:57 +000069 DominatorTree *DT;
Andrew Trick37da4082011-05-04 02:10:13 +000070 TargetData *TD;
Andrew Trick2fabd462011-06-21 03:22:38 +000071
Andrew Trickb12a7542011-03-17 23:51:11 +000072 SmallVector<WeakVH, 16> DeadInsts;
Chris Lattner15cad752003-12-23 07:47:09 +000073 bool Changed;
Chris Lattner3324e712003-12-22 03:58:44 +000074 public:
Devang Patel794fd752007-05-01 21:15:47 +000075
Dan Gohman5668cf72009-07-15 01:26:32 +000076 static char ID; // Pass identification, replacement for typeid
Andrew Trickdb0d6662012-03-22 17:10:11 +000077 IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
Andrew Trick15832f62011-06-28 02:49:20 +000078 Changed(false) {
Owen Anderson081c34b2010-10-19 17:21:58 +000079 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
80 }
Devang Patel794fd752007-05-01 21:15:47 +000081
Dan Gohman5668cf72009-07-15 01:26:32 +000082 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
Dan Gohman60f8a632009-02-17 20:49:49 +000083
Dan Gohman5668cf72009-07-15 01:26:32 +000084 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85 AU.addRequired<DominatorTree>();
86 AU.addRequired<LoopInfo>();
87 AU.addRequired<ScalarEvolution>();
88 AU.addRequiredID(LoopSimplifyID);
89 AU.addRequiredID(LCSSAID);
Dan Gohman5668cf72009-07-15 01:26:32 +000090 AU.addPreserved<ScalarEvolution>();
91 AU.addPreservedID(LoopSimplifyID);
92 AU.addPreservedID(LCSSAID);
Dan Gohman5668cf72009-07-15 01:26:32 +000093 AU.setPreservesCFG();
94 }
Chris Lattner15cad752003-12-23 07:47:09 +000095
Chris Lattner40bf8b42004-04-02 20:24:31 +000096 private:
Andrew Trick037d1c02011-07-06 20:50:43 +000097 virtual void releaseMemory() {
Andrew Trick037d1c02011-07-06 20:50:43 +000098 DeadInsts.clear();
99 }
100
Andrew Trickb12a7542011-03-17 23:51:11 +0000101 bool isValidRewrite(Value *FromVal, Value *ToVal);
Devang Patel5ee99972007-03-07 06:39:01 +0000102
Andrew Trick1a54bb22011-07-12 00:08:50 +0000103 void HandleFloatingPointIV(Loop *L, PHINode *PH);
104 void RewriteNonIntegerIVs(Loop *L);
105
Andrew Trick4b4bb712011-08-10 03:46:27 +0000106 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
Andrew Trick06988bc2011-08-06 07:00:37 +0000107
Andrew Trick4b4bb712011-08-10 03:46:27 +0000108 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
109
Andrew Trickfc933c02011-07-18 20:32:31 +0000110 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
111 PHINode *IndVar, SCEVExpander &Rewriter);
Dan Gohman81db61a2009-05-12 02:17:14 +0000112
Andrew Trick1a54bb22011-07-12 00:08:50 +0000113 void SinkUnusedInvariants(Loop *L);
Chris Lattner3324e712003-12-22 03:58:44 +0000114 };
Chris Lattner5e761402002-09-10 05:24:05 +0000115}
Chris Lattner394437f2001-12-04 04:32:29 +0000116
Dan Gohman844731a2008-05-13 00:00:25 +0000117char IndVarSimplify::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +0000118INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
Andrew Trick37da4082011-05-04 02:10:13 +0000119 "Induction Variable Simplification", false, false)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000120INITIALIZE_PASS_DEPENDENCY(DominatorTree)
121INITIALIZE_PASS_DEPENDENCY(LoopInfo)
122INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
123INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
124INITIALIZE_PASS_DEPENDENCY(LCSSA)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000125INITIALIZE_PASS_END(IndVarSimplify, "indvars",
Andrew Trick37da4082011-05-04 02:10:13 +0000126 "Induction Variable Simplification", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000127
Daniel Dunbar394f0442008-10-22 23:32:42 +0000128Pass *llvm::createIndVarSimplifyPass() {
Chris Lattner3324e712003-12-22 03:58:44 +0000129 return new IndVarSimplify();
Chris Lattner394437f2001-12-04 04:32:29 +0000130}
131
Andrew Trickb12a7542011-03-17 23:51:11 +0000132/// isValidRewrite - Return true if the SCEV expansion generated by the
133/// rewriter can replace the original value. SCEV guarantees that it
134/// produces the same value, but the way it is produced may be illegal IR.
135/// Ideally, this function will only be called for verification.
136bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
137 // If an SCEV expression subsumed multiple pointers, its expansion could
138 // reassociate the GEP changing the base pointer. This is illegal because the
139 // final address produced by a GEP chain must be inbounds relative to its
140 // underlying object. Otherwise basic alias analysis, among other things,
141 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
142 // producing an expression involving multiple pointers. Until then, we must
143 // bail out here.
144 //
145 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
146 // because it understands lcssa phis while SCEV does not.
147 Value *FromPtr = FromVal;
148 Value *ToPtr = ToVal;
149 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
150 FromPtr = GEP->getPointerOperand();
151 }
152 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
153 ToPtr = GEP->getPointerOperand();
154 }
155 if (FromPtr != FromVal || ToPtr != ToVal) {
156 // Quickly check the common case
157 if (FromPtr == ToPtr)
158 return true;
159
160 // SCEV may have rewritten an expression that produces the GEP's pointer
161 // operand. That's ok as long as the pointer operand has the same base
162 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
163 // base of a recurrence. This handles the case in which SCEV expansion
164 // converts a pointer type recurrence into a nonrecurrent pointer base
165 // indexed by an integer recurrence.
Nadav Rotem16087692011-12-05 06:29:09 +0000166
167 // If the GEP base pointer is a vector of pointers, abort.
168 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
169 return false;
170
Andrew Trickb12a7542011-03-17 23:51:11 +0000171 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
172 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
173 if (FromBase == ToBase)
174 return true;
175
176 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
177 << *FromBase << " != " << *ToBase << "\n");
178
179 return false;
180 }
181 return true;
182}
183
Andrew Trick86c98142011-07-20 05:32:06 +0000184/// Determine the insertion point for this user. By default, insert immediately
185/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
186/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
187/// common dominator for the incoming blocks.
188static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
189 DominatorTree *DT) {
190 PHINode *PHI = dyn_cast<PHINode>(User);
191 if (!PHI)
192 return User;
193
194 Instruction *InsertPt = 0;
195 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
196 if (PHI->getIncomingValue(i) != Def)
197 continue;
198
199 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
200 if (!InsertPt) {
201 InsertPt = InsertBB->getTerminator();
202 continue;
203 }
204 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
205 InsertPt = InsertBB->getTerminator();
206 }
207 assert(InsertPt && "Missing phi operand");
Jay Foad626f52d2011-07-20 08:15:21 +0000208 assert((!isa<Instruction>(Def) ||
209 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
Andrew Trick86c98142011-07-20 05:32:06 +0000210 "def does not dominate all uses");
211 return InsertPt;
212}
213
Andrew Trick1a54bb22011-07-12 00:08:50 +0000214//===----------------------------------------------------------------------===//
215// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
216//===----------------------------------------------------------------------===//
Andrew Trick4dfdf242011-05-03 22:24:10 +0000217
Andrew Trick1a54bb22011-07-12 00:08:50 +0000218/// ConvertToSInt - Convert APF to an integer, if possible.
219static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
220 bool isExact = false;
221 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
Andrew Trick4dfdf242011-05-03 22:24:10 +0000222 return false;
Andrew Trick1a54bb22011-07-12 00:08:50 +0000223 // See if we can convert this to an int64_t
224 uint64_t UIntVal;
225 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
226 &isExact) != APFloat::opOK || !isExact)
Andrew Trick4dfdf242011-05-03 22:24:10 +0000227 return false;
Andrew Trick1a54bb22011-07-12 00:08:50 +0000228 IntVal = UIntVal;
Andrew Trick4dfdf242011-05-03 22:24:10 +0000229 return true;
230}
231
Andrew Trick1a54bb22011-07-12 00:08:50 +0000232/// HandleFloatingPointIV - If the loop has floating induction variable
233/// then insert corresponding integer induction variable if possible.
234/// For example,
235/// for(double i = 0; i < 10000; ++i)
236/// bar(i)
237/// is converted into
238/// for(int i = 0; i < 10000; ++i)
239/// bar((double)i);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000240///
Andrew Trick1a54bb22011-07-12 00:08:50 +0000241void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
242 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
243 unsigned BackEdge = IncomingEdge^1;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000244
Andrew Trick1a54bb22011-07-12 00:08:50 +0000245 // Check incoming value.
246 ConstantFP *InitValueVal =
247 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000248
Andrew Trick1a54bb22011-07-12 00:08:50 +0000249 int64_t InitValue;
250 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
251 return;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000252
Andrew Trick1a54bb22011-07-12 00:08:50 +0000253 // Check IV increment. Reject this PN if increment operation is not
254 // an add or increment value can not be represented by an integer.
255 BinaryOperator *Incr =
256 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
257 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000258
Andrew Trick1a54bb22011-07-12 00:08:50 +0000259 // If this is not an add of the PHI with a constantfp, or if the constant fp
260 // is not an integer, bail out.
261 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
262 int64_t IncValue;
263 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
264 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
265 return;
266
267 // Check Incr uses. One user is PN and the other user is an exit condition
268 // used by the conditional terminator.
269 Value::use_iterator IncrUse = Incr->use_begin();
270 Instruction *U1 = cast<Instruction>(*IncrUse++);
271 if (IncrUse == Incr->use_end()) return;
272 Instruction *U2 = cast<Instruction>(*IncrUse++);
273 if (IncrUse != Incr->use_end()) return;
274
275 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
276 // only used by a branch, we can't transform it.
277 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
278 if (!Compare)
279 Compare = dyn_cast<FCmpInst>(U2);
280 if (Compare == 0 || !Compare->hasOneUse() ||
281 !isa<BranchInst>(Compare->use_back()))
282 return;
283
284 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
285
286 // We need to verify that the branch actually controls the iteration count
287 // of the loop. If not, the new IV can overflow and no one will notice.
288 // The branch block must be in the loop and one of the successors must be out
289 // of the loop.
290 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
291 if (!L->contains(TheBr->getParent()) ||
292 (L->contains(TheBr->getSuccessor(0)) &&
293 L->contains(TheBr->getSuccessor(1))))
294 return;
295
296
297 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
298 // transform it.
299 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
300 int64_t ExitValue;
301 if (ExitValueVal == 0 ||
302 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
303 return;
304
305 // Find new predicate for integer comparison.
306 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
307 switch (Compare->getPredicate()) {
308 default: return; // Unknown comparison.
309 case CmpInst::FCMP_OEQ:
310 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
311 case CmpInst::FCMP_ONE:
312 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
313 case CmpInst::FCMP_OGT:
314 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
315 case CmpInst::FCMP_OGE:
316 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
317 case CmpInst::FCMP_OLT:
318 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
319 case CmpInst::FCMP_OLE:
320 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000321 }
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000322
Andrew Trick1a54bb22011-07-12 00:08:50 +0000323 // We convert the floating point induction variable to a signed i32 value if
324 // we can. This is only safe if the comparison will not overflow in a way
325 // that won't be trapped by the integer equivalent operations. Check for this
326 // now.
327 // TODO: We could use i64 if it is native and the range requires it.
Dan Gohmanca9b7032010-04-12 21:13:43 +0000328
Andrew Trick1a54bb22011-07-12 00:08:50 +0000329 // The start/stride/exit values must all fit in signed i32.
330 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
331 return;
332
333 // If not actually striding (add x, 0.0), avoid touching the code.
334 if (IncValue == 0)
335 return;
336
337 // Positive and negative strides have different safety conditions.
338 if (IncValue > 0) {
339 // If we have a positive stride, we require the init to be less than the
Andrew Trick94f2c232011-09-13 01:59:32 +0000340 // exit value.
341 if (InitValue >= ExitValue)
Andrew Trick1a54bb22011-07-12 00:08:50 +0000342 return;
343
344 uint32_t Range = uint32_t(ExitValue-InitValue);
Andrew Trick94f2c232011-09-13 01:59:32 +0000345 // Check for infinite loop, either:
346 // while (i <= Exit) or until (i > Exit)
347 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000348 if (++Range == 0) return; // Range overflows.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000349 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000350
Andrew Trick1a54bb22011-07-12 00:08:50 +0000351 unsigned Leftover = Range % uint32_t(IncValue);
352
353 // If this is an equality comparison, we require that the strided value
354 // exactly land on the exit value, otherwise the IV condition will wrap
355 // around and do things the fp IV wouldn't.
356 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
357 Leftover != 0)
358 return;
359
360 // If the stride would wrap around the i32 before exiting, we can't
361 // transform the IV.
362 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
363 return;
364
Chris Lattnerd2440572004-04-15 20:26:22 +0000365 } else {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000366 // If we have a negative stride, we require the init to be greater than the
Andrew Trick94f2c232011-09-13 01:59:32 +0000367 // exit value.
368 if (InitValue <= ExitValue)
Andrew Trick1a54bb22011-07-12 00:08:50 +0000369 return;
370
371 uint32_t Range = uint32_t(InitValue-ExitValue);
Andrew Trick94f2c232011-09-13 01:59:32 +0000372 // Check for infinite loop, either:
373 // while (i >= Exit) or until (i < Exit)
374 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000375 if (++Range == 0) return; // Range overflows.
376 }
377
378 unsigned Leftover = Range % uint32_t(-IncValue);
379
380 // If this is an equality comparison, we require that the strided value
381 // exactly land on the exit value, otherwise the IV condition will wrap
382 // around and do things the fp IV wouldn't.
383 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
384 Leftover != 0)
385 return;
386
387 // If the stride would wrap around the i32 before exiting, we can't
388 // transform the IV.
389 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
390 return;
Chris Lattnerd2440572004-04-15 20:26:22 +0000391 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000392
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000393 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
Chris Lattner40bf8b42004-04-02 20:24:31 +0000394
Andrew Trick1a54bb22011-07-12 00:08:50 +0000395 // Insert new integer induction variable.
396 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
397 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
398 PN->getIncomingBlock(IncomingEdge));
Chris Lattner40bf8b42004-04-02 20:24:31 +0000399
Andrew Trick1a54bb22011-07-12 00:08:50 +0000400 Value *NewAdd =
401 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
402 Incr->getName()+".int", Incr);
403 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
Dan Gohmanc2390b12009-02-12 22:19:27 +0000404
Andrew Trick1a54bb22011-07-12 00:08:50 +0000405 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
406 ConstantInt::get(Int32Ty, ExitValue),
407 Compare->getName());
Dan Gohman81db61a2009-05-12 02:17:14 +0000408
Andrew Trick1a54bb22011-07-12 00:08:50 +0000409 // In the following deletions, PN may become dead and may be deleted.
410 // Use a WeakVH to observe whether this happens.
411 WeakVH WeakPH = PN;
412
413 // Delete the old floating point exit comparison. The branch starts using the
414 // new comparison.
415 NewCompare->takeName(Compare);
416 Compare->replaceAllUsesWith(NewCompare);
417 RecursivelyDeleteTriviallyDeadInstructions(Compare);
418
419 // Delete the old floating point increment.
420 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
421 RecursivelyDeleteTriviallyDeadInstructions(Incr);
422
423 // If the FP induction variable still has uses, this is because something else
424 // in the loop uses its value. In order to canonicalize the induction
425 // variable, we chose to eliminate the IV and rewrite it in terms of an
426 // int->fp cast.
427 //
428 // We give preference to sitofp over uitofp because it is faster on most
429 // platforms.
430 if (WeakPH) {
431 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
Bill Wendlingb05fdd62011-08-24 20:28:43 +0000432 PN->getParent()->getFirstInsertionPt());
Andrew Trick1a54bb22011-07-12 00:08:50 +0000433 PN->replaceAllUsesWith(Conv);
434 RecursivelyDeleteTriviallyDeadInstructions(PN);
435 }
Andrew Trick4b4bb712011-08-10 03:46:27 +0000436 Changed = true;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000437}
438
Andrew Trick1a54bb22011-07-12 00:08:50 +0000439void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
440 // First step. Check to see if there are any floating-point recurrences.
441 // If there are, change them into integer recurrences, permitting analysis by
442 // the SCEV routines.
443 //
444 BasicBlock *Header = L->getHeader();
445
446 SmallVector<WeakVH, 8> PHIs;
447 for (BasicBlock::iterator I = Header->begin();
448 PHINode *PN = dyn_cast<PHINode>(I); ++I)
449 PHIs.push_back(PN);
450
451 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
452 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
453 HandleFloatingPointIV(L, PN);
454
455 // If the loop previously had floating-point IV, ScalarEvolution
456 // may not have been able to compute a trip count. Now that we've done some
457 // re-writing, the trip count may be computable.
458 if (Changed)
459 SE->forgetLoop(L);
460}
461
462//===----------------------------------------------------------------------===//
463// RewriteLoopExitValues - Optimize IV users outside the loop.
464// As a side effect, reduces the amount of IV processing within the loop.
465//===----------------------------------------------------------------------===//
466
Chris Lattner40bf8b42004-04-02 20:24:31 +0000467/// RewriteLoopExitValues - Check to see if this loop has a computable
468/// loop-invariant execution count. If so, this means that we can compute the
469/// final value of any expressions that are recurrent in the loop, and
470/// substitute the exit values from the loop into any instructions outside of
471/// the loop that use the final values of the current expressions.
Dan Gohman81db61a2009-05-12 02:17:14 +0000472///
473/// This is mostly redundant with the regular IndVarSimplify activities that
474/// happen later, except that it's more powerful in some cases, because it's
475/// able to brute-force evaluate arbitrary instructions as long as they have
476/// constant operands at the beginning of the loop.
Chris Lattnerf1859892011-01-09 02:16:18 +0000477void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
Dan Gohman81db61a2009-05-12 02:17:14 +0000478 // Verify the input to the pass in already in LCSSA form.
Dan Gohmanbbf81d82010-03-10 19:38:49 +0000479 assert(L->isLCSSAForm(*DT));
Dan Gohman81db61a2009-05-12 02:17:14 +0000480
Devang Patelb7211a22007-08-21 00:31:24 +0000481 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattner9f3d7382007-03-04 03:43:23 +0000482 L->getUniqueExitBlocks(ExitBlocks);
Misha Brukmanfd939082005-04-21 23:48:37 +0000483
Chris Lattner9f3d7382007-03-04 03:43:23 +0000484 // Find all values that are computed inside the loop, but used outside of it.
485 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
486 // the exit blocks of the loop to find them.
487 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
488 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohmancafb8132009-02-17 19:13:57 +0000489
Chris Lattner9f3d7382007-03-04 03:43:23 +0000490 // If there are no PHI nodes in this exit block, then no values defined
491 // inside the loop are used on this path, skip it.
492 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
493 if (!PN) continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000494
Chris Lattner9f3d7382007-03-04 03:43:23 +0000495 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohmancafb8132009-02-17 19:13:57 +0000496
Chris Lattner9f3d7382007-03-04 03:43:23 +0000497 // Iterate over all of the PHI nodes.
498 BasicBlock::iterator BBI = ExitBB->begin();
499 while ((PN = dyn_cast<PHINode>(BBI++))) {
Torok Edwin3790fb02009-05-24 19:36:09 +0000500 if (PN->use_empty())
501 continue; // dead use, don't replace it
Dan Gohman814f2b22010-02-18 21:34:02 +0000502
503 // SCEV only supports integer expressions for now.
504 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
505 continue;
506
Dale Johannesen45a2d7d2010-02-19 07:14:22 +0000507 // It's necessary to tell ScalarEvolution about this explicitly so that
508 // it can walk the def-use list and forget all SCEVs, as it may not be
509 // watching the PHI itself. Once the new exit value is in place, there
510 // may not be a def-use connection between the loop and every instruction
511 // which got a SCEVAddRecExpr for that loop.
512 SE->forgetValue(PN);
513
Chris Lattner9f3d7382007-03-04 03:43:23 +0000514 // Iterate over all of the values in all the PHI nodes.
515 for (unsigned i = 0; i != NumPreds; ++i) {
516 // If the value being merged in is not integer or is not defined
517 // in the loop, skip it.
518 Value *InVal = PN->getIncomingValue(i);
Dan Gohman814f2b22010-02-18 21:34:02 +0000519 if (!isa<Instruction>(InVal))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000520 continue;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000521
Chris Lattner9f3d7382007-03-04 03:43:23 +0000522 // If this pred is for a subloop, not L itself, skip it.
Dan Gohmancafb8132009-02-17 19:13:57 +0000523 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Chris Lattner9f3d7382007-03-04 03:43:23 +0000524 continue; // The Block is in a subloop, skip it.
525
526 // Check that InVal is defined in the loop.
527 Instruction *Inst = cast<Instruction>(InVal);
Dan Gohman92329c72009-12-18 01:24:09 +0000528 if (!L->contains(Inst))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000529 continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000530
Chris Lattner9f3d7382007-03-04 03:43:23 +0000531 // Okay, this instruction has a user outside of the current loop
532 // and varies predictably *inside* the loop. Evaluate the value it
533 // contains when the loop exits, if possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000534 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +0000535 if (!SE->isLoopInvariant(ExitValue, L))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000536 continue;
Chris Lattner9caed542007-03-04 01:00:28 +0000537
Dan Gohman667d7872009-06-26 22:53:46 +0000538 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
Dan Gohmancafb8132009-02-17 19:13:57 +0000539
David Greenef67ef312010-01-05 01:27:06 +0000540 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
Chris Lattnerbdff5482009-08-23 04:37:46 +0000541 << " LoopVal = " << *Inst << "\n");
Chris Lattner9f3d7382007-03-04 03:43:23 +0000542
Andrew Trickb12a7542011-03-17 23:51:11 +0000543 if (!isValidRewrite(Inst, ExitVal)) {
544 DeadInsts.push_back(ExitVal);
545 continue;
546 }
547 Changed = true;
548 ++NumReplaced;
549
Chris Lattner9f3d7382007-03-04 03:43:23 +0000550 PN->setIncomingValue(i, ExitVal);
Dan Gohmancafb8132009-02-17 19:13:57 +0000551
Dan Gohman81db61a2009-05-12 02:17:14 +0000552 // If this instruction is dead now, delete it.
553 RecursivelyDeleteTriviallyDeadInstructions(Inst);
Dan Gohmancafb8132009-02-17 19:13:57 +0000554
Dan Gohman65d1e2b2009-07-14 01:09:02 +0000555 if (NumPreds == 1) {
556 // Completely replace a single-pred PHI. This is safe, because the
557 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
558 // node anymore.
Chris Lattner9f3d7382007-03-04 03:43:23 +0000559 PN->replaceAllUsesWith(ExitVal);
Dan Gohman81db61a2009-05-12 02:17:14 +0000560 RecursivelyDeleteTriviallyDeadInstructions(PN);
Chris Lattnerc9838f22007-03-03 22:48:48 +0000561 }
562 }
Dan Gohman65d1e2b2009-07-14 01:09:02 +0000563 if (NumPreds != 1) {
Dan Gohman667d7872009-06-26 22:53:46 +0000564 // Clone the PHI and delete the original one. This lets IVUsers and
565 // any other maps purge the original user from their records.
Devang Patel50b6e332009-10-27 22:16:29 +0000566 PHINode *NewPN = cast<PHINode>(PN->clone());
Dan Gohman667d7872009-06-26 22:53:46 +0000567 NewPN->takeName(PN);
568 NewPN->insertBefore(PN);
569 PN->replaceAllUsesWith(NewPN);
570 PN->eraseFromParent();
571 }
Chris Lattnerc9838f22007-03-03 22:48:48 +0000572 }
573 }
Dan Gohman472fdf72010-03-20 03:53:53 +0000574
575 // The insertion point instruction may have been deleted; clear it out
576 // so that the rewriter doesn't trip over it later.
577 Rewriter.clearInsertPoint();
Chris Lattner40bf8b42004-04-02 20:24:31 +0000578}
579
Andrew Trick1a54bb22011-07-12 00:08:50 +0000580//===----------------------------------------------------------------------===//
Andrew Trick1a54bb22011-07-12 00:08:50 +0000581// IV Widening - Extend the width of an IV to cover its widest uses.
582//===----------------------------------------------------------------------===//
583
Andrew Trickf85092c2011-05-20 18:25:42 +0000584namespace {
585 // Collect information about induction variables that are used by sign/zero
586 // extend operations. This information is recorded by CollectExtend and
587 // provides the input to WidenIV.
588 struct WideIVInfo {
Andrew Trick513b1f42011-10-15 01:38:14 +0000589 PHINode *NarrowIV;
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000590 Type *WidestNativeType; // Widest integer type created [sz]ext
Andrew Trick4b4bb712011-08-10 03:46:27 +0000591 bool IsSigned; // Was an sext user seen before a zext?
Andrew Trickf85092c2011-05-20 18:25:42 +0000592
Andrew Trick513b1f42011-10-15 01:38:14 +0000593 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
Andrew Trickf85092c2011-05-20 18:25:42 +0000594 };
Andrew Trick4b4bb712011-08-10 03:46:27 +0000595
596 class WideIVVisitor : public IVVisitor {
597 ScalarEvolution *SE;
598 const TargetData *TD;
599
600 public:
601 WideIVInfo WI;
602
Andrew Trick513b1f42011-10-15 01:38:14 +0000603 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
604 const TargetData *TData) :
605 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
Andrew Trick4b4bb712011-08-10 03:46:27 +0000606
607 // Implement the interface used by simplifyUsersOfIV.
608 virtual void visitCast(CastInst *Cast);
609 };
Andrew Trickf85092c2011-05-20 18:25:42 +0000610}
611
Andrew Trick4b4bb712011-08-10 03:46:27 +0000612/// visitCast - Update information about the induction variable that is
Andrew Trickf85092c2011-05-20 18:25:42 +0000613/// extended by this sign or zero extend operation. This is used to determine
614/// the final width of the IV before actually widening it.
Andrew Trick4b4bb712011-08-10 03:46:27 +0000615void WideIVVisitor::visitCast(CastInst *Cast) {
616 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
617 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
618 return;
619
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000620 Type *Ty = Cast->getType();
Andrew Trickf85092c2011-05-20 18:25:42 +0000621 uint64_t Width = SE->getTypeSizeInBits(Ty);
622 if (TD && !TD->isLegalInteger(Width))
623 return;
624
Andrew Trick2fabd462011-06-21 03:22:38 +0000625 if (!WI.WidestNativeType) {
626 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
627 WI.IsSigned = IsSigned;
Andrew Trickf85092c2011-05-20 18:25:42 +0000628 return;
629 }
630
631 // We extend the IV to satisfy the sign of its first user, arbitrarily.
Andrew Trick2fabd462011-06-21 03:22:38 +0000632 if (WI.IsSigned != IsSigned)
Andrew Trickf85092c2011-05-20 18:25:42 +0000633 return;
634
Andrew Trick2fabd462011-06-21 03:22:38 +0000635 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
636 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
Andrew Trickf85092c2011-05-20 18:25:42 +0000637}
638
639namespace {
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000640
641/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
642/// WideIV that computes the same value as the Narrow IV def. This avoids
643/// caching Use* pointers.
644struct NarrowIVDefUse {
645 Instruction *NarrowDef;
646 Instruction *NarrowUse;
647 Instruction *WideDef;
648
649 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
650
651 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
652 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
653};
654
Andrew Trickf85092c2011-05-20 18:25:42 +0000655/// WidenIV - The goal of this transform is to remove sign and zero extends
656/// without creating any new induction variables. To do this, it creates a new
657/// phi of the wider type and redirects all users, either removing extends or
658/// inserting truncs whenever we stop propagating the type.
659///
660class WidenIV {
Andrew Trick2fabd462011-06-21 03:22:38 +0000661 // Parameters
Andrew Trickf85092c2011-05-20 18:25:42 +0000662 PHINode *OrigPhi;
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000663 Type *WideType;
Andrew Trickf85092c2011-05-20 18:25:42 +0000664 bool IsSigned;
665
Andrew Trick2fabd462011-06-21 03:22:38 +0000666 // Context
667 LoopInfo *LI;
668 Loop *L;
Andrew Trickf85092c2011-05-20 18:25:42 +0000669 ScalarEvolution *SE;
Andrew Trick2fabd462011-06-21 03:22:38 +0000670 DominatorTree *DT;
Andrew Trickf85092c2011-05-20 18:25:42 +0000671
Andrew Trick2fabd462011-06-21 03:22:38 +0000672 // Result
Andrew Trickf85092c2011-05-20 18:25:42 +0000673 PHINode *WidePhi;
674 Instruction *WideInc;
675 const SCEV *WideIncExpr;
Andrew Trick2fabd462011-06-21 03:22:38 +0000676 SmallVectorImpl<WeakVH> &DeadInsts;
Andrew Trickf85092c2011-05-20 18:25:42 +0000677
Andrew Trick2fabd462011-06-21 03:22:38 +0000678 SmallPtrSet<Instruction*,16> Widened;
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000679 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
Andrew Trickf85092c2011-05-20 18:25:42 +0000680
681public:
Andrew Trick513b1f42011-10-15 01:38:14 +0000682 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
Andrew Trick2fabd462011-06-21 03:22:38 +0000683 ScalarEvolution *SEv, DominatorTree *DTree,
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000684 SmallVectorImpl<WeakVH> &DI) :
Andrew Trick513b1f42011-10-15 01:38:14 +0000685 OrigPhi(WI.NarrowIV),
Andrew Trick2fabd462011-06-21 03:22:38 +0000686 WideType(WI.WidestNativeType),
687 IsSigned(WI.IsSigned),
Andrew Trickf85092c2011-05-20 18:25:42 +0000688 LI(LInfo),
689 L(LI->getLoopFor(OrigPhi->getParent())),
690 SE(SEv),
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000691 DT(DTree),
Andrew Trickf85092c2011-05-20 18:25:42 +0000692 WidePhi(0),
693 WideInc(0),
Andrew Trick2fabd462011-06-21 03:22:38 +0000694 WideIncExpr(0),
695 DeadInsts(DI) {
Andrew Trickf85092c2011-05-20 18:25:42 +0000696 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
697 }
698
Andrew Trick2fabd462011-06-21 03:22:38 +0000699 PHINode *CreateWideIV(SCEVExpander &Rewriter);
Andrew Trickf85092c2011-05-20 18:25:42 +0000700
701protected:
Andrew Trick909ef7d2011-09-28 01:35:36 +0000702 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
703 Instruction *Use);
704
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000705 Instruction *CloneIVUser(NarrowIVDefUse DU);
Andrew Trickf85092c2011-05-20 18:25:42 +0000706
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000707 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
708
Andrew Trick20151da2011-09-10 01:24:17 +0000709 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
710
Andrew Trickb5c26ef2012-01-20 07:41:13 +0000711 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
Andrew Trick4b029152011-07-02 02:34:25 +0000712
713 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
Andrew Trickf85092c2011-05-20 18:25:42 +0000714};
715} // anonymous namespace
716
Andrew Trick909ef7d2011-09-28 01:35:36 +0000717/// isLoopInvariant - Perform a quick domtree based check for loop invariance
718/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
719/// gratuitous for this purpose.
720static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
721 Instruction *Inst = dyn_cast<Instruction>(V);
722 if (!Inst)
723 return true;
724
725 return DT->properlyDominates(Inst->getParent(), L->getHeader());
726}
727
728Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
729 Instruction *Use) {
730 // Set the debug location and conservative insertion point.
731 IRBuilder<> Builder(Use);
732 // Hoist the insertion point into loop preheaders as far as possible.
733 for (const Loop *L = LI->getLoopFor(Use->getParent());
734 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
735 L = L->getParentLoop())
736 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
737
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000738 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
739 Builder.CreateZExt(NarrowOper, WideType);
Andrew Trickf85092c2011-05-20 18:25:42 +0000740}
741
742/// CloneIVUser - Instantiate a wide operation to replace a narrow
743/// operation. This only needs to handle operations that can evaluation to
744/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000745Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
746 unsigned Opcode = DU.NarrowUse->getOpcode();
Andrew Trickf85092c2011-05-20 18:25:42 +0000747 switch (Opcode) {
748 default:
749 return 0;
750 case Instruction::Add:
751 case Instruction::Mul:
752 case Instruction::UDiv:
753 case Instruction::Sub:
754 case Instruction::And:
755 case Instruction::Or:
756 case Instruction::Xor:
757 case Instruction::Shl:
758 case Instruction::LShr:
759 case Instruction::AShr:
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000760 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
Andrew Trickf85092c2011-05-20 18:25:42 +0000761
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000762 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
763 // anything about the narrow operand yet so must insert a [sz]ext. It is
764 // probably loop invariant and will be folded or hoisted. If it actually
765 // comes from a widened IV, it should be removed during a future call to
766 // WidenIVUse.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000767 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
Andrew Trick909ef7d2011-09-28 01:35:36 +0000768 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000769 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
Andrew Trick909ef7d2011-09-28 01:35:36 +0000770 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000771
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000772 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +0000773 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000774 LHS, RHS,
Andrew Trickf85092c2011-05-20 18:25:42 +0000775 NarrowBO->getName());
Andrew Trick909ef7d2011-09-28 01:35:36 +0000776 IRBuilder<> Builder(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +0000777 Builder.Insert(WideBO);
Andrew Trick6e0ce242011-06-30 19:02:17 +0000778 if (const OverflowingBinaryOperator *OBO =
779 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
780 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
781 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
782 }
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000783 return WideBO;
Andrew Trickf85092c2011-05-20 18:25:42 +0000784 }
Andrew Trickf85092c2011-05-20 18:25:42 +0000785}
786
Andrew Trick20151da2011-09-10 01:24:17 +0000787/// No-wrap operations can transfer sign extension of their result to their
788/// operands. Generate the SCEV value for the widened operation without
789/// actually modifying the IR yet. If the expression after extending the
790/// operands is an AddRec for this loop, return it.
791const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
792 // Handle the common case of add<nsw/nuw>
793 if (DU.NarrowUse->getOpcode() != Instruction::Add)
794 return 0;
795
796 // One operand (NarrowDef) has already been extended to WideDef. Now determine
797 // if extending the other will lead to a recurrence.
798 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
799 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
800
801 const SCEV *ExtendOperExpr = 0;
802 const OverflowingBinaryOperator *OBO =
803 cast<OverflowingBinaryOperator>(DU.NarrowUse);
804 if (IsSigned && OBO->hasNoSignedWrap())
805 ExtendOperExpr = SE->getSignExtendExpr(
806 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
807 else if(!IsSigned && OBO->hasNoUnsignedWrap())
808 ExtendOperExpr = SE->getZeroExtendExpr(
809 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
810 else
811 return 0;
812
Andrew Trickecb35ec2011-11-29 02:16:38 +0000813 // When creating this AddExpr, don't apply the current operations NSW or NUW
814 // flags. This instruction may be guarded by control flow that the no-wrap
815 // behavior depends on. Non-control-equivalent instructions can be mapped to
816 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
817 // semantics to those operations.
Andrew Trick20151da2011-09-10 01:24:17 +0000818 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
Andrew Trickecb35ec2011-11-29 02:16:38 +0000819 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
Andrew Trick20151da2011-09-10 01:24:17 +0000820
821 if (!AddRec || AddRec->getLoop() != L)
822 return 0;
823 return AddRec;
824}
825
Andrew Trick39d78022011-09-09 17:35:10 +0000826/// GetWideRecurrence - Is this instruction potentially interesting from
827/// IVUsers' perspective after widening it's type? In other words, can the
828/// extend be safely hoisted out of the loop with SCEV reducing the value to a
829/// recurrence on the same loop. If so, return the sign or zero extended
830/// recurrence. Otherwise return NULL.
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000831const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
832 if (!SE->isSCEVable(NarrowUse->getType()))
833 return 0;
834
835 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
836 if (SE->getTypeSizeInBits(NarrowExpr->getType())
837 >= SE->getTypeSizeInBits(WideType)) {
838 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
839 // index. So don't follow this use.
840 return 0;
841 }
842
843 const SCEV *WideExpr = IsSigned ?
844 SE->getSignExtendExpr(NarrowExpr, WideType) :
845 SE->getZeroExtendExpr(NarrowExpr, WideType);
846 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
847 if (!AddRec || AddRec->getLoop() != L)
848 return 0;
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000849 return AddRec;
850}
851
Andrew Trickf85092c2011-05-20 18:25:42 +0000852/// WidenIVUse - Determine whether an individual user of the narrow IV can be
853/// widened. If so, return the wide clone of the user.
Andrew Trickb5c26ef2012-01-20 07:41:13 +0000854Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
Andrew Trickcc359d92011-06-29 23:03:57 +0000855
Andrew Trick4b029152011-07-02 02:34:25 +0000856 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000857 if (isa<PHINode>(DU.NarrowUse) &&
858 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
Andrew Trickf85092c2011-05-20 18:25:42 +0000859 return 0;
860
Andrew Trickf85092c2011-05-20 18:25:42 +0000861 // Our raison d'etre! Eliminate sign and zero extension.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000862 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
863 Value *NewDef = DU.WideDef;
864 if (DU.NarrowUse->getType() != WideType) {
865 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000866 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
867 if (CastWidth < IVWidth) {
868 // The cast isn't as wide as the IV, so insert a Trunc.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000869 IRBuilder<> Builder(DU.NarrowUse);
870 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000871 }
872 else {
873 // A wider extend was hidden behind a narrower one. This may induce
874 // another round of IV widening in which the intermediate IV becomes
875 // dead. It should be very rare.
876 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000877 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
878 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
879 NewDef = DU.NarrowUse;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000880 }
881 }
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000882 if (NewDef != DU.NarrowUse) {
883 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
884 << " replaced by " << *DU.WideDef << "\n");
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000885 ++NumElimExt;
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000886 DU.NarrowUse->replaceAllUsesWith(NewDef);
887 DeadInsts.push_back(DU.NarrowUse);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000888 }
Andrew Trick2fabd462011-06-21 03:22:38 +0000889 // Now that the extend is gone, we want to expose it's uses for potential
890 // further simplification. We don't need to directly inform SimplifyIVUsers
891 // of the new users, because their parent IV will be processed later as a
892 // new loop phi. If we preserved IVUsers analysis, we would also want to
893 // push the uses of WideDef here.
Andrew Trickf85092c2011-05-20 18:25:42 +0000894
895 // No further widening is needed. The deceased [sz]ext had done it for us.
896 return 0;
897 }
Andrew Trick4b029152011-07-02 02:34:25 +0000898
899 // Does this user itself evaluate to a recurrence after widening?
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000900 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +0000901 if (!WideAddRec) {
Andrew Trick20151da2011-09-10 01:24:17 +0000902 WideAddRec = GetExtendedOperandRecurrence(DU);
903 }
904 if (!WideAddRec) {
Andrew Trickf85092c2011-05-20 18:25:42 +0000905 // This user does not evaluate to a recurence after widening, so don't
906 // follow it. Instead insert a Trunc to kill off the original use,
907 // eventually isolating the original narrow IV so it can be removed.
Andrew Trick86c98142011-07-20 05:32:06 +0000908 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000909 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
910 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
Andrew Trickf85092c2011-05-20 18:25:42 +0000911 return 0;
912 }
Andrew Trickfc933c02011-07-18 20:32:31 +0000913 // Assume block terminators cannot evaluate to a recurrence. We can't to
Andrew Trick4b029152011-07-02 02:34:25 +0000914 // insert a Trunc after a terminator if there happens to be a critical edge.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000915 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
Andrew Trick4b029152011-07-02 02:34:25 +0000916 "SCEV is not expected to evaluate a block terminator");
Andrew Trickcc359d92011-06-29 23:03:57 +0000917
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000918 // Reuse the IV increment that SCEVExpander created as long as it dominates
919 // NarrowUse.
Andrew Trickf85092c2011-05-20 18:25:42 +0000920 Instruction *WideUse = 0;
Andrew Trick20449412011-10-11 02:28:51 +0000921 if (WideAddRec == WideIncExpr
Andrew Trickb5c26ef2012-01-20 07:41:13 +0000922 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
Andrew Trickf85092c2011-05-20 18:25:42 +0000923 WideUse = WideInc;
Andrew Trickf85092c2011-05-20 18:25:42 +0000924 else {
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000925 WideUse = CloneIVUser(DU);
Andrew Trickf85092c2011-05-20 18:25:42 +0000926 if (!WideUse)
927 return 0;
928 }
Andrew Trick4b029152011-07-02 02:34:25 +0000929 // Evaluation of WideAddRec ensured that the narrow expression could be
930 // extended outside the loop without overflow. This suggests that the wide use
Andrew Trickf85092c2011-05-20 18:25:42 +0000931 // evaluates to the same expression as the extended narrow use, but doesn't
932 // absolutely guarantee it. Hence the following failsafe check. In rare cases
Andrew Trick2fabd462011-06-21 03:22:38 +0000933 // where it fails, we simply throw away the newly created wide use.
Andrew Trickf85092c2011-05-20 18:25:42 +0000934 if (WideAddRec != SE->getSCEV(WideUse)) {
935 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
936 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
937 DeadInsts.push_back(WideUse);
938 return 0;
939 }
940
941 // Returning WideUse pushes it on the worklist.
942 return WideUse;
943}
944
Andrew Trick4b029152011-07-02 02:34:25 +0000945/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
946///
947void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
948 for (Value::use_iterator UI = NarrowDef->use_begin(),
949 UE = NarrowDef->use_end(); UI != UE; ++UI) {
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000950 Instruction *NarrowUse = cast<Instruction>(*UI);
Andrew Trick4b029152011-07-02 02:34:25 +0000951
952 // Handle data flow merges and bizarre phi cycles.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000953 if (!Widened.insert(NarrowUse))
Andrew Trick4b029152011-07-02 02:34:25 +0000954 continue;
955
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000956 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
Andrew Trick4b029152011-07-02 02:34:25 +0000957 }
958}
959
Andrew Trickf85092c2011-05-20 18:25:42 +0000960/// CreateWideIV - Process a single induction variable. First use the
961/// SCEVExpander to create a wide induction variable that evaluates to the same
962/// recurrence as the original narrow IV. Then use a worklist to forward
Andrew Trick2fabd462011-06-21 03:22:38 +0000963/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
Andrew Trickf85092c2011-05-20 18:25:42 +0000964/// interesting IV users, the narrow IV will be isolated for removal by
965/// DeleteDeadPHIs.
966///
967/// It would be simpler to delete uses as they are processed, but we must avoid
968/// invalidating SCEV expressions.
969///
Andrew Trick2fabd462011-06-21 03:22:38 +0000970PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
Andrew Trickf85092c2011-05-20 18:25:42 +0000971 // Is this phi an induction variable?
972 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
973 if (!AddRec)
Andrew Trick2fabd462011-06-21 03:22:38 +0000974 return NULL;
Andrew Trickf85092c2011-05-20 18:25:42 +0000975
976 // Widen the induction variable expression.
977 const SCEV *WideIVExpr = IsSigned ?
978 SE->getSignExtendExpr(AddRec, WideType) :
979 SE->getZeroExtendExpr(AddRec, WideType);
980
981 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
982 "Expect the new IV expression to preserve its type");
983
984 // Can the IV be extended outside the loop without overflow?
985 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
986 if (!AddRec || AddRec->getLoop() != L)
Andrew Trick2fabd462011-06-21 03:22:38 +0000987 return NULL;
Andrew Trickf85092c2011-05-20 18:25:42 +0000988
Andrew Trick2fabd462011-06-21 03:22:38 +0000989 // An AddRec must have loop-invariant operands. Since this AddRec is
Andrew Trickf85092c2011-05-20 18:25:42 +0000990 // materialized by a loop header phi, the expression cannot have any post-loop
991 // operands, so they must dominate the loop header.
992 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
993 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
994 && "Loop header phi recurrence inputs do not dominate the loop");
995
996 // The rewriter provides a value for the desired IV expression. This may
997 // either find an existing phi or materialize a new one. Either way, we
998 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
999 // of the phi-SCC dominates the loop entry.
1000 Instruction *InsertPt = L->getHeader()->begin();
1001 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1002
1003 // Remembering the WideIV increment generated by SCEVExpander allows
1004 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1005 // employ a general reuse mechanism because the call above is the only call to
1006 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001007 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1008 WideInc =
1009 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1010 WideIncExpr = SE->getSCEV(WideInc);
1011 }
Andrew Trickf85092c2011-05-20 18:25:42 +00001012
1013 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1014 ++NumWidened;
1015
1016 // Traverse the def-use chain using a worklist starting at the original IV.
Andrew Trick4b029152011-07-02 02:34:25 +00001017 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
Andrew Trickf85092c2011-05-20 18:25:42 +00001018
Andrew Trick4b029152011-07-02 02:34:25 +00001019 Widened.insert(OrigPhi);
1020 pushNarrowIVUsers(OrigPhi, WidePhi);
1021
Andrew Trickf85092c2011-05-20 18:25:42 +00001022 while (!NarrowIVUsers.empty()) {
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001023 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
Andrew Trickf85092c2011-05-20 18:25:42 +00001024
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001025 // Process a def-use edge. This may replace the use, so don't hold a
1026 // use_iterator across it.
Andrew Trickb5c26ef2012-01-20 07:41:13 +00001027 Instruction *WideUse = WidenIVUse(DU, Rewriter);
Andrew Trickf85092c2011-05-20 18:25:42 +00001028
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001029 // Follow all def-use edges from the previous narrow use.
Andrew Trick4b029152011-07-02 02:34:25 +00001030 if (WideUse)
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001031 pushNarrowIVUsers(DU.NarrowUse, WideUse);
Andrew Trick4b029152011-07-02 02:34:25 +00001032
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001033 // WidenIVUse may have removed the def-use edge.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001034 if (DU.NarrowDef->use_empty())
1035 DeadInsts.push_back(DU.NarrowDef);
Andrew Trickf85092c2011-05-20 18:25:42 +00001036 }
Andrew Trick2fabd462011-06-21 03:22:38 +00001037 return WidePhi;
Andrew Trickf85092c2011-05-20 18:25:42 +00001038}
1039
Andrew Trick1a54bb22011-07-12 00:08:50 +00001040//===----------------------------------------------------------------------===//
1041// Simplification of IV users based on SCEV evaluation.
1042//===----------------------------------------------------------------------===//
1043
Andrew Trickaeee4612011-05-12 00:04:28 +00001044
Andrew Trick4b4bb712011-08-10 03:46:27 +00001045/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1046/// users. Each successive simplification may push more users which may
Andrew Trick2fabd462011-06-21 03:22:38 +00001047/// themselves be candidates for simplification.
1048///
Andrew Trick4b4bb712011-08-10 03:46:27 +00001049/// Sign/Zero extend elimination is interleaved with IV simplification.
Andrew Trick2fabd462011-06-21 03:22:38 +00001050///
Andrew Trick4b4bb712011-08-10 03:46:27 +00001051void IndVarSimplify::SimplifyAndExtend(Loop *L,
1052 SCEVExpander &Rewriter,
1053 LPPassManager &LPM) {
Andrew Trick513b1f42011-10-15 01:38:14 +00001054 SmallVector<WideIVInfo, 8> WideIVs;
Andrew Trick15832f62011-06-28 02:49:20 +00001055
Andrew Trick2fabd462011-06-21 03:22:38 +00001056 SmallVector<PHINode*, 8> LoopPhis;
1057 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1058 LoopPhis.push_back(cast<PHINode>(I));
1059 }
Andrew Trick15832f62011-06-28 02:49:20 +00001060 // Each round of simplification iterates through the SimplifyIVUsers worklist
1061 // for all current phis, then determines whether any IVs can be
1062 // widened. Widening adds new phis to LoopPhis, inducing another round of
1063 // simplification on the wide IVs.
Andrew Trick2fabd462011-06-21 03:22:38 +00001064 while (!LoopPhis.empty()) {
Andrew Trick15832f62011-06-28 02:49:20 +00001065 // Evaluate as many IV expressions as possible before widening any IVs. This
Andrew Trick99a92f62011-06-28 16:45:04 +00001066 // forces SCEV to set no-wrap flags before evaluating sign/zero
Andrew Trick15832f62011-06-28 02:49:20 +00001067 // extension. The first time SCEV attempts to normalize sign/zero extension,
1068 // the result becomes final. So for the most predictable results, we delay
1069 // evaluation of sign/zero extend evaluation until needed, and avoid running
Andrew Trick4b4bb712011-08-10 03:46:27 +00001070 // other SCEV based analysis prior to SimplifyAndExtend.
Andrew Trick15832f62011-06-28 02:49:20 +00001071 do {
1072 PHINode *CurrIV = LoopPhis.pop_back_val();
Andrew Trick2fabd462011-06-21 03:22:38 +00001073
Andrew Trick15832f62011-06-28 02:49:20 +00001074 // Information about sign/zero extensions of CurrIV.
Andrew Trick513b1f42011-10-15 01:38:14 +00001075 WideIVVisitor WIV(CurrIV, SE, TD);
Andrew Trick2fabd462011-06-21 03:22:38 +00001076
Andrew Trickbddb7f82011-08-10 04:22:26 +00001077 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
Andrew Trick2fabd462011-06-21 03:22:38 +00001078
Andrew Trick4b4bb712011-08-10 03:46:27 +00001079 if (WIV.WI.WidestNativeType) {
Andrew Trick513b1f42011-10-15 01:38:14 +00001080 WideIVs.push_back(WIV.WI);
Andrew Trick2fabd462011-06-21 03:22:38 +00001081 }
Andrew Trick15832f62011-06-28 02:49:20 +00001082 } while(!LoopPhis.empty());
1083
Andrew Trick513b1f42011-10-15 01:38:14 +00001084 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1085 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
Andrew Trick2fabd462011-06-21 03:22:38 +00001086 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1087 Changed = true;
1088 LoopPhis.push_back(WidePhi);
1089 }
1090 }
1091 }
1092}
1093
Andrew Trick1a54bb22011-07-12 00:08:50 +00001094//===----------------------------------------------------------------------===//
1095// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1096//===----------------------------------------------------------------------===//
1097
Andrew Trick39d78022011-09-09 17:35:10 +00001098/// Check for expressions that ScalarEvolution generates to compute
1099/// BackedgeTakenInfo. If these expressions have not been reduced, then
1100/// expanding them may incur additional cost (albeit in the loop preheader).
Andrew Trick5241b792011-07-18 18:21:35 +00001101static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
Andrew Trick86d34102011-12-12 22:46:16 +00001102 SmallPtrSet<const SCEV*, 8> &Processed,
Andrew Trick5241b792011-07-18 18:21:35 +00001103 ScalarEvolution *SE) {
Andrew Trick86d34102011-12-12 22:46:16 +00001104 if (!Processed.insert(S))
1105 return false;
1106
Andrew Trick5241b792011-07-18 18:21:35 +00001107 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1108 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1109 // precise expression, rather than a UDiv from the user's code. If we can't
1110 // find a UDiv in the code with some simple searching, assume the former and
1111 // forego rewriting the loop.
1112 if (isa<SCEVUDivExpr>(S)) {
1113 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1114 if (!OrigCond) return true;
1115 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1116 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1117 if (R != S) {
1118 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1119 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1120 if (L != S)
1121 return true;
1122 }
1123 }
1124
Andrew Trick5241b792011-07-18 18:21:35 +00001125 // Recurse past add expressions, which commonly occur in the
1126 // BackedgeTakenCount. They may already exist in program code, and if not,
1127 // they are not too expensive rematerialize.
1128 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1129 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1130 I != E; ++I) {
Andrew Trick86d34102011-12-12 22:46:16 +00001131 if (isHighCostExpansion(*I, BI, Processed, SE))
Andrew Trick5241b792011-07-18 18:21:35 +00001132 return true;
1133 }
1134 return false;
1135 }
1136
1137 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1138 // the exit condition.
1139 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1140 return true;
1141
Nick Lewycky5fef01d2012-01-28 23:33:44 +00001142 // If we haven't recognized an expensive SCEV pattern, assume it's an
1143 // expression produced by program code.
Andrew Trick5241b792011-07-18 18:21:35 +00001144 return false;
1145}
1146
Andrew Trick1a54bb22011-07-12 00:08:50 +00001147/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1148/// count expression can be safely and cheaply expanded into an instruction
1149/// sequence that can be used by LinearFunctionTestReplace.
Andrew Trickd3714b62011-11-02 17:19:57 +00001150///
1151/// TODO: This fails for pointer-type loop counters with greater than one byte
1152/// strides, consequently preventing LFTR from running. For the purpose of LFTR
1153/// we could skip this check in the case that the LFTR loop counter (chosen by
1154/// FindLoopCounter) is also pointer type. Instead, we could directly convert
1155/// the loop test to an inequality test by checking the target data's alignment
1156/// of element types (given that the initial pointer value originates from or is
1157/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1158/// However, we don't yet have a strong motivation for converting loop tests
1159/// into inequality tests.
Andrew Trick1a54bb22011-07-12 00:08:50 +00001160static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1161 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1162 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1163 BackedgeTakenCount->isZero())
1164 return false;
1165
1166 if (!L->getExitingBlock())
1167 return false;
1168
1169 // Can't rewrite non-branch yet.
1170 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1171 if (!BI)
1172 return false;
1173
Andrew Trick86d34102011-12-12 22:46:16 +00001174 SmallPtrSet<const SCEV*, 8> Processed;
1175 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
Andrew Trick5241b792011-07-18 18:21:35 +00001176 return false;
1177
Andrew Trick1a54bb22011-07-12 00:08:50 +00001178 return true;
1179}
1180
Andrew Trickfc933c02011-07-18 20:32:31 +00001181/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1182/// invariant value to the phi.
1183static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1184 Instruction *IncI = dyn_cast<Instruction>(IncV);
1185 if (!IncI)
1186 return 0;
1187
1188 switch (IncI->getOpcode()) {
1189 case Instruction::Add:
1190 case Instruction::Sub:
1191 break;
1192 case Instruction::GetElementPtr:
1193 // An IV counter must preserve its type.
1194 if (IncI->getNumOperands() == 2)
1195 break;
1196 default:
1197 return 0;
1198 }
1199
1200 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1201 if (Phi && Phi->getParent() == L->getHeader()) {
1202 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1203 return Phi;
1204 return 0;
1205 }
1206 if (IncI->getOpcode() == Instruction::GetElementPtr)
1207 return 0;
1208
1209 // Allow add/sub to be commuted.
1210 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1211 if (Phi && Phi->getParent() == L->getHeader()) {
1212 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1213 return Phi;
1214 }
1215 return 0;
1216}
1217
Andrew Trick4781d8e2012-07-18 04:35:10 +00001218/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1219static ICmpInst *getLoopTest(Loop *L) {
Andrew Trickfc933c02011-07-18 20:32:31 +00001220 assert(L->getExitingBlock() && "expected loop exit");
1221
1222 BasicBlock *LatchBlock = L->getLoopLatch();
1223 // Don't bother with LFTR if the loop is not properly simplified.
1224 if (!LatchBlock)
Andrew Trick4781d8e2012-07-18 04:35:10 +00001225 return 0;
Andrew Trickfc933c02011-07-18 20:32:31 +00001226
1227 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1228 assert(BI && "expected exit branch");
1229
Andrew Trick4781d8e2012-07-18 04:35:10 +00001230 return dyn_cast<ICmpInst>(BI->getCondition());
1231}
1232
1233/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1234/// that the current exit test is already sufficiently canonical.
1235static bool needsLFTR(Loop *L, DominatorTree *DT) {
Andrew Trickfc933c02011-07-18 20:32:31 +00001236 // Do LFTR to simplify the exit condition to an ICMP.
Andrew Trick4781d8e2012-07-18 04:35:10 +00001237 ICmpInst *Cond = getLoopTest(L);
Andrew Trickfc933c02011-07-18 20:32:31 +00001238 if (!Cond)
1239 return true;
1240
1241 // Do LFTR to simplify the exit ICMP to EQ/NE
1242 ICmpInst::Predicate Pred = Cond->getPredicate();
1243 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1244 return true;
1245
1246 // Look for a loop invariant RHS
1247 Value *LHS = Cond->getOperand(0);
1248 Value *RHS = Cond->getOperand(1);
1249 if (!isLoopInvariant(RHS, L, DT)) {
1250 if (!isLoopInvariant(LHS, L, DT))
1251 return true;
1252 std::swap(LHS, RHS);
1253 }
1254 // Look for a simple IV counter LHS
1255 PHINode *Phi = dyn_cast<PHINode>(LHS);
1256 if (!Phi)
1257 Phi = getLoopPhiForCounter(LHS, L, DT);
1258
1259 if (!Phi)
1260 return true;
1261
1262 // Do LFTR if the exit condition's IV is *not* a simple counter.
1263 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1264 return Phi != getLoopPhiForCounter(IncV, L, DT);
1265}
1266
Andrew Trick4781d8e2012-07-18 04:35:10 +00001267/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1268/// down to checking that all operands are constant and listing instructions
1269/// that may hide undef.
1270static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
1271 unsigned Depth) {
1272 if (isa<Constant>(V))
1273 return !isa<UndefValue>(V);
1274
1275 if (Depth >= 6)
1276 return false;
1277
1278 // Conservatively handle non-constant non-instructions. For example, Arguments
1279 // may be undef.
1280 Instruction *I = dyn_cast<Instruction>(V);
1281 if (!I)
1282 return false;
1283
1284 // Load and return values may be undef.
1285 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1286 return false;
1287
1288 // Optimistically handle other instructions.
1289 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1290 if (!Visited.insert(*OI))
1291 continue;
1292 if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1293 return false;
1294 }
1295 return true;
1296}
1297
1298/// Return true if the given value is concrete. We must prove that undef can
1299/// never reach it.
1300///
1301/// TODO: If we decide that this is a good approach to checking for undef, we
1302/// may factor it into a common location.
1303static bool hasConcreteDef(Value *V) {
1304 SmallPtrSet<Value*, 8> Visited;
1305 Visited.insert(V);
1306 return hasConcreteDefImpl(V, Visited, 0);
1307}
1308
Andrew Trickfc933c02011-07-18 20:32:31 +00001309/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1310/// be rewritten) loop exit test.
1311static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1312 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1313 Value *IncV = Phi->getIncomingValue(LatchIdx);
1314
1315 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1316 UI != UE; ++UI) {
1317 if (*UI != Cond && *UI != IncV) return false;
1318 }
1319
1320 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1321 UI != UE; ++UI) {
1322 if (*UI != Cond && *UI != Phi) return false;
1323 }
1324 return true;
1325}
1326
1327/// FindLoopCounter - Find an affine IV in canonical form.
1328///
Andrew Trickd3714b62011-11-02 17:19:57 +00001329/// BECount may be an i8* pointer type. The pointer difference is already
1330/// valid count without scaling the address stride, so it remains a pointer
1331/// expression as far as SCEV is concerned.
1332///
Andrew Trick4781d8e2012-07-18 04:35:10 +00001333/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1334///
Andrew Trickfc933c02011-07-18 20:32:31 +00001335/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1336///
1337/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1338/// This is difficult in general for SCEV because of potential overflow. But we
1339/// could at least handle constant BECounts.
1340static PHINode *
1341FindLoopCounter(Loop *L, const SCEV *BECount,
1342 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
Andrew Trickfc933c02011-07-18 20:32:31 +00001343 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1344
1345 Value *Cond =
1346 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1347
1348 // Loop over all of the PHI nodes, looking for a simple counter.
1349 PHINode *BestPhi = 0;
1350 const SCEV *BestInit = 0;
1351 BasicBlock *LatchBlock = L->getLoopLatch();
1352 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1353
1354 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1355 PHINode *Phi = cast<PHINode>(I);
1356 if (!SE->isSCEVable(Phi->getType()))
1357 continue;
1358
Andrew Trickd3714b62011-11-02 17:19:57 +00001359 // Avoid comparing an integer IV against a pointer Limit.
1360 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1361 continue;
1362
Andrew Trickfc933c02011-07-18 20:32:31 +00001363 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1364 if (!AR || AR->getLoop() != L || !AR->isAffine())
1365 continue;
1366
1367 // AR may be a pointer type, while BECount is an integer type.
1368 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1369 // AR may not be a narrower type, or we may never exit.
1370 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1371 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1372 continue;
1373
1374 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1375 if (!Step || !Step->isOne())
1376 continue;
1377
1378 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1379 Value *IncV = Phi->getIncomingValue(LatchIdx);
1380 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1381 continue;
1382
Andrew Trick4781d8e2012-07-18 04:35:10 +00001383 // Avoid reusing a potentially undef value to compute other values that may
1384 // have originally had a concrete definition.
1385 if (!hasConcreteDef(Phi)) {
1386 // We explicitly allow unknown phis as long as they are already used by
1387 // the loop test. In this case we assume that performing LFTR could not
1388 // increase the number of undef users.
1389 if (ICmpInst *Cond = getLoopTest(L)) {
1390 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1391 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1392 continue;
1393 }
1394 }
1395 }
Andrew Trickfc933c02011-07-18 20:32:31 +00001396 const SCEV *Init = AR->getStart();
1397
1398 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1399 // Don't force a live loop counter if another IV can be used.
1400 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1401 continue;
1402
1403 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1404 // also prefers integer to pointer IVs.
1405 if (BestInit->isZero() != Init->isZero()) {
1406 if (BestInit->isZero())
1407 continue;
1408 }
1409 // If two IVs both count from zero or both count from nonzero then the
1410 // narrower is likely a dead phi that has been widened. Use the wider phi
1411 // to allow the other to be eliminated.
Andrew Trick7f496a62012-07-18 04:35:13 +00001412 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
Andrew Trickfc933c02011-07-18 20:32:31 +00001413 continue;
1414 }
1415 BestPhi = Phi;
1416 BestInit = Init;
1417 }
1418 return BestPhi;
1419}
1420
Andrew Trickd3714b62011-11-02 17:19:57 +00001421/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1422/// holds the RHS of the new loop test.
1423static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1424 SCEVExpander &Rewriter, ScalarEvolution *SE) {
1425 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1426 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1427 const SCEV *IVInit = AR->getStart();
1428
1429 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1430 // finds a valid pointer IV. Sign extend BECount in order to materialize a
1431 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1432 // the existing GEPs whenever possible.
1433 if (IndVar->getType()->isPointerTy()
1434 && !IVCount->getType()->isPointerTy()) {
1435
1436 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1437 const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
1438
1439 // Expand the code for the iteration count.
1440 assert(SE->isLoopInvariant(IVOffset, L) &&
1441 "Computed iteration count is not loop invariant!");
1442 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1443 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1444
1445 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1446 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1447 // We could handle pointer IVs other than i8*, but we need to compensate for
1448 // gep index scaling. See canExpandBackedgeTakenCount comments.
1449 assert(SE->getSizeOfExpr(
1450 cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1451 && "unit stride pointer IV must be i8*");
1452
1453 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1454 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1455 }
1456 else {
1457 // In any other case, convert both IVInit and IVCount to integers before
1458 // comparing. This may result in SCEV expension of pointers, but in practice
1459 // SCEV will fold the pointer arithmetic away as such:
1460 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1461 //
1462 // Valid Cases: (1) both integers is most common; (2) both may be pointers
1463 // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
1464 // pointer may occur when enable-iv-rewrite generates a canonical IV on top
1465 // of case #2.
1466
1467 const SCEV *IVLimit = 0;
1468 // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1469 // For non-zero Start, compute IVCount here.
1470 if (AR->getStart()->isZero())
1471 IVLimit = IVCount;
1472 else {
1473 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1474 const SCEV *IVInit = AR->getStart();
1475
1476 // For integer IVs, truncate the IV before computing IVInit + BECount.
1477 if (SE->getTypeSizeInBits(IVInit->getType())
1478 > SE->getTypeSizeInBits(IVCount->getType()))
1479 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1480
1481 IVLimit = SE->getAddExpr(IVInit, IVCount);
1482 }
1483 // Expand the code for the iteration count.
1484 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1485 IRBuilder<> Builder(BI);
1486 assert(SE->isLoopInvariant(IVLimit, L) &&
1487 "Computed iteration count is not loop invariant!");
1488 // Ensure that we generate the same type as IndVar, or a smaller integer
1489 // type. In the presence of null pointer values, we have an integer type
1490 // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1491 Type *LimitTy = IVCount->getType()->isPointerTy() ?
1492 IndVar->getType() : IVCount->getType();
1493 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1494 }
1495}
1496
Andrew Trick1a54bb22011-07-12 00:08:50 +00001497/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1498/// loop to be a canonical != comparison against the incremented loop induction
1499/// variable. This pass is able to rewrite the exit tests of any loop where the
1500/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1501/// is actually a much broader range than just linear tests.
Andrew Trickfc933c02011-07-18 20:32:31 +00001502Value *IndVarSimplify::
Andrew Trick1a54bb22011-07-12 00:08:50 +00001503LinearFunctionTestReplace(Loop *L,
1504 const SCEV *BackedgeTakenCount,
1505 PHINode *IndVar,
1506 SCEVExpander &Rewriter) {
1507 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001508
Andrew Trickf21bdf42011-09-12 18:28:44 +00001509 // LFTR can ignore IV overflow and truncate to the width of
Andrew Trickfc933c02011-07-18 20:32:31 +00001510 // BECount. This avoids materializing the add(zext(add)) expression.
Andrew Trickdb0d6662012-03-22 17:10:11 +00001511 Type *CntTy = BackedgeTakenCount->getType();
Andrew Trickfc933c02011-07-18 20:32:31 +00001512
Andrew Trickd3714b62011-11-02 17:19:57 +00001513 const SCEV *IVCount = BackedgeTakenCount;
Andrew Trickfc933c02011-07-18 20:32:31 +00001514
Andrew Trickd3714b62011-11-02 17:19:57 +00001515 // If the exiting block is the same as the backedge block, we prefer to
1516 // compare against the post-incremented value, otherwise we must compare
1517 // against the preincremented value.
Andrew Trick1a54bb22011-07-12 00:08:50 +00001518 Value *CmpIndVar;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001519 if (L->getExitingBlock() == L->getLoopLatch()) {
1520 // Add one to the "backedge-taken" count to get the trip count.
1521 // If this addition may overflow, we have to be more pessimistic and
1522 // cast the induction variable before doing the add.
Andrew Trick1a54bb22011-07-12 00:08:50 +00001523 const SCEV *N =
Andrew Trickd3714b62011-11-02 17:19:57 +00001524 SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
1525 if (CntTy == IVCount->getType())
1526 IVCount = N;
Andrew Trickfc933c02011-07-18 20:32:31 +00001527 else {
Andrew Trickd3714b62011-11-02 17:19:57 +00001528 const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
Andrew Trickfc933c02011-07-18 20:32:31 +00001529 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1530 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1531 // No overflow. Cast the sum.
Andrew Trickd3714b62011-11-02 17:19:57 +00001532 IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
Andrew Trickfc933c02011-07-18 20:32:31 +00001533 } else {
1534 // Potential overflow. Cast before doing the add.
Andrew Trickd3714b62011-11-02 17:19:57 +00001535 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1536 IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
Andrew Trickfc933c02011-07-18 20:32:31 +00001537 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001538 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001539 // The BackedgeTaken expression contains the number of times that the
1540 // backedge branches to the loop header. This is one less than the
1541 // number of times the loop executes, so use the incremented indvar.
1542 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1543 } else {
Andrew Trickd3714b62011-11-02 17:19:57 +00001544 // We must use the preincremented value...
1545 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
Andrew Trick1a54bb22011-07-12 00:08:50 +00001546 CmpIndVar = IndVar;
1547 }
1548
Andrew Trickd3714b62011-11-02 17:19:57 +00001549 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1550 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1551 && "genLoopLimit missed a cast");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001552
1553 // Insert a new icmp_ne or icmp_eq instruction before the branch.
Andrew Trickd3714b62011-11-02 17:19:57 +00001554 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
Andrew Trickfc933c02011-07-18 20:32:31 +00001555 ICmpInst::Predicate P;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001556 if (L->contains(BI->getSuccessor(0)))
Andrew Trickfc933c02011-07-18 20:32:31 +00001557 P = ICmpInst::ICMP_NE;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001558 else
Andrew Trickfc933c02011-07-18 20:32:31 +00001559 P = ICmpInst::ICMP_EQ;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001560
1561 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1562 << " LHS:" << *CmpIndVar << '\n'
1563 << " op:\t"
Andrew Trickfc933c02011-07-18 20:32:31 +00001564 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1565 << " RHS:\t" << *ExitCnt << "\n"
Andrew Trickd3714b62011-11-02 17:19:57 +00001566 << " IVCount:\t" << *IVCount << "\n");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001567
Andrew Trickd3714b62011-11-02 17:19:57 +00001568 IRBuilder<> Builder(BI);
Andrew Trickfc933c02011-07-18 20:32:31 +00001569 if (SE->getTypeSizeInBits(CmpIndVar->getType())
Andrew Trickd3714b62011-11-02 17:19:57 +00001570 > SE->getTypeSizeInBits(ExitCnt->getType())) {
1571 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1572 "lftr.wideiv");
Andrew Trickfc933c02011-07-18 20:32:31 +00001573 }
1574
1575 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001576 Value *OrigCond = BI->getCondition();
1577 // It's tempting to use replaceAllUsesWith here to fully replace the old
1578 // comparison, but that's not immediately safe, since users of the old
1579 // comparison may not be dominated by the new comparison. Instead, just
1580 // update the branch to use the new comparison; in the common case this
1581 // will make old comparison dead.
1582 BI->setCondition(Cond);
1583 DeadInsts.push_back(OrigCond);
1584
1585 ++NumLFTR;
1586 Changed = true;
1587 return Cond;
1588}
1589
1590//===----------------------------------------------------------------------===//
1591// SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1592//===----------------------------------------------------------------------===//
1593
1594/// If there's a single exit block, sink any loop-invariant values that
1595/// were defined in the preheader but not used inside the loop into the
1596/// exit block to reduce register pressure in the loop.
1597void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1598 BasicBlock *ExitBlock = L->getExitBlock();
1599 if (!ExitBlock) return;
1600
1601 BasicBlock *Preheader = L->getLoopPreheader();
1602 if (!Preheader) return;
1603
Bill Wendlingb05fdd62011-08-24 20:28:43 +00001604 Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
Andrew Trick1a54bb22011-07-12 00:08:50 +00001605 BasicBlock::iterator I = Preheader->getTerminator();
1606 while (I != Preheader->begin()) {
1607 --I;
1608 // New instructions were inserted at the end of the preheader.
1609 if (isa<PHINode>(I))
1610 break;
1611
1612 // Don't move instructions which might have side effects, since the side
1613 // effects need to complete before instructions inside the loop. Also don't
1614 // move instructions which might read memory, since the loop may modify
1615 // memory. Note that it's okay if the instruction might have undefined
1616 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1617 // block.
1618 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1619 continue;
1620
1621 // Skip debug info intrinsics.
1622 if (isa<DbgInfoIntrinsic>(I))
1623 continue;
1624
Bill Wendling2b188812011-08-26 20:40:15 +00001625 // Skip landingpad instructions.
1626 if (isa<LandingPadInst>(I))
1627 continue;
1628
Eli Friedman8ecde6c2011-10-27 01:33:51 +00001629 // Don't sink alloca: we never want to sink static alloca's out of the
1630 // entry block, and correctly sinking dynamic alloca's requires
1631 // checks for stacksave/stackrestore intrinsics.
1632 // FIXME: Refactor this check somehow?
1633 if (isa<AllocaInst>(I))
1634 continue;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001635
1636 // Determine if there is a use in or before the loop (direct or
1637 // otherwise).
1638 bool UsedInLoop = false;
1639 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1640 UI != UE; ++UI) {
1641 User *U = *UI;
1642 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1643 if (PHINode *P = dyn_cast<PHINode>(U)) {
1644 unsigned i =
1645 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1646 UseBB = P->getIncomingBlock(i);
1647 }
1648 if (UseBB == Preheader || L->contains(UseBB)) {
1649 UsedInLoop = true;
1650 break;
1651 }
1652 }
1653
1654 // If there is, the def must remain in the preheader.
1655 if (UsedInLoop)
1656 continue;
1657
1658 // Otherwise, sink it to the exit block.
1659 Instruction *ToMove = I;
1660 bool Done = false;
1661
1662 if (I != Preheader->begin()) {
1663 // Skip debug info intrinsics.
1664 do {
1665 --I;
1666 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1667
1668 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1669 Done = true;
1670 } else {
1671 Done = true;
1672 }
1673
1674 ToMove->moveBefore(InsertPt);
1675 if (Done) break;
1676 InsertPt = ToMove;
1677 }
1678}
1679
1680//===----------------------------------------------------------------------===//
1681// IndVarSimplify driver. Manage several subpasses of IV simplification.
1682//===----------------------------------------------------------------------===//
1683
Dan Gohmanc2390b12009-02-12 22:19:27 +00001684bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohmana5283822010-06-18 01:35:11 +00001685 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1686 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1687 // canonicalization can be a pessimization without LSR to "clean up"
1688 // afterwards.
1689 // - We depend on having a preheader; in particular,
1690 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1691 // and we're in trouble if we can't find the induction variable even when
1692 // we've manually inserted one.
1693 if (!L->isLoopSimplifyForm())
1694 return false;
1695
Devang Patel5ee99972007-03-07 06:39:01 +00001696 LI = &getAnalysis<LoopInfo>();
1697 SE = &getAnalysis<ScalarEvolution>();
Dan Gohmande53dc02009-06-27 05:16:57 +00001698 DT = &getAnalysis<DominatorTree>();
Andrew Trick37da4082011-05-04 02:10:13 +00001699 TD = getAnalysisIfAvailable<TargetData>();
1700
Andrew Trickb12a7542011-03-17 23:51:11 +00001701 DeadInsts.clear();
Devang Patel5ee99972007-03-07 06:39:01 +00001702 Changed = false;
Dan Gohman60f8a632009-02-17 20:49:49 +00001703
Dan Gohman2d1be872009-04-16 03:18:22 +00001704 // If there are any floating-point recurrences, attempt to
Dan Gohman60f8a632009-02-17 20:49:49 +00001705 // transform them to use integer recurrences.
1706 RewriteNonIntegerIVs(L);
1707
Dan Gohman0bba49c2009-07-07 17:06:11 +00001708 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
Chris Lattner9caed542007-03-04 01:00:28 +00001709
Dan Gohman667d7872009-06-26 22:53:46 +00001710 // Create a rewriter object which we'll use to transform the code with.
Andrew Trick5e7645b2011-06-28 05:07:32 +00001711 SCEVExpander Rewriter(*SE, "indvars");
Andrew Trick20449412011-10-11 02:28:51 +00001712#ifndef NDEBUG
1713 Rewriter.setDebugType(DEBUG_TYPE);
1714#endif
Andrew Trick156d4602011-06-27 23:17:44 +00001715
1716 // Eliminate redundant IV users.
Andrew Trick15832f62011-06-28 02:49:20 +00001717 //
1718 // Simplification works best when run before other consumers of SCEV. We
1719 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1720 // other expressions involving loop IVs have been evaluated. This helps SCEV
Andrew Trick99a92f62011-06-28 16:45:04 +00001721 // set no-wrap flags before normalizing sign/zero extension.
Andrew Trickdb0d6662012-03-22 17:10:11 +00001722 Rewriter.disableCanonicalMode();
1723 SimplifyAndExtend(L, Rewriter, LPM);
Andrew Trick37da4082011-05-04 02:10:13 +00001724
Chris Lattner40bf8b42004-04-02 20:24:31 +00001725 // Check to see if this loop has a computable loop-invariant execution count.
1726 // If so, this means that we can compute the final value of any expressions
1727 // that are recurrent in the loop, and substitute the exit values from the
1728 // loop into any instructions outside of the loop that use the final values of
1729 // the current expressions.
Chris Lattner3dec1f22002-05-10 15:38:35 +00001730 //
Dan Gohman46bdfb02009-02-24 18:55:53 +00001731 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
Dan Gohman454d26d2010-02-22 04:11:59 +00001732 RewriteLoopExitValues(L, Rewriter);
Chris Lattner6148c022001-12-03 17:28:42 +00001733
Andrew Trick6f684b02011-07-16 01:06:48 +00001734 // Eliminate redundant IV cycles.
Andrew Trickdb0d6662012-03-22 17:10:11 +00001735 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
Andrew Trick037d1c02011-07-06 20:50:43 +00001736
Dan Gohmanc2390b12009-02-12 22:19:27 +00001737 // If we have a trip count expression, rewrite the loop's exit condition
1738 // using it. We can currently only handle loops with a single exit.
Andrew Trickc5480c62012-03-24 00:51:17 +00001739 if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1740 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1741 if (IndVar) {
1742 // Check preconditions for proper SCEVExpander operation. SCEV does not
1743 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1744 // pass that uses the SCEVExpander must do it. This does not work well for
1745 // loop passes because SCEVExpander makes assumptions about all loops, while
1746 // LoopPassManager only forces the current loop to be simplified.
1747 //
1748 // FIXME: SCEV expansion has no way to bail out, so the caller must
1749 // explicitly check any assumptions made by SCEV. Brittle.
1750 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1751 if (!AR || AR->getLoop()->getLoopPreheader())
1752 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1753 Rewriter);
1754 }
Chris Lattnerfcb81f52004-04-22 14:59:40 +00001755 }
Andrew Trickb12a7542011-03-17 23:51:11 +00001756 // Clear the rewriter cache, because values that are in the rewriter's cache
1757 // can be deleted in the loop below, causing the AssertingVH in the cache to
1758 // trigger.
1759 Rewriter.clear();
1760
1761 // Now that we're done iterating through lists, clean up any instructions
1762 // which are now dead.
1763 while (!DeadInsts.empty())
1764 if (Instruction *Inst =
1765 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1766 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1767
Dan Gohman667d7872009-06-26 22:53:46 +00001768 // The Rewriter may not be used from this point on.
Torok Edwin3d431382009-05-24 20:08:21 +00001769
Dan Gohman81db61a2009-05-12 02:17:14 +00001770 // Loop-invariant instructions in the preheader that aren't used in the
1771 // loop may be sunk below the loop to reduce register pressure.
Dan Gohman667d7872009-06-26 22:53:46 +00001772 SinkUnusedInvariants(L);
Dan Gohman81db61a2009-05-12 02:17:14 +00001773
Dan Gohman81db61a2009-05-12 02:17:14 +00001774 // Clean up dead instructions.
Dan Gohman9fff2182010-01-05 16:31:45 +00001775 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohman81db61a2009-05-12 02:17:14 +00001776 // Check a post-condition.
Andrew Trickf6a0dba2011-07-18 18:44:20 +00001777 assert(L->isLCSSAForm(*DT) &&
1778 "Indvars did not leave the loop in lcssa form!");
1779
1780 // Verify that LFTR, and any other change have not interfered with SCEV's
1781 // ability to compute trip count.
1782#ifndef NDEBUG
Andrew Trickdb0d6662012-03-22 17:10:11 +00001783 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
Andrew Trickf6a0dba2011-07-18 18:44:20 +00001784 SE->forgetLoop(L);
1785 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1786 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1787 SE->getTypeSizeInBits(NewBECount->getType()))
1788 NewBECount = SE->getTruncateOrNoop(NewBECount,
1789 BackedgeTakenCount->getType());
1790 else
1791 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1792 NewBECount->getType());
1793 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1794 }
1795#endif
1796
Devang Patel5ee99972007-03-07 06:39:01 +00001797 return Changed;
Chris Lattner6148c022001-12-03 17:28:42 +00001798}