blob: a09b3dc5f8518abe6f08c95dd88086f4a6b0c0c3 [file] [log] [blame]
Dan Gohman2d1be872009-04-16 03:18:22 +00001//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
Nate Begemaneaa13852004-10-18 21:08:22 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
Nate Begemaneaa13852004-10-18 21:08:22 +00008//===----------------------------------------------------------------------===//
9//
Dan Gohmancec8f9d2009-05-19 20:37:36 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
Nate Begemaneaa13852004-10-18 21:08:22 +000014// This pass performs a strength reduction on array references inside loops that
Dan Gohmancec8f9d2009-05-19 20:37:36 +000015// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
Nate Begemaneaa13852004-10-18 21:08:22 +000019//
Dan Gohman572645c2010-02-12 10:34:29 +000020// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24// %i = phi [ 0, %entry ], [ %i.next, %latch ]
25// ...
26// %i.next = add %i, 1
27// %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41// instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44// smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47// multiple base registers, or as the increment expression in an addrec),
48// we may not actually need both reg and (-1 * reg) in registers; the
49// negation can be implemented by using a sub instead of an add. The
50// lack of support for taking this into consideration when making
51// register pressure decisions is partly worked around by the "Special"
52// use kind.
53//
Nate Begemaneaa13852004-10-18 21:08:22 +000054//===----------------------------------------------------------------------===//
55
Chris Lattnerbe3e5212005-08-03 23:30:08 +000056#define DEBUG_TYPE "loop-reduce"
Nate Begemaneaa13852004-10-18 21:08:22 +000057#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
Dan Gohmane5b01be2007-05-04 14:59:09 +000060#include "llvm/IntrinsicInst.h"
Jeff Cohen2f3c9b72005-03-04 04:04:26 +000061#include "llvm/DerivedTypes.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000062#include "llvm/Analysis/IVUsers.h"
Dan Gohman572645c2010-02-12 10:34:29 +000063#include "llvm/Analysis/Dominators.h"
Devang Patel0f54dcb2007-03-06 21:14:09 +000064#include "llvm/Analysis/LoopPass.h"
Nate Begeman16997482005-07-30 00:15:07 +000065#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chris Lattnere0391be2005-08-12 22:06:11 +000066#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Nate Begemaneaa13852004-10-18 21:08:22 +000067#include "llvm/Transforms/Utils/Local.h"
Dan Gohman572645c2010-02-12 10:34:29 +000068#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
Nate Begeman16997482005-07-30 00:15:07 +000071#include "llvm/Support/Debug.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000072#include "llvm/Support/ValueHandle.h"
Daniel Dunbar460f6562009-07-26 09:48:23 +000073#include "llvm/Support/raw_ostream.h"
Evan Chengd277f2c2006-03-13 23:14:23 +000074#include "llvm/Target/TargetLowering.h"
Jeff Cohencfb1d422005-07-30 18:22:27 +000075#include <algorithm>
Nate Begemaneaa13852004-10-18 21:08:22 +000076using namespace llvm;
77
Dan Gohman572645c2010-02-12 10:34:29 +000078namespace {
Nate Begemaneaa13852004-10-18 21:08:22 +000079
Dan Gohman572645c2010-02-12 10:34:29 +000080/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83 /// UsedByIndices - This represents the set of LSRUse indices which reference
84 /// a particular register.
85 SmallBitVector UsedByIndices;
86
87 RegSortData() {}
88
89 void print(raw_ostream &OS) const;
90 void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96 OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100 print(errs()); errs() << '\n';
101}
Dan Gohmanc17e0cf2009-02-20 04:17:46 +0000102
Chris Lattner0e5f4992006-12-19 21:40:18 +0000103namespace {
Dale Johannesendc42f482007-03-20 00:47:50 +0000104
Dan Gohman572645c2010-02-12 10:34:29 +0000105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
Dale Johannesendc42f482007-03-20 00:47:50 +0000109
Dan Gohman572645c2010-02-12 10:34:29 +0000110 RegUsesTy RegUses;
111 SmallVector<const SCEV *, 16> RegSequence;
Evan Chengd1d6b5c2006-03-16 21:53:05 +0000112
Dan Gohman572645c2010-02-12 10:34:29 +0000113public:
114 void CountRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000115
Dan Gohman572645c2010-02-12 10:34:29 +0000116 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000117
Dan Gohman572645c2010-02-12 10:34:29 +0000118 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000119
Dan Gohman572645c2010-02-12 10:34:29 +0000120 void clear();
Dan Gohmana10756e2010-01-21 02:09:26 +0000121
Dan Gohman572645c2010-02-12 10:34:29 +0000122 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
123 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
124 iterator begin() { return RegSequence.begin(); }
125 iterator end() { return RegSequence.end(); }
126 const_iterator begin() const { return RegSequence.begin(); }
127 const_iterator end() const { return RegSequence.end(); }
128};
Dan Gohmana10756e2010-01-21 02:09:26 +0000129
Dan Gohmana10756e2010-01-21 02:09:26 +0000130}
131
Dan Gohman572645c2010-02-12 10:34:29 +0000132void
133RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
134 std::pair<RegUsesTy::iterator, bool> Pair =
135 RegUses.insert(std::make_pair(Reg, RegSortData()));
136 RegSortData &RSD = Pair.first->second;
137 if (Pair.second)
138 RegSequence.push_back(Reg);
139 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
140 RSD.UsedByIndices.set(LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000141}
142
Dan Gohman572645c2010-02-12 10:34:29 +0000143bool
144RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
145 if (!RegUses.count(Reg)) return false;
146 const SmallBitVector &UsedByIndices =
147 RegUses.find(Reg)->second.UsedByIndices;
148 int i = UsedByIndices.find_first();
149 if (i == -1) return false;
150 if ((size_t)i != LUIdx) return true;
151 return UsedByIndices.find_next(i) != -1;
152}
Dan Gohmana10756e2010-01-21 02:09:26 +0000153
Dan Gohman572645c2010-02-12 10:34:29 +0000154const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
155 RegUsesTy::const_iterator I = RegUses.find(Reg);
156 assert(I != RegUses.end() && "Unknown register!");
157 return I->second.UsedByIndices;
158}
Dan Gohmana10756e2010-01-21 02:09:26 +0000159
Dan Gohman572645c2010-02-12 10:34:29 +0000160void RegUseTracker::clear() {
161 RegUses.clear();
162 RegSequence.clear();
163}
Dan Gohmana10756e2010-01-21 02:09:26 +0000164
Dan Gohman572645c2010-02-12 10:34:29 +0000165namespace {
166
167/// Formula - This class holds information that describes a formula for
168/// computing satisfying a use. It may include broken-out immediates and scaled
169/// registers.
170struct Formula {
171 /// AM - This is used to represent complex addressing, as well as other kinds
172 /// of interesting uses.
173 TargetLowering::AddrMode AM;
174
175 /// BaseRegs - The list of "base" registers for this use. When this is
176 /// non-empty, AM.HasBaseReg should be set to true.
177 SmallVector<const SCEV *, 2> BaseRegs;
178
179 /// ScaledReg - The 'scaled' register for this use. This should be non-null
180 /// when AM.Scale is not zero.
181 const SCEV *ScaledReg;
182
183 Formula() : ScaledReg(0) {}
184
185 void InitialMatch(const SCEV *S, Loop *L,
186 ScalarEvolution &SE, DominatorTree &DT);
187
188 unsigned getNumRegs() const;
189 const Type *getType() const;
190
191 bool referencesReg(const SCEV *S) const;
192 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
193 const RegUseTracker &RegUses) const;
194
195 void print(raw_ostream &OS) const;
196 void dump() const;
197};
198
199}
200
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000201/// DoInitialMatch - Recursion helper for InitialMatch.
Dan Gohman572645c2010-02-12 10:34:29 +0000202static void DoInitialMatch(const SCEV *S, Loop *L,
203 SmallVectorImpl<const SCEV *> &Good,
204 SmallVectorImpl<const SCEV *> &Bad,
205 ScalarEvolution &SE, DominatorTree &DT) {
206 // Collect expressions which properly dominate the loop header.
207 if (S->properlyDominates(L->getHeader(), &DT)) {
208 Good.push_back(S);
209 return;
Dan Gohmana10756e2010-01-21 02:09:26 +0000210 }
Dan Gohman572645c2010-02-12 10:34:29 +0000211
212 // Look at add operands.
213 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
214 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
215 I != E; ++I)
216 DoInitialMatch(*I, L, Good, Bad, SE, DT);
217 return;
218 }
219
220 // Look at addrec operands.
221 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
222 if (!AR->getStart()->isZero()) {
223 DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
224 DoInitialMatch(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
225 AR->getStepRecurrence(SE),
226 AR->getLoop()),
227 L, Good, Bad, SE, DT);
228 return;
229 }
230
231 // Handle a multiplication by -1 (negation) if it didn't fold.
232 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
233 if (Mul->getOperand(0)->isAllOnesValue()) {
234 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
235 const SCEV *NewMul = SE.getMulExpr(Ops);
236
237 SmallVector<const SCEV *, 4> MyGood;
238 SmallVector<const SCEV *, 4> MyBad;
239 DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
240 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
241 SE.getEffectiveSCEVType(NewMul->getType())));
242 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
243 E = MyGood.end(); I != E; ++I)
244 Good.push_back(SE.getMulExpr(NegOne, *I));
245 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
246 E = MyBad.end(); I != E; ++I)
247 Bad.push_back(SE.getMulExpr(NegOne, *I));
248 return;
249 }
250
251 // Ok, we can't do anything interesting. Just stuff the whole thing into a
252 // register and hope for the best.
253 Bad.push_back(S);
254}
255
256/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
257/// attempting to keep all loop-invariant and loop-computable values in a
258/// single base register.
259void Formula::InitialMatch(const SCEV *S, Loop *L,
260 ScalarEvolution &SE, DominatorTree &DT) {
261 SmallVector<const SCEV *, 4> Good;
262 SmallVector<const SCEV *, 4> Bad;
263 DoInitialMatch(S, L, Good, Bad, SE, DT);
264 if (!Good.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000265 const SCEV *Sum = SE.getAddExpr(Good);
266 if (!Sum->isZero())
267 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000268 AM.HasBaseReg = true;
269 }
270 if (!Bad.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000271 const SCEV *Sum = SE.getAddExpr(Bad);
272 if (!Sum->isZero())
273 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000274 AM.HasBaseReg = true;
275 }
276}
277
278/// getNumRegs - Return the total number of register operands used by this
279/// formula. This does not include register uses implied by non-constant
280/// addrec strides.
281unsigned Formula::getNumRegs() const {
282 return !!ScaledReg + BaseRegs.size();
283}
284
285/// getType - Return the type of this formula, if it has one, or null
286/// otherwise. This type is meaningless except for the bit size.
287const Type *Formula::getType() const {
288 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
289 ScaledReg ? ScaledReg->getType() :
290 AM.BaseGV ? AM.BaseGV->getType() :
291 0;
292}
293
294/// referencesReg - Test if this formula references the given register.
295bool Formula::referencesReg(const SCEV *S) const {
296 return S == ScaledReg ||
297 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
298}
299
300/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
301/// which are used by uses other than the use with the given index.
302bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
303 const RegUseTracker &RegUses) const {
304 if (ScaledReg)
305 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
306 return true;
307 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
308 E = BaseRegs.end(); I != E; ++I)
309 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
310 return true;
311 return false;
312}
313
314void Formula::print(raw_ostream &OS) const {
315 bool First = true;
316 if (AM.BaseGV) {
317 if (!First) OS << " + "; else First = false;
318 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
319 }
320 if (AM.BaseOffs != 0) {
321 if (!First) OS << " + "; else First = false;
322 OS << AM.BaseOffs;
323 }
324 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
325 E = BaseRegs.end(); I != E; ++I) {
326 if (!First) OS << " + "; else First = false;
327 OS << "reg(" << **I << ')';
328 }
329 if (AM.Scale != 0) {
330 if (!First) OS << " + "; else First = false;
331 OS << AM.Scale << "*reg(";
332 if (ScaledReg)
333 OS << *ScaledReg;
334 else
335 OS << "<unknown>";
336 OS << ')';
337 }
338}
339
340void Formula::dump() const {
341 print(errs()); errs() << '\n';
342}
343
Dan Gohmanaae01f12010-02-19 19:32:49 +0000344/// isAddRecSExtable - Return true if the given addrec can be sign-extended
345/// without changing its value.
346static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
347 const Type *WideTy =
348 IntegerType::get(SE.getContext(),
349 SE.getTypeSizeInBits(AR->getType()) + 1);
350 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
351}
352
353/// isAddSExtable - Return true if the given add can be sign-extended
354/// without changing its value.
355static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
356 const Type *WideTy =
357 IntegerType::get(SE.getContext(),
358 SE.getTypeSizeInBits(A->getType()) + 1);
359 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
360}
361
362/// isMulSExtable - Return true if the given add can be sign-extended
363/// without changing its value.
364static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
365 const Type *WideTy =
366 IntegerType::get(SE.getContext(),
367 SE.getTypeSizeInBits(A->getType()) + 1);
368 return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
369}
370
Dan Gohmanf09b7122010-02-19 19:35:48 +0000371/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
372/// and if the remainder is known to be zero, or null otherwise. If
373/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
374/// to Y, ignoring that the multiplication may overflow, which is useful when
375/// the result will be used in a context where the most significant bits are
376/// ignored.
377static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
378 ScalarEvolution &SE,
379 bool IgnoreSignificantBits = false) {
Dan Gohman572645c2010-02-12 10:34:29 +0000380 // Handle the trivial case, which works for any SCEV type.
381 if (LHS == RHS)
382 return SE.getIntegerSCEV(1, LHS->getType());
383
384 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
385 // folding.
386 if (RHS->isAllOnesValue())
387 return SE.getMulExpr(LHS, RHS);
388
389 // Check for a division of a constant by a constant.
390 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
391 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
392 if (!RC)
393 return 0;
394 if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
395 return 0;
396 return SE.getConstant(C->getValue()->getValue()
397 .sdiv(RC->getValue()->getValue()));
398 }
399
Dan Gohmanaae01f12010-02-19 19:32:49 +0000400 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000401 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000402 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000403 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
404 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000405 if (!Start) return 0;
Dan Gohmanf09b7122010-02-19 19:35:48 +0000406 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
407 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000408 if (!Step) return 0;
409 return SE.getAddRecExpr(Start, Step, AR->getLoop());
410 }
Dan Gohman572645c2010-02-12 10:34:29 +0000411 }
412
Dan Gohmanaae01f12010-02-19 19:32:49 +0000413 // Distribute the sdiv over add operands, if the add doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000414 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000415 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
416 SmallVector<const SCEV *, 8> Ops;
417 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
418 I != E; ++I) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000419 const SCEV *Op = getExactSDiv(*I, RHS, SE,
420 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000421 if (!Op) return 0;
422 Ops.push_back(Op);
423 }
424 return SE.getAddExpr(Ops);
Dan Gohman572645c2010-02-12 10:34:29 +0000425 }
Dan Gohman572645c2010-02-12 10:34:29 +0000426 }
427
428 // Check for a multiply operand that we can pull RHS out of.
429 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
Dan Gohmanaae01f12010-02-19 19:32:49 +0000430 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000431 SmallVector<const SCEV *, 4> Ops;
432 bool Found = false;
433 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
434 I != E; ++I) {
435 if (!Found)
Dan Gohmanf09b7122010-02-19 19:35:48 +0000436 if (const SCEV *Q = getExactSDiv(*I, RHS, SE,
437 IgnoreSignificantBits)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000438 Ops.push_back(Q);
439 Found = true;
440 continue;
441 }
442 Ops.push_back(*I);
443 }
444 return Found ? SE.getMulExpr(Ops) : 0;
445 }
446
447 // Otherwise we don't know.
448 return 0;
449}
450
451/// ExtractImmediate - If S involves the addition of a constant integer value,
452/// return that integer value, and mutate S to point to a new SCEV with that
453/// value excluded.
454static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
455 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
456 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
457 S = SE.getIntegerSCEV(0, C->getType());
458 return C->getValue()->getSExtValue();
459 }
460 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
461 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
462 int64_t Result = ExtractImmediate(NewOps.front(), SE);
463 S = SE.getAddExpr(NewOps);
464 return Result;
465 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
466 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
467 int64_t Result = ExtractImmediate(NewOps.front(), SE);
468 S = SE.getAddRecExpr(NewOps, AR->getLoop());
469 return Result;
470 }
471 return 0;
472}
473
474/// ExtractSymbol - If S involves the addition of a GlobalValue address,
475/// return that symbol, and mutate S to point to a new SCEV with that
476/// value excluded.
477static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
478 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
479 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
480 S = SE.getIntegerSCEV(0, GV->getType());
481 return GV;
482 }
483 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
484 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
485 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
486 S = SE.getAddExpr(NewOps);
487 return Result;
488 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
489 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
490 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
491 S = SE.getAddRecExpr(NewOps, AR->getLoop());
492 return Result;
493 }
494 return 0;
Nate Begemaneaa13852004-10-18 21:08:22 +0000495}
496
Dan Gohmanf284ce22009-02-18 00:08:39 +0000497/// isAddressUse - Returns true if the specified instruction is using the
Dale Johannesen203af582008-12-05 21:47:27 +0000498/// specified value as an address.
499static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
500 bool isAddress = isa<LoadInst>(Inst);
501 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
502 if (SI->getOperand(1) == OperandVal)
503 isAddress = true;
504 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
505 // Addressing modes can also be folded into prefetches and a variety
506 // of intrinsics.
507 switch (II->getIntrinsicID()) {
508 default: break;
509 case Intrinsic::prefetch:
510 case Intrinsic::x86_sse2_loadu_dq:
511 case Intrinsic::x86_sse2_loadu_pd:
512 case Intrinsic::x86_sse_loadu_ps:
513 case Intrinsic::x86_sse_storeu_ps:
514 case Intrinsic::x86_sse2_storeu_pd:
515 case Intrinsic::x86_sse2_storeu_dq:
516 case Intrinsic::x86_sse2_storel_dq:
517 if (II->getOperand(1) == OperandVal)
518 isAddress = true;
519 break;
520 }
521 }
522 return isAddress;
523}
Chris Lattner0ae33eb2005-10-03 01:04:44 +0000524
Dan Gohman21e77222009-03-09 21:01:17 +0000525/// getAccessType - Return the type of the memory being accessed.
526static const Type *getAccessType(const Instruction *Inst) {
Dan Gohmana537bf82009-05-18 16:45:28 +0000527 const Type *AccessTy = Inst->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000528 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
Dan Gohmana537bf82009-05-18 16:45:28 +0000529 AccessTy = SI->getOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000530 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
531 // Addressing modes can also be folded into prefetches and a variety
532 // of intrinsics.
533 switch (II->getIntrinsicID()) {
534 default: break;
535 case Intrinsic::x86_sse_storeu_ps:
536 case Intrinsic::x86_sse2_storeu_pd:
537 case Intrinsic::x86_sse2_storeu_dq:
538 case Intrinsic::x86_sse2_storel_dq:
Dan Gohmana537bf82009-05-18 16:45:28 +0000539 AccessTy = II->getOperand(1)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000540 break;
541 }
542 }
Dan Gohman572645c2010-02-12 10:34:29 +0000543
544 // All pointers have the same requirements, so canonicalize them to an
545 // arbitrary pointer type to minimize variation.
546 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
547 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
548 PTy->getAddressSpace());
549
Dan Gohmana537bf82009-05-18 16:45:28 +0000550 return AccessTy;
Dan Gohman21e77222009-03-09 21:01:17 +0000551}
552
Dan Gohman572645c2010-02-12 10:34:29 +0000553/// DeleteTriviallyDeadInstructions - If any of the instructions is the
554/// specified set are trivially dead, delete them and see if this makes any of
555/// their operands subsequently dead.
556static bool
557DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
558 bool Changed = false;
559
560 while (!DeadInsts.empty()) {
561 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
562
563 if (I == 0 || !isInstructionTriviallyDead(I))
564 continue;
565
566 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
567 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
568 *OI = 0;
569 if (U->use_empty())
570 DeadInsts.push_back(U);
571 }
572
573 I->eraseFromParent();
574 Changed = true;
575 }
576
577 return Changed;
578}
579
Dan Gohman7979b722010-01-22 00:46:49 +0000580namespace {
Jim Grosbach56a1f802009-11-17 17:53:56 +0000581
Dan Gohman572645c2010-02-12 10:34:29 +0000582/// Cost - This class is used to measure and compare candidate formulae.
583class Cost {
584 /// TODO: Some of these could be merged. Also, a lexical ordering
585 /// isn't always optimal.
586 unsigned NumRegs;
587 unsigned AddRecCost;
588 unsigned NumIVMuls;
589 unsigned NumBaseAdds;
590 unsigned ImmCost;
591 unsigned SetupCost;
Nate Begeman16997482005-07-30 00:15:07 +0000592
Dan Gohman572645c2010-02-12 10:34:29 +0000593public:
594 Cost()
595 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
596 SetupCost(0) {}
Jim Grosbach56a1f802009-11-17 17:53:56 +0000597
Dan Gohman572645c2010-02-12 10:34:29 +0000598 unsigned getNumRegs() const { return NumRegs; }
Dan Gohman7979b722010-01-22 00:46:49 +0000599
Dan Gohman572645c2010-02-12 10:34:29 +0000600 bool operator<(const Cost &Other) const;
Dan Gohman7979b722010-01-22 00:46:49 +0000601
Dan Gohman572645c2010-02-12 10:34:29 +0000602 void Loose();
Dan Gohman7979b722010-01-22 00:46:49 +0000603
Dan Gohman572645c2010-02-12 10:34:29 +0000604 void RateFormula(const Formula &F,
605 SmallPtrSet<const SCEV *, 16> &Regs,
606 const DenseSet<const SCEV *> &VisitedRegs,
607 const Loop *L,
608 const SmallVectorImpl<int64_t> &Offsets,
609 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman7979b722010-01-22 00:46:49 +0000610
Dan Gohman572645c2010-02-12 10:34:29 +0000611 void print(raw_ostream &OS) const;
612 void dump() const;
Dan Gohman7979b722010-01-22 00:46:49 +0000613
Dan Gohman572645c2010-02-12 10:34:29 +0000614private:
615 void RateRegister(const SCEV *Reg,
616 SmallPtrSet<const SCEV *, 16> &Regs,
617 const Loop *L,
618 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman9214b822010-02-13 02:06:02 +0000619 void RatePrimaryRegister(const SCEV *Reg,
620 SmallPtrSet<const SCEV *, 16> &Regs,
621 const Loop *L,
622 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000623};
624
625}
626
627/// RateRegister - Tally up interesting quantities from the given register.
628void Cost::RateRegister(const SCEV *Reg,
629 SmallPtrSet<const SCEV *, 16> &Regs,
630 const Loop *L,
631 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000632 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
633 if (AR->getLoop() == L)
634 AddRecCost += 1; /// TODO: This should be a function of the stride.
Dan Gohman572645c2010-02-12 10:34:29 +0000635
Dan Gohman9214b822010-02-13 02:06:02 +0000636 // If this is an addrec for a loop that's already been visited by LSR,
637 // don't second-guess its addrec phi nodes. LSR isn't currently smart
638 // enough to reason about more than one loop at a time. Consider these
639 // registers free and leave them alone.
640 else if (L->contains(AR->getLoop()) ||
641 (!AR->getLoop()->contains(L) &&
642 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
643 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
644 PHINode *PN = dyn_cast<PHINode>(I); ++I)
645 if (SE.isSCEVable(PN->getType()) &&
646 (SE.getEffectiveSCEVType(PN->getType()) ==
647 SE.getEffectiveSCEVType(AR->getType())) &&
648 SE.getSCEV(PN) == AR)
649 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000650
Dan Gohman9214b822010-02-13 02:06:02 +0000651 // If this isn't one of the addrecs that the loop already has, it
652 // would require a costly new phi and add. TODO: This isn't
653 // precisely modeled right now.
654 ++NumBaseAdds;
655 if (!Regs.count(AR->getStart()))
Dan Gohman572645c2010-02-12 10:34:29 +0000656 RateRegister(AR->getStart(), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000657 }
Dan Gohman572645c2010-02-12 10:34:29 +0000658
Dan Gohman9214b822010-02-13 02:06:02 +0000659 // Add the step value register, if it needs one.
660 // TODO: The non-affine case isn't precisely modeled here.
661 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
662 if (!Regs.count(AR->getStart()))
663 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000664 }
Dan Gohman9214b822010-02-13 02:06:02 +0000665 ++NumRegs;
666
667 // Rough heuristic; favor registers which don't require extra setup
668 // instructions in the preheader.
669 if (!isa<SCEVUnknown>(Reg) &&
670 !isa<SCEVConstant>(Reg) &&
671 !(isa<SCEVAddRecExpr>(Reg) &&
672 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
673 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
674 ++SetupCost;
675}
676
677/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
678/// before, rate it.
679void Cost::RatePrimaryRegister(const SCEV *Reg,
Dan Gohman7fca2292010-02-16 19:42:34 +0000680 SmallPtrSet<const SCEV *, 16> &Regs,
681 const Loop *L,
682 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000683 if (Regs.insert(Reg))
684 RateRegister(Reg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000685}
686
687void Cost::RateFormula(const Formula &F,
688 SmallPtrSet<const SCEV *, 16> &Regs,
689 const DenseSet<const SCEV *> &VisitedRegs,
690 const Loop *L,
691 const SmallVectorImpl<int64_t> &Offsets,
692 ScalarEvolution &SE, DominatorTree &DT) {
693 // Tally up the registers.
694 if (const SCEV *ScaledReg = F.ScaledReg) {
695 if (VisitedRegs.count(ScaledReg)) {
696 Loose();
697 return;
698 }
Dan Gohman9214b822010-02-13 02:06:02 +0000699 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000700 }
701 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
702 E = F.BaseRegs.end(); I != E; ++I) {
703 const SCEV *BaseReg = *I;
704 if (VisitedRegs.count(BaseReg)) {
705 Loose();
706 return;
707 }
Dan Gohman9214b822010-02-13 02:06:02 +0000708 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000709
710 NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
711 BaseReg->hasComputableLoopEvolution(L);
712 }
713
714 if (F.BaseRegs.size() > 1)
715 NumBaseAdds += F.BaseRegs.size() - 1;
716
717 // Tally up the non-zero immediates.
718 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
719 E = Offsets.end(); I != E; ++I) {
720 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
721 if (F.AM.BaseGV)
722 ImmCost += 64; // Handle symbolic values conservatively.
723 // TODO: This should probably be the pointer size.
724 else if (Offset != 0)
725 ImmCost += APInt(64, Offset, true).getMinSignedBits();
726 }
727}
728
729/// Loose - Set this cost to a loosing value.
730void Cost::Loose() {
731 NumRegs = ~0u;
732 AddRecCost = ~0u;
733 NumIVMuls = ~0u;
734 NumBaseAdds = ~0u;
735 ImmCost = ~0u;
736 SetupCost = ~0u;
737}
738
739/// operator< - Choose the lower cost.
740bool Cost::operator<(const Cost &Other) const {
741 if (NumRegs != Other.NumRegs)
742 return NumRegs < Other.NumRegs;
743 if (AddRecCost != Other.AddRecCost)
744 return AddRecCost < Other.AddRecCost;
745 if (NumIVMuls != Other.NumIVMuls)
746 return NumIVMuls < Other.NumIVMuls;
747 if (NumBaseAdds != Other.NumBaseAdds)
748 return NumBaseAdds < Other.NumBaseAdds;
749 if (ImmCost != Other.ImmCost)
750 return ImmCost < Other.ImmCost;
751 if (SetupCost != Other.SetupCost)
752 return SetupCost < Other.SetupCost;
753 return false;
754}
755
756void Cost::print(raw_ostream &OS) const {
757 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
758 if (AddRecCost != 0)
759 OS << ", with addrec cost " << AddRecCost;
760 if (NumIVMuls != 0)
761 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
762 if (NumBaseAdds != 0)
763 OS << ", plus " << NumBaseAdds << " base add"
764 << (NumBaseAdds == 1 ? "" : "s");
765 if (ImmCost != 0)
766 OS << ", plus " << ImmCost << " imm cost";
767 if (SetupCost != 0)
768 OS << ", plus " << SetupCost << " setup cost";
769}
770
771void Cost::dump() const {
772 print(errs()); errs() << '\n';
773}
774
775namespace {
776
777/// LSRFixup - An operand value in an instruction which is to be replaced
778/// with some equivalent, possibly strength-reduced, replacement.
779struct LSRFixup {
780 /// UserInst - The instruction which will be updated.
781 Instruction *UserInst;
782
783 /// OperandValToReplace - The operand of the instruction which will
784 /// be replaced. The operand may be used more than once; every instance
785 /// will be replaced.
786 Value *OperandValToReplace;
787
Dan Gohman448db1c2010-04-07 22:27:08 +0000788 /// PostIncLoops - If this user is to use the post-incremented value of an
Dan Gohman572645c2010-02-12 10:34:29 +0000789 /// induction variable, this variable is non-null and holds the loop
790 /// associated with the induction variable.
Dan Gohman448db1c2010-04-07 22:27:08 +0000791 PostIncLoopSet PostIncLoops;
Dan Gohman572645c2010-02-12 10:34:29 +0000792
793 /// LUIdx - The index of the LSRUse describing the expression which
794 /// this fixup needs, minus an offset (below).
795 size_t LUIdx;
796
797 /// Offset - A constant offset to be added to the LSRUse expression.
798 /// This allows multiple fixups to share the same LSRUse with different
799 /// offsets, for example in an unrolled loop.
800 int64_t Offset;
801
Dan Gohman448db1c2010-04-07 22:27:08 +0000802 bool isUseFullyOutsideLoop(const Loop *L) const;
803
Dan Gohman572645c2010-02-12 10:34:29 +0000804 LSRFixup();
805
806 void print(raw_ostream &OS) const;
807 void dump() const;
808};
809
810}
811
812LSRFixup::LSRFixup()
Dan Gohman448db1c2010-04-07 22:27:08 +0000813 : UserInst(0), OperandValToReplace(0),
Dan Gohman572645c2010-02-12 10:34:29 +0000814 LUIdx(~size_t(0)), Offset(0) {}
815
Dan Gohman448db1c2010-04-07 22:27:08 +0000816/// isUseFullyOutsideLoop - Test whether this fixup always uses its
817/// value outside of the given loop.
818bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
819 // PHI nodes use their value in their incoming blocks.
820 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
821 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
822 if (PN->getIncomingValue(i) == OperandValToReplace &&
823 L->contains(PN->getIncomingBlock(i)))
824 return false;
825 return true;
826 }
827
828 return !L->contains(UserInst);
829}
830
Dan Gohman572645c2010-02-12 10:34:29 +0000831void LSRFixup::print(raw_ostream &OS) const {
832 OS << "UserInst=";
833 // Store is common and interesting enough to be worth special-casing.
834 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
835 OS << "store ";
836 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
837 } else if (UserInst->getType()->isVoidTy())
838 OS << UserInst->getOpcodeName();
839 else
840 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
841
842 OS << ", OperandValToReplace=";
843 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
844
Dan Gohman448db1c2010-04-07 22:27:08 +0000845 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
846 E = PostIncLoops.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +0000847 OS << ", PostIncLoop=";
Dan Gohman448db1c2010-04-07 22:27:08 +0000848 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
Dan Gohman572645c2010-02-12 10:34:29 +0000849 }
850
851 if (LUIdx != ~size_t(0))
852 OS << ", LUIdx=" << LUIdx;
853
854 if (Offset != 0)
855 OS << ", Offset=" << Offset;
856}
857
858void LSRFixup::dump() const {
859 print(errs()); errs() << '\n';
860}
861
862namespace {
863
864/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
865/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
866struct UniquifierDenseMapInfo {
867 static SmallVector<const SCEV *, 2> getEmptyKey() {
868 SmallVector<const SCEV *, 2> V;
869 V.push_back(reinterpret_cast<const SCEV *>(-1));
870 return V;
871 }
872
873 static SmallVector<const SCEV *, 2> getTombstoneKey() {
874 SmallVector<const SCEV *, 2> V;
875 V.push_back(reinterpret_cast<const SCEV *>(-2));
876 return V;
877 }
878
879 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
880 unsigned Result = 0;
881 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
882 E = V.end(); I != E; ++I)
883 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
884 return Result;
885 }
886
887 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
888 const SmallVector<const SCEV *, 2> &RHS) {
889 return LHS == RHS;
890 }
891};
892
893/// LSRUse - This class holds the state that LSR keeps for each use in
894/// IVUsers, as well as uses invented by LSR itself. It includes information
895/// about what kinds of things can be folded into the user, information about
896/// the user itself, and information about how the use may be satisfied.
897/// TODO: Represent multiple users of the same expression in common?
898class LSRUse {
899 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
900
901public:
902 /// KindType - An enum for a kind of use, indicating what types of
903 /// scaled and immediate operands it might support.
904 enum KindType {
905 Basic, ///< A normal use, with no folding.
906 Special, ///< A special case of basic, allowing -1 scales.
907 Address, ///< An address use; folding according to TargetLowering
908 ICmpZero ///< An equality icmp with both operands folded into one.
909 // TODO: Add a generic icmp too?
Dan Gohman7979b722010-01-22 00:46:49 +0000910 };
Dan Gohman572645c2010-02-12 10:34:29 +0000911
912 KindType Kind;
913 const Type *AccessTy;
914
915 SmallVector<int64_t, 8> Offsets;
916 int64_t MinOffset;
917 int64_t MaxOffset;
918
919 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
920 /// LSRUse are outside of the loop, in which case some special-case heuristics
921 /// may be used.
922 bool AllFixupsOutsideLoop;
923
924 /// Formulae - A list of ways to build a value that can satisfy this user.
925 /// After the list is populated, one of these is selected heuristically and
926 /// used to formulate a replacement for OperandValToReplace in UserInst.
927 SmallVector<Formula, 12> Formulae;
928
929 /// Regs - The set of register candidates used by all formulae in this LSRUse.
930 SmallPtrSet<const SCEV *, 4> Regs;
931
932 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
933 MinOffset(INT64_MAX),
934 MaxOffset(INT64_MIN),
935 AllFixupsOutsideLoop(true) {}
936
Dan Gohman454d26d2010-02-22 04:11:59 +0000937 bool InsertFormula(const Formula &F);
Dan Gohman572645c2010-02-12 10:34:29 +0000938
939 void check() const;
940
941 void print(raw_ostream &OS) const;
942 void dump() const;
943};
944
945/// InsertFormula - If the given formula has not yet been inserted, add it to
946/// the list, and return true. Return false otherwise.
Dan Gohman454d26d2010-02-22 04:11:59 +0000947bool LSRUse::InsertFormula(const Formula &F) {
Dan Gohman572645c2010-02-12 10:34:29 +0000948 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
949 if (F.ScaledReg) Key.push_back(F.ScaledReg);
950 // Unstable sort by host order ok, because this is only used for uniquifying.
951 std::sort(Key.begin(), Key.end());
952
953 if (!Uniquifier.insert(Key).second)
954 return false;
955
956 // Using a register to hold the value of 0 is not profitable.
957 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
958 "Zero allocated in a scaled register!");
959#ifndef NDEBUG
960 for (SmallVectorImpl<const SCEV *>::const_iterator I =
961 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
962 assert(!(*I)->isZero() && "Zero allocated in a base register!");
963#endif
964
965 // Add the formula to the list.
966 Formulae.push_back(F);
967
968 // Record registers now being used by this use.
969 if (F.ScaledReg) Regs.insert(F.ScaledReg);
970 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
971
972 return true;
Dan Gohman7979b722010-01-22 00:46:49 +0000973}
974
Dan Gohman572645c2010-02-12 10:34:29 +0000975void LSRUse::print(raw_ostream &OS) const {
976 OS << "LSR Use: Kind=";
977 switch (Kind) {
978 case Basic: OS << "Basic"; break;
979 case Special: OS << "Special"; break;
980 case ICmpZero: OS << "ICmpZero"; break;
981 case Address:
982 OS << "Address of ";
Duncan Sands1df98592010-02-16 11:11:14 +0000983 if (AccessTy->isPointerTy())
Dan Gohman572645c2010-02-12 10:34:29 +0000984 OS << "pointer"; // the full pointer type could be really verbose
985 else
986 OS << *AccessTy;
Evan Chengcdf43b12007-10-25 09:11:16 +0000987 }
988
Dan Gohman572645c2010-02-12 10:34:29 +0000989 OS << ", Offsets={";
990 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
991 E = Offsets.end(); I != E; ++I) {
992 OS << *I;
993 if (next(I) != E)
994 OS << ',';
Dan Gohman7979b722010-01-22 00:46:49 +0000995 }
Dan Gohman572645c2010-02-12 10:34:29 +0000996 OS << '}';
Dan Gohman7979b722010-01-22 00:46:49 +0000997
Dan Gohman572645c2010-02-12 10:34:29 +0000998 if (AllFixupsOutsideLoop)
999 OS << ", all-fixups-outside-loop";
Dan Gohman7979b722010-01-22 00:46:49 +00001000}
1001
Dan Gohman572645c2010-02-12 10:34:29 +00001002void LSRUse::dump() const {
1003 print(errs()); errs() << '\n';
1004}
Dan Gohman7979b722010-01-22 00:46:49 +00001005
Dan Gohman572645c2010-02-12 10:34:29 +00001006/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1007/// be completely folded into the user instruction at isel time. This includes
1008/// address-mode folding and special icmp tricks.
1009static bool isLegalUse(const TargetLowering::AddrMode &AM,
1010 LSRUse::KindType Kind, const Type *AccessTy,
1011 const TargetLowering *TLI) {
1012 switch (Kind) {
1013 case LSRUse::Address:
1014 // If we have low-level target information, ask the target if it can
1015 // completely fold this address.
1016 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1017
1018 // Otherwise, just guess that reg+reg addressing is legal.
1019 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1020
1021 case LSRUse::ICmpZero:
1022 // There's not even a target hook for querying whether it would be legal to
1023 // fold a GV into an ICmp.
1024 if (AM.BaseGV)
1025 return false;
1026
1027 // ICmp only has two operands; don't allow more than two non-trivial parts.
1028 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1029 return false;
1030
1031 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1032 // putting the scaled register in the other operand of the icmp.
1033 if (AM.Scale != 0 && AM.Scale != -1)
1034 return false;
1035
1036 // If we have low-level target information, ask the target if it can fold an
1037 // integer immediate on an icmp.
1038 if (AM.BaseOffs != 0) {
1039 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1040 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001041 }
Dan Gohman572645c2010-02-12 10:34:29 +00001042
1043 return true;
1044
1045 case LSRUse::Basic:
1046 // Only handle single-register values.
1047 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1048
1049 case LSRUse::Special:
1050 // Only handle -1 scales, or no scale.
1051 return AM.Scale == 0 || AM.Scale == -1;
Dan Gohman7979b722010-01-22 00:46:49 +00001052 }
1053
Dan Gohman7979b722010-01-22 00:46:49 +00001054 return false;
1055}
1056
Dan Gohman572645c2010-02-12 10:34:29 +00001057static bool isLegalUse(TargetLowering::AddrMode AM,
1058 int64_t MinOffset, int64_t MaxOffset,
1059 LSRUse::KindType Kind, const Type *AccessTy,
1060 const TargetLowering *TLI) {
1061 // Check for overflow.
1062 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1063 (MinOffset > 0))
1064 return false;
1065 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1066 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1067 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1068 // Check for overflow.
1069 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1070 (MaxOffset > 0))
1071 return false;
1072 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1073 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001074 }
Dan Gohman572645c2010-02-12 10:34:29 +00001075 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001076}
1077
Dan Gohman572645c2010-02-12 10:34:29 +00001078static bool isAlwaysFoldable(int64_t BaseOffs,
1079 GlobalValue *BaseGV,
1080 bool HasBaseReg,
1081 LSRUse::KindType Kind, const Type *AccessTy,
Dan Gohman454d26d2010-02-22 04:11:59 +00001082 const TargetLowering *TLI) {
Dan Gohman572645c2010-02-12 10:34:29 +00001083 // Fast-path: zero is always foldable.
1084 if (BaseOffs == 0 && !BaseGV) return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001085
Dan Gohman572645c2010-02-12 10:34:29 +00001086 // Conservatively, create an address with an immediate and a
1087 // base and a scale.
1088 TargetLowering::AddrMode AM;
1089 AM.BaseOffs = BaseOffs;
1090 AM.BaseGV = BaseGV;
1091 AM.HasBaseReg = HasBaseReg;
1092 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001093
Dan Gohman572645c2010-02-12 10:34:29 +00001094 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001095}
1096
Dan Gohman572645c2010-02-12 10:34:29 +00001097static bool isAlwaysFoldable(const SCEV *S,
1098 int64_t MinOffset, int64_t MaxOffset,
1099 bool HasBaseReg,
1100 LSRUse::KindType Kind, const Type *AccessTy,
1101 const TargetLowering *TLI,
1102 ScalarEvolution &SE) {
1103 // Fast-path: zero is always foldable.
1104 if (S->isZero()) return true;
1105
1106 // Conservatively, create an address with an immediate and a
1107 // base and a scale.
1108 int64_t BaseOffs = ExtractImmediate(S, SE);
1109 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1110
1111 // If there's anything else involved, it's not foldable.
1112 if (!S->isZero()) return false;
1113
1114 // Fast-path: zero is always foldable.
1115 if (BaseOffs == 0 && !BaseGV) return true;
1116
1117 // Conservatively, create an address with an immediate and a
1118 // base and a scale.
1119 TargetLowering::AddrMode AM;
1120 AM.BaseOffs = BaseOffs;
1121 AM.BaseGV = BaseGV;
1122 AM.HasBaseReg = HasBaseReg;
1123 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1124
1125 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001126}
1127
Dan Gohman572645c2010-02-12 10:34:29 +00001128/// FormulaSorter - This class implements an ordering for formulae which sorts
1129/// the by their standalone cost.
1130class FormulaSorter {
1131 /// These two sets are kept empty, so that we compute standalone costs.
1132 DenseSet<const SCEV *> VisitedRegs;
1133 SmallPtrSet<const SCEV *, 16> Regs;
1134 Loop *L;
1135 LSRUse *LU;
1136 ScalarEvolution &SE;
1137 DominatorTree &DT;
1138
1139public:
1140 FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1141 : L(l), LU(&lu), SE(se), DT(dt) {}
1142
1143 bool operator()(const Formula &A, const Formula &B) {
1144 Cost CostA;
1145 CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1146 Regs.clear();
1147 Cost CostB;
1148 CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1149 Regs.clear();
1150 return CostA < CostB;
1151 }
1152};
1153
1154/// LSRInstance - This class holds state for the main loop strength reduction
1155/// logic.
1156class LSRInstance {
1157 IVUsers &IU;
1158 ScalarEvolution &SE;
1159 DominatorTree &DT;
Dan Gohmane5f76872010-04-09 22:07:05 +00001160 LoopInfo &LI;
Dan Gohman572645c2010-02-12 10:34:29 +00001161 const TargetLowering *const TLI;
1162 Loop *const L;
1163 bool Changed;
1164
1165 /// IVIncInsertPos - This is the insert position that the current loop's
1166 /// induction variable increment should be placed. In simple loops, this is
1167 /// the latch block's terminator. But in more complicated cases, this is a
1168 /// position which will dominate all the in-loop post-increment users.
1169 Instruction *IVIncInsertPos;
1170
1171 /// Factors - Interesting factors between use strides.
1172 SmallSetVector<int64_t, 8> Factors;
1173
1174 /// Types - Interesting use types, to facilitate truncation reuse.
1175 SmallSetVector<const Type *, 4> Types;
1176
1177 /// Fixups - The list of operands which are to be replaced.
1178 SmallVector<LSRFixup, 16> Fixups;
1179
1180 /// Uses - The list of interesting uses.
1181 SmallVector<LSRUse, 16> Uses;
1182
1183 /// RegUses - Track which uses use which register candidates.
1184 RegUseTracker RegUses;
1185
1186 void OptimizeShadowIV();
1187 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1188 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1189 bool OptimizeLoopTermCond();
1190
1191 void CollectInterestingTypesAndFactors();
1192 void CollectFixupsAndInitialFormulae();
1193
1194 LSRFixup &getNewFixup() {
1195 Fixups.push_back(LSRFixup());
1196 return Fixups.back();
1197 }
1198
1199 // Support for sharing of LSRUses between LSRFixups.
1200 typedef DenseMap<const SCEV *, size_t> UseMapTy;
1201 UseMapTy UseMap;
1202
1203 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1204 LSRUse::KindType Kind, const Type *AccessTy);
1205
1206 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1207 LSRUse::KindType Kind,
1208 const Type *AccessTy);
1209
1210public:
Dan Gohman454d26d2010-02-22 04:11:59 +00001211 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001212 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1213 void CountRegisters(const Formula &F, size_t LUIdx);
1214 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1215
1216 void CollectLoopInvariantFixupsAndFormulae();
1217
1218 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1219 unsigned Depth = 0);
1220 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1221 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1222 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1223 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1224 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1225 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1226 void GenerateCrossUseConstantOffsets();
1227 void GenerateAllReuseFormulae();
1228
1229 void FilterOutUndesirableDedicatedRegisters();
1230 void NarrowSearchSpaceUsingHeuristics();
1231
1232 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1233 Cost &SolutionCost,
1234 SmallVectorImpl<const Formula *> &Workspace,
1235 const Cost &CurCost,
1236 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1237 DenseSet<const SCEV *> &VisitedRegs) const;
1238 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1239
Dan Gohmane5f76872010-04-09 22:07:05 +00001240 BasicBlock::iterator
1241 HoistInsertPosition(BasicBlock::iterator IP,
1242 const SmallVectorImpl<Instruction *> &Inputs) const;
1243 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1244 const LSRFixup &LF,
1245 const LSRUse &LU) const;
Dan Gohmand96eae82010-04-09 02:00:38 +00001246
Dan Gohman572645c2010-02-12 10:34:29 +00001247 Value *Expand(const LSRFixup &LF,
1248 const Formula &F,
Dan Gohman454d26d2010-02-22 04:11:59 +00001249 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00001250 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00001251 SmallVectorImpl<WeakVH> &DeadInsts) const;
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001252 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1253 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001254 SCEVExpander &Rewriter,
1255 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001256 Pass *P) const;
Dan Gohman572645c2010-02-12 10:34:29 +00001257 void Rewrite(const LSRFixup &LF,
1258 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00001259 SCEVExpander &Rewriter,
1260 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00001261 Pass *P) const;
1262 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1263 Pass *P);
1264
1265 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1266
1267 bool getChanged() const { return Changed; }
1268
1269 void print_factors_and_types(raw_ostream &OS) const;
1270 void print_fixups(raw_ostream &OS) const;
1271 void print_uses(raw_ostream &OS) const;
1272 void print(raw_ostream &OS) const;
1273 void dump() const;
1274};
1275
1276}
1277
1278/// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001279/// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00001280void LSRInstance::OptimizeShadowIV() {
1281 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1282 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1283 return;
1284
1285 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1286 UI != E; /* empty */) {
1287 IVUsers::const_iterator CandidateUI = UI;
1288 ++UI;
1289 Instruction *ShadowUse = CandidateUI->getUser();
1290 const Type *DestTy = NULL;
1291
1292 /* If shadow use is a int->float cast then insert a second IV
1293 to eliminate this cast.
1294
1295 for (unsigned i = 0; i < n; ++i)
1296 foo((double)i);
1297
1298 is transformed into
1299
1300 double d = 0.0;
1301 for (unsigned i = 0; i < n; ++i, ++d)
1302 foo(d);
1303 */
1304 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1305 DestTy = UCast->getDestTy();
1306 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1307 DestTy = SCast->getDestTy();
1308 if (!DestTy) continue;
1309
1310 if (TLI) {
1311 // If target does not support DestTy natively then do not apply
1312 // this transformation.
1313 EVT DVT = TLI->getValueType(DestTy);
1314 if (!TLI->isTypeLegal(DVT)) continue;
1315 }
1316
1317 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1318 if (!PH) continue;
1319 if (PH->getNumIncomingValues() != 2) continue;
1320
1321 const Type *SrcTy = PH->getType();
1322 int Mantissa = DestTy->getFPMantissaWidth();
1323 if (Mantissa == -1) continue;
1324 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1325 continue;
1326
1327 unsigned Entry, Latch;
1328 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1329 Entry = 0;
1330 Latch = 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001331 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001332 Entry = 1;
1333 Latch = 0;
Dan Gohman7979b722010-01-22 00:46:49 +00001334 }
Dan Gohman7979b722010-01-22 00:46:49 +00001335
Dan Gohman572645c2010-02-12 10:34:29 +00001336 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1337 if (!Init) continue;
1338 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
Dan Gohman7979b722010-01-22 00:46:49 +00001339
Dan Gohman572645c2010-02-12 10:34:29 +00001340 BinaryOperator *Incr =
1341 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1342 if (!Incr) continue;
1343 if (Incr->getOpcode() != Instruction::Add
1344 && Incr->getOpcode() != Instruction::Sub)
Dan Gohman7979b722010-01-22 00:46:49 +00001345 continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001346
Dan Gohman572645c2010-02-12 10:34:29 +00001347 /* Initialize new IV, double d = 0.0 in above example. */
1348 ConstantInt *C = NULL;
1349 if (Incr->getOperand(0) == PH)
1350 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1351 else if (Incr->getOperand(1) == PH)
1352 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001353 else
Dan Gohman7979b722010-01-22 00:46:49 +00001354 continue;
1355
Dan Gohman572645c2010-02-12 10:34:29 +00001356 if (!C) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001357
Dan Gohman572645c2010-02-12 10:34:29 +00001358 // Ignore negative constants, as the code below doesn't handle them
1359 // correctly. TODO: Remove this restriction.
1360 if (!C->getValue().isStrictlyPositive()) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001361
Dan Gohman572645c2010-02-12 10:34:29 +00001362 /* Add new PHINode. */
1363 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
Dan Gohman7979b722010-01-22 00:46:49 +00001364
Dan Gohman572645c2010-02-12 10:34:29 +00001365 /* create new increment. '++d' in above example. */
1366 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1367 BinaryOperator *NewIncr =
1368 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1369 Instruction::FAdd : Instruction::FSub,
1370 NewPH, CFP, "IV.S.next.", Incr);
Dan Gohman7979b722010-01-22 00:46:49 +00001371
Dan Gohman572645c2010-02-12 10:34:29 +00001372 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1373 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
Dan Gohman7979b722010-01-22 00:46:49 +00001374
Dan Gohman572645c2010-02-12 10:34:29 +00001375 /* Remove cast operation */
1376 ShadowUse->replaceAllUsesWith(NewPH);
1377 ShadowUse->eraseFromParent();
1378 break;
Dan Gohman7979b722010-01-22 00:46:49 +00001379 }
1380}
1381
1382/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1383/// set the IV user and stride information and return true, otherwise return
1384/// false.
Dan Gohman572645c2010-02-12 10:34:29 +00001385bool LSRInstance::FindIVUserForCond(ICmpInst *Cond,
1386 IVStrideUse *&CondUse) {
1387 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1388 if (UI->getUser() == Cond) {
1389 // NOTE: we could handle setcc instructions with multiple uses here, but
1390 // InstCombine does it as well for simple uses, it's not clear that it
1391 // occurs enough in real life to handle.
1392 CondUse = UI;
1393 return true;
1394 }
Dan Gohman7979b722010-01-22 00:46:49 +00001395 return false;
Evan Chengcdf43b12007-10-25 09:11:16 +00001396}
1397
Dan Gohman7979b722010-01-22 00:46:49 +00001398/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1399/// a max computation.
1400///
1401/// This is a narrow solution to a specific, but acute, problem. For loops
1402/// like this:
1403///
1404/// i = 0;
1405/// do {
1406/// p[i] = 0.0;
1407/// } while (++i < n);
1408///
1409/// the trip count isn't just 'n', because 'n' might not be positive. And
1410/// unfortunately this can come up even for loops where the user didn't use
1411/// a C do-while loop. For example, seemingly well-behaved top-test loops
1412/// will commonly be lowered like this:
1413//
1414/// if (n > 0) {
1415/// i = 0;
1416/// do {
1417/// p[i] = 0.0;
1418/// } while (++i < n);
1419/// }
1420///
1421/// and then it's possible for subsequent optimization to obscure the if
1422/// test in such a way that indvars can't find it.
1423///
1424/// When indvars can't find the if test in loops like this, it creates a
1425/// max expression, which allows it to give the loop a canonical
1426/// induction variable:
1427///
1428/// i = 0;
1429/// max = n < 1 ? 1 : n;
1430/// do {
1431/// p[i] = 0.0;
1432/// } while (++i != max);
1433///
1434/// Canonical induction variables are necessary because the loop passes
1435/// are designed around them. The most obvious example of this is the
1436/// LoopInfo analysis, which doesn't remember trip count values. It
1437/// expects to be able to rediscover the trip count each time it is
Dan Gohman572645c2010-02-12 10:34:29 +00001438/// needed, and it does this using a simple analysis that only succeeds if
Dan Gohman7979b722010-01-22 00:46:49 +00001439/// the loop has a canonical induction variable.
1440///
1441/// However, when it comes time to generate code, the maximum operation
1442/// can be quite costly, especially if it's inside of an outer loop.
1443///
1444/// This function solves this problem by detecting this type of loop and
1445/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1446/// the instructions for the maximum computation.
1447///
Dan Gohman572645c2010-02-12 10:34:29 +00001448ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
Dan Gohman7979b722010-01-22 00:46:49 +00001449 // Check that the loop matches the pattern we're looking for.
1450 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1451 Cond->getPredicate() != CmpInst::ICMP_NE)
1452 return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001453
Dan Gohman7979b722010-01-22 00:46:49 +00001454 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1455 if (!Sel || !Sel->hasOneUse()) return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001456
Dan Gohman572645c2010-02-12 10:34:29 +00001457 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
Dan Gohman7979b722010-01-22 00:46:49 +00001458 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1459 return Cond;
Dan Gohman572645c2010-02-12 10:34:29 +00001460 const SCEV *One = SE.getIntegerSCEV(1, BackedgeTakenCount->getType());
Dan Gohmana10756e2010-01-21 02:09:26 +00001461
Dan Gohman7979b722010-01-22 00:46:49 +00001462 // Add one to the backedge-taken count to get the trip count.
Dan Gohman572645c2010-02-12 10:34:29 +00001463 const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
Dan Gohman7979b722010-01-22 00:46:49 +00001464
1465 // Check for a max calculation that matches the pattern.
1466 if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount))
1467 return Cond;
1468 const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount);
Dan Gohman572645c2010-02-12 10:34:29 +00001469 if (Max != SE.getSCEV(Sel)) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001470
1471 // To handle a max with more than two operands, this optimization would
1472 // require additional checking and setup.
1473 if (Max->getNumOperands() != 2)
1474 return Cond;
1475
1476 const SCEV *MaxLHS = Max->getOperand(0);
1477 const SCEV *MaxRHS = Max->getOperand(1);
1478 if (!MaxLHS || MaxLHS != One) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001479 // Check the relevant induction variable for conformance to
1480 // the pattern.
Dan Gohman572645c2010-02-12 10:34:29 +00001481 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001482 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1483 if (!AR || !AR->isAffine() ||
1484 AR->getStart() != One ||
Dan Gohman572645c2010-02-12 10:34:29 +00001485 AR->getStepRecurrence(SE) != One)
Dan Gohman7979b722010-01-22 00:46:49 +00001486 return Cond;
1487
1488 assert(AR->getLoop() == L &&
1489 "Loop condition operand is an addrec in a different loop!");
1490
1491 // Check the right operand of the select, and remember it, as it will
1492 // be used in the new comparison instruction.
1493 Value *NewRHS = 0;
Dan Gohman572645c2010-02-12 10:34:29 +00001494 if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001495 NewRHS = Sel->getOperand(1);
Dan Gohman572645c2010-02-12 10:34:29 +00001496 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001497 NewRHS = Sel->getOperand(2);
1498 if (!NewRHS) return Cond;
1499
1500 // Determine the new comparison opcode. It may be signed or unsigned,
1501 // and the original comparison may be either equality or inequality.
1502 CmpInst::Predicate Pred =
1503 isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
1504 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1505 Pred = CmpInst::getInversePredicate(Pred);
1506
1507 // Ok, everything looks ok to change the condition into an SLT or SGE and
1508 // delete the max calculation.
1509 ICmpInst *NewCond =
1510 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1511
1512 // Delete the max calculation instructions.
1513 Cond->replaceAllUsesWith(NewCond);
1514 CondUse->setUser(NewCond);
1515 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1516 Cond->eraseFromParent();
1517 Sel->eraseFromParent();
1518 if (Cmp->use_empty())
1519 Cmp->eraseFromParent();
1520 return NewCond;
Dan Gohmanad7321f2008-09-15 21:22:06 +00001521}
1522
Jim Grosbach56a1f802009-11-17 17:53:56 +00001523/// OptimizeLoopTermCond - Change loop terminating condition to use the
Evan Cheng586f69a2009-11-12 07:35:05 +00001524/// postinc iv when possible.
Dan Gohman572645c2010-02-12 10:34:29 +00001525bool
1526LSRInstance::OptimizeLoopTermCond() {
1527 SmallPtrSet<Instruction *, 4> PostIncs;
1528
Evan Cheng586f69a2009-11-12 07:35:05 +00001529 BasicBlock *LatchBlock = L->getLoopLatch();
Evan Cheng076e0852009-11-17 18:10:11 +00001530 SmallVector<BasicBlock*, 8> ExitingBlocks;
1531 L->getExitingBlocks(ExitingBlocks);
Jim Grosbach56a1f802009-11-17 17:53:56 +00001532
Evan Cheng076e0852009-11-17 18:10:11 +00001533 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1534 BasicBlock *ExitingBlock = ExitingBlocks[i];
Evan Cheng586f69a2009-11-12 07:35:05 +00001535
Dan Gohman572645c2010-02-12 10:34:29 +00001536 // Get the terminating condition for the loop if possible. If we
Evan Cheng076e0852009-11-17 18:10:11 +00001537 // can, we want to change it to use a post-incremented version of its
1538 // induction variable, to allow coalescing the live ranges for the IV into
1539 // one register value.
Evan Cheng586f69a2009-11-12 07:35:05 +00001540
Evan Cheng076e0852009-11-17 18:10:11 +00001541 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1542 if (!TermBr)
1543 continue;
1544 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1545 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1546 continue;
Evan Cheng586f69a2009-11-12 07:35:05 +00001547
Evan Cheng076e0852009-11-17 18:10:11 +00001548 // Search IVUsesByStride to find Cond's IVUse if there is one.
1549 IVStrideUse *CondUse = 0;
Evan Cheng076e0852009-11-17 18:10:11 +00001550 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
Dan Gohman572645c2010-02-12 10:34:29 +00001551 if (!FindIVUserForCond(Cond, CondUse))
Evan Cheng076e0852009-11-17 18:10:11 +00001552 continue;
1553
Evan Cheng076e0852009-11-17 18:10:11 +00001554 // If the trip count is computed in terms of a max (due to ScalarEvolution
1555 // being unable to find a sufficient guard, for example), change the loop
1556 // comparison to use SLT or ULT instead of NE.
Dan Gohman572645c2010-02-12 10:34:29 +00001557 // One consequence of doing this now is that it disrupts the count-down
1558 // optimization. That's not always a bad thing though, because in such
1559 // cases it may still be worthwhile to avoid a max.
1560 Cond = OptimizeMax(Cond, CondUse);
Evan Cheng076e0852009-11-17 18:10:11 +00001561
Dan Gohman572645c2010-02-12 10:34:29 +00001562 // If this exiting block dominates the latch block, it may also use
1563 // the post-inc value if it won't be shared with other uses.
1564 // Check for dominance.
1565 if (!DT.dominates(ExitingBlock, LatchBlock))
Dan Gohman7979b722010-01-22 00:46:49 +00001566 continue;
Evan Cheng076e0852009-11-17 18:10:11 +00001567
Dan Gohman572645c2010-02-12 10:34:29 +00001568 // Conservatively avoid trying to use the post-inc value in non-latch
1569 // exits if there may be pre-inc users in intervening blocks.
Dan Gohman590bfe82010-02-14 03:21:49 +00001570 if (LatchBlock != ExitingBlock)
Dan Gohman572645c2010-02-12 10:34:29 +00001571 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1572 // Test if the use is reachable from the exiting block. This dominator
1573 // query is a conservative approximation of reachability.
1574 if (&*UI != CondUse &&
1575 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1576 // Conservatively assume there may be reuse if the quotient of their
1577 // strides could be a legal scale.
Dan Gohmanc0564542010-04-19 21:48:58 +00001578 const SCEV *A = IU.getStride(*CondUse, L);
1579 const SCEV *B = IU.getStride(*UI, L);
Dan Gohman448db1c2010-04-07 22:27:08 +00001580 if (!A || !B) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001581 if (SE.getTypeSizeInBits(A->getType()) !=
1582 SE.getTypeSizeInBits(B->getType())) {
1583 if (SE.getTypeSizeInBits(A->getType()) >
1584 SE.getTypeSizeInBits(B->getType()))
1585 B = SE.getSignExtendExpr(B, A->getType());
1586 else
1587 A = SE.getSignExtendExpr(A, B->getType());
1588 }
1589 if (const SCEVConstant *D =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001590 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001591 // Stride of one or negative one can have reuse with non-addresses.
1592 if (D->getValue()->isOne() ||
1593 D->getValue()->isAllOnesValue())
1594 goto decline_post_inc;
1595 // Avoid weird situations.
1596 if (D->getValue()->getValue().getMinSignedBits() >= 64 ||
1597 D->getValue()->getValue().isMinSignedValue())
1598 goto decline_post_inc;
Dan Gohman590bfe82010-02-14 03:21:49 +00001599 // Without TLI, assume that any stride might be valid, and so any
1600 // use might be shared.
1601 if (!TLI)
1602 goto decline_post_inc;
Dan Gohman572645c2010-02-12 10:34:29 +00001603 // Check for possible scaled-address reuse.
1604 const Type *AccessTy = getAccessType(UI->getUser());
1605 TargetLowering::AddrMode AM;
1606 AM.Scale = D->getValue()->getSExtValue();
Dan Gohman2763dfd2010-02-14 02:45:21 +00001607 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001608 goto decline_post_inc;
1609 AM.Scale = -AM.Scale;
Dan Gohman2763dfd2010-02-14 02:45:21 +00001610 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001611 goto decline_post_inc;
1612 }
1613 }
1614
David Greene63c94632009-12-23 22:58:38 +00001615 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
Dan Gohman572645c2010-02-12 10:34:29 +00001616 << *Cond << '\n');
Evan Cheng076e0852009-11-17 18:10:11 +00001617
1618 // It's possible for the setcc instruction to be anywhere in the loop, and
1619 // possible for it to have multiple users. If it is not immediately before
1620 // the exiting block branch, move it.
Dan Gohman572645c2010-02-12 10:34:29 +00001621 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1622 if (Cond->hasOneUse()) {
Evan Cheng076e0852009-11-17 18:10:11 +00001623 Cond->moveBefore(TermBr);
1624 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001625 // Clone the terminating condition and insert into the loopend.
1626 ICmpInst *OldCond = Cond;
Evan Cheng076e0852009-11-17 18:10:11 +00001627 Cond = cast<ICmpInst>(Cond->clone());
1628 Cond->setName(L->getHeader()->getName() + ".termcond");
1629 ExitingBlock->getInstList().insert(TermBr, Cond);
1630
1631 // Clone the IVUse, as the old use still exists!
Dan Gohmanc0564542010-04-19 21:48:58 +00001632 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
Dan Gohman572645c2010-02-12 10:34:29 +00001633 TermBr->replaceUsesOfWith(OldCond, Cond);
Evan Cheng076e0852009-11-17 18:10:11 +00001634 }
Evan Cheng586f69a2009-11-12 07:35:05 +00001635 }
1636
Evan Cheng076e0852009-11-17 18:10:11 +00001637 // If we get to here, we know that we can transform the setcc instruction to
1638 // use the post-incremented version of the IV, allowing us to coalesce the
1639 // live ranges for the IV correctly.
Dan Gohman448db1c2010-04-07 22:27:08 +00001640 CondUse->transformToPostInc(L);
Evan Cheng076e0852009-11-17 18:10:11 +00001641 Changed = true;
1642
Dan Gohman572645c2010-02-12 10:34:29 +00001643 PostIncs.insert(Cond);
1644 decline_post_inc:;
Dan Gohmana10756e2010-01-21 02:09:26 +00001645 }
Dan Gohman572645c2010-02-12 10:34:29 +00001646
1647 // Determine an insertion point for the loop induction variable increment. It
1648 // must dominate all the post-inc comparisons we just set up, and it must
1649 // dominate the loop latch edge.
1650 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1651 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1652 E = PostIncs.end(); I != E; ++I) {
1653 BasicBlock *BB =
1654 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1655 (*I)->getParent());
1656 if (BB == (*I)->getParent())
1657 IVIncInsertPos = *I;
1658 else if (BB != IVIncInsertPos->getParent())
1659 IVIncInsertPos = BB->getTerminator();
1660 }
1661
1662 return Changed;
Dan Gohmana10756e2010-01-21 02:09:26 +00001663}
1664
Dan Gohman572645c2010-02-12 10:34:29 +00001665bool
1666LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1667 LSRUse::KindType Kind, const Type *AccessTy) {
1668 int64_t NewMinOffset = LU.MinOffset;
1669 int64_t NewMaxOffset = LU.MaxOffset;
1670 const Type *NewAccessTy = AccessTy;
Dan Gohman7979b722010-01-22 00:46:49 +00001671
Dan Gohman572645c2010-02-12 10:34:29 +00001672 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1673 // something conservative, however this can pessimize in the case that one of
1674 // the uses will have all its uses outside the loop, for example.
1675 if (LU.Kind != Kind)
Dan Gohman7979b722010-01-22 00:46:49 +00001676 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001677 // Conservatively assume HasBaseReg is true for now.
1678 if (NewOffset < LU.MinOffset) {
1679 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, /*HasBaseReg=*/true,
Dan Gohman454d26d2010-02-22 04:11:59 +00001680 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001681 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001682 NewMinOffset = NewOffset;
1683 } else if (NewOffset > LU.MaxOffset) {
1684 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, /*HasBaseReg=*/true,
Dan Gohman454d26d2010-02-22 04:11:59 +00001685 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001686 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001687 NewMaxOffset = NewOffset;
Dan Gohmana10756e2010-01-21 02:09:26 +00001688 }
Dan Gohman572645c2010-02-12 10:34:29 +00001689 // Check for a mismatched access type, and fall back conservatively as needed.
1690 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1691 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
Dan Gohmana10756e2010-01-21 02:09:26 +00001692
Dan Gohman572645c2010-02-12 10:34:29 +00001693 // Update the use.
1694 LU.MinOffset = NewMinOffset;
1695 LU.MaxOffset = NewMaxOffset;
1696 LU.AccessTy = NewAccessTy;
1697 if (NewOffset != LU.Offsets.back())
1698 LU.Offsets.push_back(NewOffset);
Dan Gohman8b0ade32010-01-21 22:42:49 +00001699 return true;
1700}
1701
Dan Gohman572645c2010-02-12 10:34:29 +00001702/// getUse - Return an LSRUse index and an offset value for a fixup which
1703/// needs the given expression, with the given kind and optional access type.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001704/// Either reuse an existing use or create a new one, as needed.
Dan Gohman572645c2010-02-12 10:34:29 +00001705std::pair<size_t, int64_t>
1706LSRInstance::getUse(const SCEV *&Expr,
1707 LSRUse::KindType Kind, const Type *AccessTy) {
1708 const SCEV *Copy = Expr;
1709 int64_t Offset = ExtractImmediate(Expr, SE);
Evan Cheng586f69a2009-11-12 07:35:05 +00001710
Dan Gohman572645c2010-02-12 10:34:29 +00001711 // Basic uses can't accept any offset, for example.
Dan Gohman454d26d2010-02-22 04:11:59 +00001712 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
Dan Gohman572645c2010-02-12 10:34:29 +00001713 Expr = Copy;
1714 Offset = 0;
1715 }
1716
1717 std::pair<UseMapTy::iterator, bool> P =
1718 UseMap.insert(std::make_pair(Expr, 0));
1719 if (!P.second) {
1720 // A use already existed with this base.
1721 size_t LUIdx = P.first->second;
1722 LSRUse &LU = Uses[LUIdx];
1723 if (reconcileNewOffset(LU, Offset, Kind, AccessTy))
1724 // Reuse this use.
1725 return std::make_pair(LUIdx, Offset);
1726 }
1727
1728 // Create a new use.
1729 size_t LUIdx = Uses.size();
1730 P.first->second = LUIdx;
1731 Uses.push_back(LSRUse(Kind, AccessTy));
1732 LSRUse &LU = Uses[LUIdx];
1733
1734 // We don't need to track redundant offsets, but we don't need to go out
1735 // of our way here to avoid them.
1736 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1737 LU.Offsets.push_back(Offset);
1738
1739 LU.MinOffset = Offset;
1740 LU.MaxOffset = Offset;
1741 return std::make_pair(LUIdx, Offset);
1742}
1743
1744void LSRInstance::CollectInterestingTypesAndFactors() {
1745 SmallSetVector<const SCEV *, 4> Strides;
1746
Dan Gohman1b7bf182010-02-19 00:05:23 +00001747 // Collect interesting types and strides.
Dan Gohman448db1c2010-04-07 22:27:08 +00001748 SmallVector<const SCEV *, 4> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00001749 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Dan Gohmanc0564542010-04-19 21:48:58 +00001750 const SCEV *Expr = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001751
1752 // Collect interesting types.
Dan Gohman448db1c2010-04-07 22:27:08 +00001753 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
Dan Gohman572645c2010-02-12 10:34:29 +00001754
Dan Gohman448db1c2010-04-07 22:27:08 +00001755 // Add strides for mentioned loops.
1756 Worklist.push_back(Expr);
1757 do {
1758 const SCEV *S = Worklist.pop_back_val();
1759 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1760 Strides.insert(AR->getStepRecurrence(SE));
1761 Worklist.push_back(AR->getStart());
1762 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1763 Worklist.insert(Worklist.end(), Add->op_begin(), Add->op_end());
1764 }
1765 } while (!Worklist.empty());
Dan Gohman1b7bf182010-02-19 00:05:23 +00001766 }
1767
1768 // Compute interesting factors from the set of interesting strides.
1769 for (SmallSetVector<const SCEV *, 4>::const_iterator
1770 I = Strides.begin(), E = Strides.end(); I != E; ++I)
Dan Gohman572645c2010-02-12 10:34:29 +00001771 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
Dan Gohman1b7bf182010-02-19 00:05:23 +00001772 next(I); NewStrideIter != E; ++NewStrideIter) {
1773 const SCEV *OldStride = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00001774 const SCEV *NewStride = *NewStrideIter;
Dan Gohman572645c2010-02-12 10:34:29 +00001775
1776 if (SE.getTypeSizeInBits(OldStride->getType()) !=
1777 SE.getTypeSizeInBits(NewStride->getType())) {
1778 if (SE.getTypeSizeInBits(OldStride->getType()) >
1779 SE.getTypeSizeInBits(NewStride->getType()))
1780 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1781 else
1782 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1783 }
1784 if (const SCEVConstant *Factor =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001785 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1786 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001787 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1788 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1789 } else if (const SCEVConstant *Factor =
Dan Gohman454d26d2010-02-22 04:11:59 +00001790 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1791 NewStride,
Dan Gohmanf09b7122010-02-19 19:35:48 +00001792 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001793 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1794 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1795 }
1796 }
Dan Gohman572645c2010-02-12 10:34:29 +00001797
1798 // If all uses use the same type, don't bother looking for truncation-based
1799 // reuse.
1800 if (Types.size() == 1)
1801 Types.clear();
1802
1803 DEBUG(print_factors_and_types(dbgs()));
1804}
1805
1806void LSRInstance::CollectFixupsAndInitialFormulae() {
1807 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1808 // Record the uses.
1809 LSRFixup &LF = getNewFixup();
1810 LF.UserInst = UI->getUser();
1811 LF.OperandValToReplace = UI->getOperandValToReplace();
Dan Gohman448db1c2010-04-07 22:27:08 +00001812 LF.PostIncLoops = UI->getPostIncLoops();
Dan Gohman572645c2010-02-12 10:34:29 +00001813
1814 LSRUse::KindType Kind = LSRUse::Basic;
1815 const Type *AccessTy = 0;
1816 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
1817 Kind = LSRUse::Address;
1818 AccessTy = getAccessType(LF.UserInst);
1819 }
1820
Dan Gohmanc0564542010-04-19 21:48:58 +00001821 const SCEV *S = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001822
1823 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
1824 // (N - i == 0), and this allows (N - i) to be the expression that we work
1825 // with rather than just N or i, so we can consider the register
1826 // requirements for both N and i at the same time. Limiting this code to
1827 // equality icmps is not a problem because all interesting loops use
1828 // equality icmps, thanks to IndVarSimplify.
1829 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
1830 if (CI->isEquality()) {
1831 // Swap the operands if needed to put the OperandValToReplace on the
1832 // left, for consistency.
1833 Value *NV = CI->getOperand(1);
1834 if (NV == LF.OperandValToReplace) {
1835 CI->setOperand(1, CI->getOperand(0));
1836 CI->setOperand(0, NV);
1837 }
1838
1839 // x == y --> x - y == 0
1840 const SCEV *N = SE.getSCEV(NV);
1841 if (N->isLoopInvariant(L)) {
1842 Kind = LSRUse::ICmpZero;
1843 S = SE.getMinusSCEV(N, S);
1844 }
1845
1846 // -1 and the negations of all interesting strides (except the negation
1847 // of -1) are now also interesting.
1848 for (size_t i = 0, e = Factors.size(); i != e; ++i)
1849 if (Factors[i] != -1)
1850 Factors.insert(-(uint64_t)Factors[i]);
1851 Factors.insert(-1);
1852 }
1853
1854 // Set up the initial formula for this use.
1855 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
1856 LF.LUIdx = P.first;
1857 LF.Offset = P.second;
1858 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00001859 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00001860
1861 // If this is the first use of this LSRUse, give it a formula.
1862 if (LU.Formulae.empty()) {
Dan Gohman454d26d2010-02-22 04:11:59 +00001863 InsertInitialFormula(S, LU, LF.LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001864 CountRegisters(LU.Formulae.back(), LF.LUIdx);
1865 }
1866 }
1867
1868 DEBUG(print_fixups(dbgs()));
1869}
1870
1871void
Dan Gohman454d26d2010-02-22 04:11:59 +00001872LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Dan Gohman572645c2010-02-12 10:34:29 +00001873 Formula F;
1874 F.InitialMatch(S, L, SE, DT);
1875 bool Inserted = InsertFormula(LU, LUIdx, F);
1876 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
1877}
1878
1879void
1880LSRInstance::InsertSupplementalFormula(const SCEV *S,
1881 LSRUse &LU, size_t LUIdx) {
1882 Formula F;
1883 F.BaseRegs.push_back(S);
1884 F.AM.HasBaseReg = true;
1885 bool Inserted = InsertFormula(LU, LUIdx, F);
1886 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
1887}
1888
1889/// CountRegisters - Note which registers are used by the given formula,
1890/// updating RegUses.
1891void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
1892 if (F.ScaledReg)
1893 RegUses.CountRegister(F.ScaledReg, LUIdx);
1894 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
1895 E = F.BaseRegs.end(); I != E; ++I)
1896 RegUses.CountRegister(*I, LUIdx);
1897}
1898
1899/// InsertFormula - If the given formula has not yet been inserted, add it to
1900/// the list, and return true. Return false otherwise.
1901bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
Dan Gohman454d26d2010-02-22 04:11:59 +00001902 if (!LU.InsertFormula(F))
Dan Gohman572645c2010-02-12 10:34:29 +00001903 return false;
1904
1905 CountRegisters(F, LUIdx);
1906 return true;
1907}
1908
1909/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
1910/// loop-invariant values which we're tracking. These other uses will pin these
1911/// values in registers, making them less profitable for elimination.
1912/// TODO: This currently misses non-constant addrec step registers.
1913/// TODO: Should this give more weight to users inside the loop?
1914void
1915LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
1916 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
1917 SmallPtrSet<const SCEV *, 8> Inserted;
1918
1919 while (!Worklist.empty()) {
1920 const SCEV *S = Worklist.pop_back_val();
1921
1922 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
1923 Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
1924 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1925 Worklist.push_back(C->getOperand());
1926 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
1927 Worklist.push_back(D->getLHS());
1928 Worklist.push_back(D->getRHS());
1929 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
1930 if (!Inserted.insert(U)) continue;
1931 const Value *V = U->getValue();
1932 if (const Instruction *Inst = dyn_cast<Instruction>(V))
1933 if (L->contains(Inst)) continue;
Gabor Greif60ad7812010-03-25 23:06:16 +00001934 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
Dan Gohman572645c2010-02-12 10:34:29 +00001935 UI != UE; ++UI) {
1936 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
1937 // Ignore non-instructions.
1938 if (!UserInst)
Dan Gohman7979b722010-01-22 00:46:49 +00001939 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001940 // Ignore instructions in other functions (as can happen with
1941 // Constants).
1942 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
Dan Gohman7979b722010-01-22 00:46:49 +00001943 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001944 // Ignore instructions not dominated by the loop.
1945 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
1946 UserInst->getParent() :
1947 cast<PHINode>(UserInst)->getIncomingBlock(
1948 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
1949 if (!DT.dominates(L->getHeader(), UseBB))
1950 continue;
1951 // Ignore uses which are part of other SCEV expressions, to avoid
1952 // analyzing them multiple times.
Dan Gohman4a2a6832010-04-09 19:12:34 +00001953 if (SE.isSCEVable(UserInst->getType())) {
1954 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
1955 // If the user is a no-op, look through to its uses.
1956 if (!isa<SCEVUnknown>(UserS))
1957 continue;
1958 if (UserS == U) {
1959 Worklist.push_back(
1960 SE.getUnknown(const_cast<Instruction *>(UserInst)));
1961 continue;
1962 }
1963 }
Dan Gohman572645c2010-02-12 10:34:29 +00001964 // Ignore icmp instructions which are already being analyzed.
1965 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
1966 unsigned OtherIdx = !UI.getOperandNo();
1967 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
1968 if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
1969 continue;
1970 }
1971
1972 LSRFixup &LF = getNewFixup();
1973 LF.UserInst = const_cast<Instruction *>(UserInst);
1974 LF.OperandValToReplace = UI.getUse();
1975 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
1976 LF.LUIdx = P.first;
1977 LF.Offset = P.second;
1978 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00001979 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00001980 InsertSupplementalFormula(U, LU, LF.LUIdx);
1981 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
1982 break;
1983 }
1984 }
1985 }
1986}
1987
1988/// CollectSubexprs - Split S into subexpressions which can be pulled out into
1989/// separate registers. If C is non-null, multiply each subexpression by C.
1990static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
1991 SmallVectorImpl<const SCEV *> &Ops,
1992 ScalarEvolution &SE) {
1993 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1994 // Break out add operands.
1995 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1996 I != E; ++I)
1997 CollectSubexprs(*I, C, Ops, SE);
1998 return;
1999 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2000 // Split a non-zero base out of an addrec.
2001 if (!AR->getStart()->isZero()) {
Dan Gohman572645c2010-02-12 10:34:29 +00002002 CollectSubexprs(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()),
2003 AR->getStepRecurrence(SE),
2004 AR->getLoop()), C, Ops, SE);
Dan Gohman68d6da12010-02-12 19:35:25 +00002005 CollectSubexprs(AR->getStart(), C, Ops, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002006 return;
2007 }
2008 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2009 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2010 if (Mul->getNumOperands() == 2)
2011 if (const SCEVConstant *Op0 =
2012 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2013 CollectSubexprs(Mul->getOperand(1),
2014 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2015 Ops, SE);
2016 return;
2017 }
2018 }
2019
2020 // Otherwise use the value itself.
2021 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2022}
2023
2024/// GenerateReassociations - Split out subexpressions from adds and the bases of
2025/// addrecs.
2026void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2027 Formula Base,
2028 unsigned Depth) {
2029 // Arbitrarily cap recursion to protect compile time.
2030 if (Depth >= 3) return;
2031
2032 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2033 const SCEV *BaseReg = Base.BaseRegs[i];
2034
2035 SmallVector<const SCEV *, 8> AddOps;
2036 CollectSubexprs(BaseReg, 0, AddOps, SE);
2037 if (AddOps.size() == 1) continue;
2038
2039 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2040 JE = AddOps.end(); J != JE; ++J) {
2041 // Don't pull a constant into a register if the constant could be folded
2042 // into an immediate field.
2043 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2044 Base.getNumRegs() > 1,
2045 LU.Kind, LU.AccessTy, TLI, SE))
2046 continue;
2047
2048 // Collect all operands except *J.
2049 SmallVector<const SCEV *, 8> InnerAddOps;
2050 for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
2051 KE = AddOps.end(); K != KE; ++K)
2052 if (K != J)
2053 InnerAddOps.push_back(*K);
2054
2055 // Don't leave just a constant behind in a register if the constant could
2056 // be folded into an immediate field.
2057 if (InnerAddOps.size() == 1 &&
2058 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2059 Base.getNumRegs() > 1,
2060 LU.Kind, LU.AccessTy, TLI, SE))
2061 continue;
2062
Dan Gohmanfafb8902010-04-23 01:55:05 +00002063 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2064 if (InnerSum->isZero())
2065 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002066 Formula F = Base;
Dan Gohmanfafb8902010-04-23 01:55:05 +00002067 F.BaseRegs[i] = InnerSum;
Dan Gohman572645c2010-02-12 10:34:29 +00002068 F.BaseRegs.push_back(*J);
2069 if (InsertFormula(LU, LUIdx, F))
2070 // If that formula hadn't been seen before, recurse to find more like
2071 // it.
2072 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2073 }
2074 }
2075}
2076
2077/// GenerateCombinations - Generate a formula consisting of all of the
2078/// loop-dominating registers added into a single register.
2079void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman441a3892010-02-14 18:51:39 +00002080 Formula Base) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002081 // This method is only interesting on a plurality of registers.
Dan Gohman572645c2010-02-12 10:34:29 +00002082 if (Base.BaseRegs.size() <= 1) return;
2083
2084 Formula F = Base;
2085 F.BaseRegs.clear();
2086 SmallVector<const SCEV *, 4> Ops;
2087 for (SmallVectorImpl<const SCEV *>::const_iterator
2088 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2089 const SCEV *BaseReg = *I;
2090 if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2091 !BaseReg->hasComputableLoopEvolution(L))
2092 Ops.push_back(BaseReg);
2093 else
2094 F.BaseRegs.push_back(BaseReg);
2095 }
2096 if (Ops.size() > 1) {
Dan Gohmance947362010-02-14 18:50:49 +00002097 const SCEV *Sum = SE.getAddExpr(Ops);
2098 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2099 // opportunity to fold something. For now, just ignore such cases
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002100 // rather than proceed with zero in a register.
Dan Gohmance947362010-02-14 18:50:49 +00002101 if (!Sum->isZero()) {
2102 F.BaseRegs.push_back(Sum);
2103 (void)InsertFormula(LU, LUIdx, F);
2104 }
Dan Gohman572645c2010-02-12 10:34:29 +00002105 }
2106}
2107
2108/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2109void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2110 Formula Base) {
2111 // We can't add a symbolic offset if the address already contains one.
2112 if (Base.AM.BaseGV) return;
2113
2114 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2115 const SCEV *G = Base.BaseRegs[i];
2116 GlobalValue *GV = ExtractSymbol(G, SE);
2117 if (G->isZero() || !GV)
2118 continue;
2119 Formula F = Base;
2120 F.AM.BaseGV = GV;
2121 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2122 LU.Kind, LU.AccessTy, TLI))
2123 continue;
2124 F.BaseRegs[i] = G;
2125 (void)InsertFormula(LU, LUIdx, F);
2126 }
2127}
2128
2129/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2130void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2131 Formula Base) {
2132 // TODO: For now, just add the min and max offset, because it usually isn't
2133 // worthwhile looking at everything inbetween.
2134 SmallVector<int64_t, 4> Worklist;
2135 Worklist.push_back(LU.MinOffset);
2136 if (LU.MaxOffset != LU.MinOffset)
2137 Worklist.push_back(LU.MaxOffset);
2138
2139 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2140 const SCEV *G = Base.BaseRegs[i];
2141
2142 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2143 E = Worklist.end(); I != E; ++I) {
2144 Formula F = Base;
2145 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2146 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2147 LU.Kind, LU.AccessTy, TLI)) {
2148 F.BaseRegs[i] = SE.getAddExpr(G, SE.getIntegerSCEV(*I, G->getType()));
2149
2150 (void)InsertFormula(LU, LUIdx, F);
2151 }
2152 }
2153
2154 int64_t Imm = ExtractImmediate(G, SE);
2155 if (G->isZero() || Imm == 0)
2156 continue;
2157 Formula F = Base;
2158 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2159 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2160 LU.Kind, LU.AccessTy, TLI))
2161 continue;
2162 F.BaseRegs[i] = G;
2163 (void)InsertFormula(LU, LUIdx, F);
2164 }
2165}
2166
2167/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2168/// the comparison. For example, x == y -> x*c == y*c.
2169void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2170 Formula Base) {
2171 if (LU.Kind != LSRUse::ICmpZero) return;
2172
2173 // Determine the integer type for the base formula.
2174 const Type *IntTy = Base.getType();
2175 if (!IntTy) return;
2176 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2177
2178 // Don't do this if there is more than one offset.
2179 if (LU.MinOffset != LU.MaxOffset) return;
2180
2181 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2182
2183 // Check each interesting stride.
2184 for (SmallSetVector<int64_t, 8>::const_iterator
2185 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2186 int64_t Factor = *I;
2187 Formula F = Base;
2188
2189 // Check that the multiplication doesn't overflow.
Dan Gohman968cb932010-02-17 00:41:53 +00002190 if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
2191 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002192 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002193 if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
Dan Gohman572645c2010-02-12 10:34:29 +00002194 continue;
2195
2196 // Check that multiplying with the use offset doesn't overflow.
2197 int64_t Offset = LU.MinOffset;
Dan Gohman968cb932010-02-17 00:41:53 +00002198 if (Offset == INT64_MIN && Factor == -1)
2199 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002200 Offset = (uint64_t)Offset * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002201 if (Offset / Factor != LU.MinOffset)
Dan Gohman572645c2010-02-12 10:34:29 +00002202 continue;
2203
2204 // Check that this scale is legal.
2205 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2206 continue;
2207
2208 // Compensate for the use having MinOffset built into it.
2209 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2210
2211 const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy);
2212
2213 // Check that multiplying with each base register doesn't overflow.
2214 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2215 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002216 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
Dan Gohman572645c2010-02-12 10:34:29 +00002217 goto next;
2218 }
2219
2220 // Check that multiplying with the scaled register doesn't overflow.
2221 if (F.ScaledReg) {
2222 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002223 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
Dan Gohman572645c2010-02-12 10:34:29 +00002224 continue;
2225 }
2226
2227 // If we make it here and it's legal, add it.
2228 (void)InsertFormula(LU, LUIdx, F);
2229 next:;
2230 }
2231}
2232
2233/// GenerateScales - Generate stride factor reuse formulae by making use of
2234/// scaled-offset address modes, for example.
2235void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx,
2236 Formula Base) {
2237 // Determine the integer type for the base formula.
2238 const Type *IntTy = Base.getType();
2239 if (!IntTy) return;
2240
2241 // If this Formula already has a scaled register, we can't add another one.
2242 if (Base.AM.Scale != 0) return;
2243
2244 // Check each interesting stride.
2245 for (SmallSetVector<int64_t, 8>::const_iterator
2246 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2247 int64_t Factor = *I;
2248
2249 Base.AM.Scale = Factor;
2250 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2251 // Check whether this scale is going to be legal.
2252 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2253 LU.Kind, LU.AccessTy, TLI)) {
2254 // As a special-case, handle special out-of-loop Basic users specially.
2255 // TODO: Reconsider this special case.
2256 if (LU.Kind == LSRUse::Basic &&
2257 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2258 LSRUse::Special, LU.AccessTy, TLI) &&
2259 LU.AllFixupsOutsideLoop)
2260 LU.Kind = LSRUse::Special;
2261 else
2262 continue;
2263 }
2264 // For an ICmpZero, negating a solitary base register won't lead to
2265 // new solutions.
2266 if (LU.Kind == LSRUse::ICmpZero &&
2267 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2268 continue;
2269 // For each addrec base reg, apply the scale, if possible.
2270 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2271 if (const SCEVAddRecExpr *AR =
2272 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
2273 const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy);
2274 if (FactorS->isZero())
2275 continue;
2276 // Divide out the factor, ignoring high bits, since we'll be
2277 // scaling the value back up in the end.
Dan Gohmanf09b7122010-02-19 19:35:48 +00002278 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
Dan Gohman572645c2010-02-12 10:34:29 +00002279 // TODO: This could be optimized to avoid all the copying.
2280 Formula F = Base;
2281 F.ScaledReg = Quotient;
2282 std::swap(F.BaseRegs[i], F.BaseRegs.back());
2283 F.BaseRegs.pop_back();
2284 (void)InsertFormula(LU, LUIdx, F);
2285 }
2286 }
2287 }
2288}
2289
2290/// GenerateTruncates - Generate reuse formulae from different IV types.
2291void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx,
2292 Formula Base) {
2293 // This requires TargetLowering to tell us which truncates are free.
2294 if (!TLI) return;
2295
2296 // Don't bother truncating symbolic values.
2297 if (Base.AM.BaseGV) return;
2298
2299 // Determine the integer type for the base formula.
2300 const Type *DstTy = Base.getType();
2301 if (!DstTy) return;
2302 DstTy = SE.getEffectiveSCEVType(DstTy);
2303
2304 for (SmallSetVector<const Type *, 4>::const_iterator
2305 I = Types.begin(), E = Types.end(); I != E; ++I) {
2306 const Type *SrcTy = *I;
2307 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2308 Formula F = Base;
2309
2310 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2311 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2312 JE = F.BaseRegs.end(); J != JE; ++J)
2313 *J = SE.getAnyExtendExpr(*J, SrcTy);
2314
2315 // TODO: This assumes we've done basic processing on all uses and
2316 // have an idea what the register usage is.
2317 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2318 continue;
2319
2320 (void)InsertFormula(LU, LUIdx, F);
2321 }
2322 }
2323}
2324
2325namespace {
2326
Dan Gohman6020d852010-02-14 18:51:20 +00002327/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
Dan Gohman572645c2010-02-12 10:34:29 +00002328/// defer modifications so that the search phase doesn't have to worry about
2329/// the data structures moving underneath it.
2330struct WorkItem {
2331 size_t LUIdx;
2332 int64_t Imm;
2333 const SCEV *OrigReg;
2334
2335 WorkItem(size_t LI, int64_t I, const SCEV *R)
2336 : LUIdx(LI), Imm(I), OrigReg(R) {}
2337
2338 void print(raw_ostream &OS) const;
2339 void dump() const;
2340};
2341
2342}
2343
2344void WorkItem::print(raw_ostream &OS) const {
2345 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2346 << " , add offset " << Imm;
2347}
2348
2349void WorkItem::dump() const {
2350 print(errs()); errs() << '\n';
2351}
2352
2353/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2354/// distance apart and try to form reuse opportunities between them.
2355void LSRInstance::GenerateCrossUseConstantOffsets() {
2356 // Group the registers by their value without any added constant offset.
2357 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2358 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2359 RegMapTy Map;
2360 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2361 SmallVector<const SCEV *, 8> Sequence;
2362 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2363 I != E; ++I) {
2364 const SCEV *Reg = *I;
2365 int64_t Imm = ExtractImmediate(Reg, SE);
2366 std::pair<RegMapTy::iterator, bool> Pair =
2367 Map.insert(std::make_pair(Reg, ImmMapTy()));
2368 if (Pair.second)
2369 Sequence.push_back(Reg);
2370 Pair.first->second.insert(std::make_pair(Imm, *I));
2371 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2372 }
2373
2374 // Now examine each set of registers with the same base value. Build up
2375 // a list of work to do and do the work in a separate step so that we're
2376 // not adding formulae and register counts while we're searching.
2377 SmallVector<WorkItem, 32> WorkItems;
2378 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2379 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2380 E = Sequence.end(); I != E; ++I) {
2381 const SCEV *Reg = *I;
2382 const ImmMapTy &Imms = Map.find(Reg)->second;
2383
Dan Gohmancd045c02010-02-12 19:20:37 +00002384 // It's not worthwhile looking for reuse if there's only one offset.
2385 if (Imms.size() == 1)
2386 continue;
2387
Dan Gohman572645c2010-02-12 10:34:29 +00002388 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2389 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2390 J != JE; ++J)
2391 dbgs() << ' ' << J->first;
2392 dbgs() << '\n');
2393
2394 // Examine each offset.
2395 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2396 J != JE; ++J) {
2397 const SCEV *OrigReg = J->second;
2398
2399 int64_t JImm = J->first;
2400 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2401
2402 if (!isa<SCEVConstant>(OrigReg) &&
2403 UsedByIndicesMap[Reg].count() == 1) {
2404 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2405 continue;
2406 }
2407
2408 // Conservatively examine offsets between this orig reg a few selected
2409 // other orig regs.
2410 ImmMapTy::const_iterator OtherImms[] = {
2411 Imms.begin(), prior(Imms.end()),
2412 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2413 };
2414 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2415 ImmMapTy::const_iterator M = OtherImms[i];
Dan Gohmancd045c02010-02-12 19:20:37 +00002416 if (M == J || M == JE) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002417
2418 // Compute the difference between the two.
2419 int64_t Imm = (uint64_t)JImm - M->first;
2420 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2421 LUIdx = UsedByIndices.find_next(LUIdx))
2422 // Make a memo of this use, offset, and register tuple.
2423 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2424 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
Evan Cheng586f69a2009-11-12 07:35:05 +00002425 }
2426 }
2427 }
2428
Dan Gohman572645c2010-02-12 10:34:29 +00002429 Map.clear();
2430 Sequence.clear();
2431 UsedByIndicesMap.clear();
2432 UniqueItems.clear();
2433
2434 // Now iterate through the worklist and add new formulae.
2435 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2436 E = WorkItems.end(); I != E; ++I) {
2437 const WorkItem &WI = *I;
2438 size_t LUIdx = WI.LUIdx;
2439 LSRUse &LU = Uses[LUIdx];
2440 int64_t Imm = WI.Imm;
2441 const SCEV *OrigReg = WI.OrigReg;
2442
2443 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2444 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2445 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2446
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002447 // TODO: Use a more targeted data structure.
Dan Gohman572645c2010-02-12 10:34:29 +00002448 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2449 Formula F = LU.Formulae[L];
2450 // Use the immediate in the scaled register.
2451 if (F.ScaledReg == OrigReg) {
2452 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2453 Imm * (uint64_t)F.AM.Scale;
2454 // Don't create 50 + reg(-50).
2455 if (F.referencesReg(SE.getSCEV(
2456 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2457 continue;
2458 Formula NewF = F;
2459 NewF.AM.BaseOffs = Offs;
2460 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2461 LU.Kind, LU.AccessTy, TLI))
2462 continue;
2463 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2464
2465 // If the new scale is a constant in a register, and adding the constant
2466 // value to the immediate would produce a value closer to zero than the
2467 // immediate itself, then the formula isn't worthwhile.
2468 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2469 if (C->getValue()->getValue().isNegative() !=
2470 (NewF.AM.BaseOffs < 0) &&
2471 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
Dan Gohmane0567812010-04-08 23:03:40 +00002472 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00002473 continue;
2474
2475 // OK, looks good.
2476 (void)InsertFormula(LU, LUIdx, NewF);
2477 } else {
2478 // Use the immediate in a base register.
2479 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2480 const SCEV *BaseReg = F.BaseRegs[N];
2481 if (BaseReg != OrigReg)
2482 continue;
2483 Formula NewF = F;
2484 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2485 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2486 LU.Kind, LU.AccessTy, TLI))
2487 continue;
2488 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2489
2490 // If the new formula has a constant in a register, and adding the
2491 // constant value to the immediate would produce a value closer to
2492 // zero than the immediate itself, then the formula isn't worthwhile.
2493 for (SmallVectorImpl<const SCEV *>::const_iterator
2494 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2495 J != JE; ++J)
2496 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2497 if (C->getValue()->getValue().isNegative() !=
2498 (NewF.AM.BaseOffs < 0) &&
2499 C->getValue()->getValue().abs()
Dan Gohmane0567812010-04-08 23:03:40 +00002500 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00002501 goto skip_formula;
2502
2503 // Ok, looks good.
2504 (void)InsertFormula(LU, LUIdx, NewF);
2505 break;
2506 skip_formula:;
2507 }
2508 }
2509 }
2510 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00002511}
2512
Dan Gohman572645c2010-02-12 10:34:29 +00002513/// GenerateAllReuseFormulae - Generate formulae for each use.
2514void
2515LSRInstance::GenerateAllReuseFormulae() {
Dan Gohmanc2385a02010-02-16 01:42:53 +00002516 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
Dan Gohman572645c2010-02-12 10:34:29 +00002517 // queries are more precise.
2518 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2519 LSRUse &LU = Uses[LUIdx];
2520 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2521 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2522 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2523 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2524 }
2525 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2526 LSRUse &LU = Uses[LUIdx];
2527 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2528 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2529 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2530 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2531 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2532 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2533 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2534 GenerateScales(LU, LUIdx, LU.Formulae[i]);
Dan Gohmanc2385a02010-02-16 01:42:53 +00002535 }
2536 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2537 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002538 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2539 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2540 }
2541
2542 GenerateCrossUseConstantOffsets();
2543}
2544
2545/// If their are multiple formulae with the same set of registers used
2546/// by other uses, pick the best one and delete the others.
2547void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2548#ifndef NDEBUG
2549 bool Changed = false;
2550#endif
2551
2552 // Collect the best formula for each unique set of shared registers. This
2553 // is reset for each use.
2554 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2555 BestFormulaeTy;
2556 BestFormulaeTy BestFormulae;
2557
2558 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2559 LSRUse &LU = Uses[LUIdx];
2560 FormulaSorter Sorter(L, LU, SE, DT);
2561
2562 // Clear out the set of used regs; it will be recomputed.
2563 LU.Regs.clear();
2564
2565 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2566 FIdx != NumForms; ++FIdx) {
2567 Formula &F = LU.Formulae[FIdx];
2568
2569 SmallVector<const SCEV *, 2> Key;
2570 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2571 JE = F.BaseRegs.end(); J != JE; ++J) {
2572 const SCEV *Reg = *J;
2573 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2574 Key.push_back(Reg);
2575 }
2576 if (F.ScaledReg &&
2577 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2578 Key.push_back(F.ScaledReg);
2579 // Unstable sort by host order ok, because this is only used for
2580 // uniquifying.
2581 std::sort(Key.begin(), Key.end());
2582
2583 std::pair<BestFormulaeTy::const_iterator, bool> P =
2584 BestFormulae.insert(std::make_pair(Key, FIdx));
2585 if (!P.second) {
2586 Formula &Best = LU.Formulae[P.first->second];
2587 if (Sorter.operator()(F, Best))
2588 std::swap(F, Best);
2589 DEBUG(dbgs() << "Filtering out "; F.print(dbgs());
2590 dbgs() << "\n"
2591 " in favor of "; Best.print(dbgs());
2592 dbgs() << '\n');
2593#ifndef NDEBUG
2594 Changed = true;
2595#endif
2596 std::swap(F, LU.Formulae.back());
2597 LU.Formulae.pop_back();
2598 --FIdx;
2599 --NumForms;
2600 continue;
2601 }
2602 if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2603 LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2604 }
2605 BestFormulae.clear();
2606 }
2607
2608 DEBUG(if (Changed) {
Dan Gohman9214b822010-02-13 02:06:02 +00002609 dbgs() << "\n"
2610 "After filtering out undesirable candidates:\n";
Dan Gohman572645c2010-02-12 10:34:29 +00002611 print_uses(dbgs());
2612 });
2613}
2614
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002615/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
Dan Gohman572645c2010-02-12 10:34:29 +00002616/// formulae to choose from, use some rough heuristics to prune down the number
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002617/// of formulae. This keeps the main solver from taking an extraordinary amount
Dan Gohman572645c2010-02-12 10:34:29 +00002618/// of time in some worst-case scenarios.
2619void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
2620 // This is a rough guess that seems to work fairly well.
2621 const size_t Limit = UINT16_MAX;
2622
2623 SmallPtrSet<const SCEV *, 4> Taken;
2624 for (;;) {
2625 // Estimate the worst-case number of solutions we might consider. We almost
2626 // never consider this many solutions because we prune the search space,
2627 // but the pruning isn't always sufficient.
2628 uint32_t Power = 1;
2629 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2630 E = Uses.end(); I != E; ++I) {
2631 size_t FSize = I->Formulae.size();
2632 if (FSize >= Limit) {
2633 Power = Limit;
2634 break;
2635 }
2636 Power *= FSize;
2637 if (Power >= Limit)
2638 break;
2639 }
2640 if (Power < Limit)
2641 break;
2642
2643 // Ok, we have too many of formulae on our hands to conveniently handle.
2644 // Use a rough heuristic to thin out the list.
2645
2646 // Pick the register which is used by the most LSRUses, which is likely
2647 // to be a good reuse register candidate.
2648 const SCEV *Best = 0;
2649 unsigned BestNum = 0;
2650 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2651 I != E; ++I) {
2652 const SCEV *Reg = *I;
2653 if (Taken.count(Reg))
2654 continue;
2655 if (!Best)
2656 Best = Reg;
2657 else {
2658 unsigned Count = RegUses.getUsedByIndices(Reg).count();
2659 if (Count > BestNum) {
2660 Best = Reg;
2661 BestNum = Count;
2662 }
2663 }
2664 }
2665
2666 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002667 << " will yield profitable reuse.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002668 Taken.insert(Best);
2669
2670 // In any use with formulae which references this register, delete formulae
2671 // which don't reference it.
2672 for (SmallVectorImpl<LSRUse>::iterator I = Uses.begin(),
2673 E = Uses.end(); I != E; ++I) {
2674 LSRUse &LU = *I;
2675 if (!LU.Regs.count(Best)) continue;
2676
2677 // Clear out the set of used regs; it will be recomputed.
2678 LU.Regs.clear();
2679
2680 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2681 Formula &F = LU.Formulae[i];
2682 if (!F.referencesReg(Best)) {
2683 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
2684 std::swap(LU.Formulae.back(), F);
2685 LU.Formulae.pop_back();
2686 --e;
2687 --i;
2688 continue;
2689 }
2690
2691 if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2692 LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2693 }
2694 }
2695
2696 DEBUG(dbgs() << "After pre-selection:\n";
2697 print_uses(dbgs()));
2698 }
2699}
2700
2701/// SolveRecurse - This is the recursive solver.
2702void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2703 Cost &SolutionCost,
2704 SmallVectorImpl<const Formula *> &Workspace,
2705 const Cost &CurCost,
2706 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2707 DenseSet<const SCEV *> &VisitedRegs) const {
2708 // Some ideas:
2709 // - prune more:
2710 // - use more aggressive filtering
2711 // - sort the formula so that the most profitable solutions are found first
2712 // - sort the uses too
2713 // - search faster:
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002714 // - don't compute a cost, and then compare. compare while computing a cost
Dan Gohman572645c2010-02-12 10:34:29 +00002715 // and bail early.
2716 // - track register sets with SmallBitVector
2717
2718 const LSRUse &LU = Uses[Workspace.size()];
2719
2720 // If this use references any register that's already a part of the
2721 // in-progress solution, consider it a requirement that a formula must
2722 // reference that register in order to be considered. This prunes out
2723 // unprofitable searching.
2724 SmallSetVector<const SCEV *, 4> ReqRegs;
2725 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
2726 E = CurRegs.end(); I != E; ++I)
Dan Gohman9214b822010-02-13 02:06:02 +00002727 if (LU.Regs.count(*I))
Dan Gohman572645c2010-02-12 10:34:29 +00002728 ReqRegs.insert(*I);
Dan Gohman572645c2010-02-12 10:34:29 +00002729
Dan Gohman9214b822010-02-13 02:06:02 +00002730 bool AnySatisfiedReqRegs = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002731 SmallPtrSet<const SCEV *, 16> NewRegs;
2732 Cost NewCost;
Dan Gohman9214b822010-02-13 02:06:02 +00002733retry:
Dan Gohman572645c2010-02-12 10:34:29 +00002734 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2735 E = LU.Formulae.end(); I != E; ++I) {
2736 const Formula &F = *I;
2737
2738 // Ignore formulae which do not use any of the required registers.
2739 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
2740 JE = ReqRegs.end(); J != JE; ++J) {
2741 const SCEV *Reg = *J;
2742 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
2743 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
2744 F.BaseRegs.end())
2745 goto skip;
2746 }
Dan Gohman9214b822010-02-13 02:06:02 +00002747 AnySatisfiedReqRegs = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002748
2749 // Evaluate the cost of the current formula. If it's already worse than
2750 // the current best, prune the search at that point.
2751 NewCost = CurCost;
2752 NewRegs = CurRegs;
2753 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
2754 if (NewCost < SolutionCost) {
2755 Workspace.push_back(&F);
2756 if (Workspace.size() != Uses.size()) {
2757 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
2758 NewRegs, VisitedRegs);
2759 if (F.getNumRegs() == 1 && Workspace.size() == 1)
2760 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
2761 } else {
2762 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
2763 dbgs() << ". Regs:";
2764 for (SmallPtrSet<const SCEV *, 16>::const_iterator
2765 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
2766 dbgs() << ' ' << **I;
2767 dbgs() << '\n');
2768
2769 SolutionCost = NewCost;
2770 Solution = Workspace;
2771 }
2772 Workspace.pop_back();
2773 }
2774 skip:;
2775 }
Dan Gohman9214b822010-02-13 02:06:02 +00002776
2777 // If none of the formulae had all of the required registers, relax the
2778 // constraint so that we don't exclude all formulae.
2779 if (!AnySatisfiedReqRegs) {
2780 ReqRegs.clear();
2781 goto retry;
2782 }
Dan Gohman572645c2010-02-12 10:34:29 +00002783}
2784
2785void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
2786 SmallVector<const Formula *, 8> Workspace;
2787 Cost SolutionCost;
2788 SolutionCost.Loose();
2789 Cost CurCost;
2790 SmallPtrSet<const SCEV *, 16> CurRegs;
2791 DenseSet<const SCEV *> VisitedRegs;
2792 Workspace.reserve(Uses.size());
2793
2794 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
2795 CurRegs, VisitedRegs);
2796
2797 // Ok, we've now made all our decisions.
2798 DEBUG(dbgs() << "\n"
2799 "The chosen solution requires "; SolutionCost.print(dbgs());
2800 dbgs() << ":\n";
2801 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
2802 dbgs() << " ";
2803 Uses[i].print(dbgs());
2804 dbgs() << "\n"
2805 " ";
2806 Solution[i]->print(dbgs());
2807 dbgs() << '\n';
2808 });
2809}
2810
2811/// getImmediateDominator - A handy utility for the specific DominatorTree
2812/// query that we need here.
2813///
2814static BasicBlock *getImmediateDominator(BasicBlock *BB, DominatorTree &DT) {
2815 DomTreeNode *Node = DT.getNode(BB);
2816 if (!Node) return 0;
2817 Node = Node->getIDom();
2818 if (!Node) return 0;
2819 return Node->getBlock();
2820}
2821
Dan Gohmane5f76872010-04-09 22:07:05 +00002822/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
2823/// the dominator tree far as we can go while still being dominated by the
2824/// input positions. This helps canonicalize the insert position, which
2825/// encourages sharing.
2826BasicBlock::iterator
2827LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
2828 const SmallVectorImpl<Instruction *> &Inputs)
2829 const {
2830 for (;;) {
2831 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
2832 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
2833
2834 BasicBlock *IDom;
2835 for (BasicBlock *Rung = IP->getParent(); ; Rung = IDom) {
2836 IDom = getImmediateDominator(Rung, DT);
2837 if (!IDom) return IP;
2838
2839 // Don't climb into a loop though.
2840 const Loop *IDomLoop = LI.getLoopFor(IDom);
2841 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
2842 if (IDomDepth <= IPLoopDepth &&
2843 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
2844 break;
2845 }
2846
2847 bool AllDominate = true;
2848 Instruction *BetterPos = 0;
2849 Instruction *Tentative = IDom->getTerminator();
2850 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
2851 E = Inputs.end(); I != E; ++I) {
2852 Instruction *Inst = *I;
2853 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
2854 AllDominate = false;
2855 break;
2856 }
2857 // Attempt to find an insert position in the middle of the block,
2858 // instead of at the end, so that it can be used for other expansions.
2859 if (IDom == Inst->getParent() &&
2860 (!BetterPos || DT.dominates(BetterPos, Inst)))
2861 BetterPos = next(BasicBlock::iterator(Inst));
2862 }
2863 if (!AllDominate)
2864 break;
2865 if (BetterPos)
2866 IP = BetterPos;
2867 else
2868 IP = Tentative;
2869 }
2870
2871 return IP;
2872}
2873
2874/// AdjustInsertPositionForExpand - Determine an input position which will be
Dan Gohmand96eae82010-04-09 02:00:38 +00002875/// dominated by the operands and which will dominate the result.
2876BasicBlock::iterator
Dan Gohmane5f76872010-04-09 22:07:05 +00002877LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2878 const LSRFixup &LF,
2879 const LSRUse &LU) const {
Dan Gohmand96eae82010-04-09 02:00:38 +00002880 // Collect some instructions which must be dominated by the
Dan Gohman448db1c2010-04-07 22:27:08 +00002881 // expanding replacement. These must be dominated by any operands that
Dan Gohman572645c2010-02-12 10:34:29 +00002882 // will be required in the expansion.
2883 SmallVector<Instruction *, 4> Inputs;
2884 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
2885 Inputs.push_back(I);
2886 if (LU.Kind == LSRUse::ICmpZero)
2887 if (Instruction *I =
2888 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
2889 Inputs.push_back(I);
Dan Gohman448db1c2010-04-07 22:27:08 +00002890 if (LF.PostIncLoops.count(L)) {
2891 if (LF.isUseFullyOutsideLoop(L))
Dan Gohman069d6f32010-03-02 01:59:21 +00002892 Inputs.push_back(L->getLoopLatch()->getTerminator());
2893 else
2894 Inputs.push_back(IVIncInsertPos);
2895 }
Dan Gohman701a4ae2010-04-08 05:57:57 +00002896 // The expansion must also be dominated by the increment positions of any
2897 // loops it for which it is using post-inc mode.
2898 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
2899 E = LF.PostIncLoops.end(); I != E; ++I) {
2900 const Loop *PIL = *I;
2901 if (PIL == L) continue;
2902
Dan Gohmane5f76872010-04-09 22:07:05 +00002903 // Be dominated by the loop exit.
Dan Gohman701a4ae2010-04-08 05:57:57 +00002904 SmallVector<BasicBlock *, 4> ExitingBlocks;
2905 PIL->getExitingBlocks(ExitingBlocks);
2906 if (!ExitingBlocks.empty()) {
2907 BasicBlock *BB = ExitingBlocks[0];
2908 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
2909 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
2910 Inputs.push_back(BB->getTerminator());
2911 }
2912 }
Dan Gohman572645c2010-02-12 10:34:29 +00002913
2914 // Then, climb up the immediate dominator tree as far as we can go while
2915 // still being dominated by the input positions.
Dan Gohmane5f76872010-04-09 22:07:05 +00002916 IP = HoistInsertPosition(IP, Inputs);
Dan Gohmand96eae82010-04-09 02:00:38 +00002917
2918 // Don't insert instructions before PHI nodes.
Dan Gohman572645c2010-02-12 10:34:29 +00002919 while (isa<PHINode>(IP)) ++IP;
Dan Gohmand96eae82010-04-09 02:00:38 +00002920
2921 // Ignore debug intrinsics.
Dan Gohman449f31c2010-03-26 00:33:27 +00002922 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
Dan Gohman572645c2010-02-12 10:34:29 +00002923
Dan Gohmand96eae82010-04-09 02:00:38 +00002924 return IP;
2925}
2926
2927Value *LSRInstance::Expand(const LSRFixup &LF,
2928 const Formula &F,
2929 BasicBlock::iterator IP,
2930 SCEVExpander &Rewriter,
2931 SmallVectorImpl<WeakVH> &DeadInsts) const {
2932 const LSRUse &LU = Uses[LF.LUIdx];
2933
2934 // Determine an input position which will be dominated by the operands and
2935 // which will dominate the result.
Dan Gohmane5f76872010-04-09 22:07:05 +00002936 IP = AdjustInsertPositionForExpand(IP, LF, LU);
Dan Gohmand96eae82010-04-09 02:00:38 +00002937
Dan Gohman572645c2010-02-12 10:34:29 +00002938 // Inform the Rewriter if we have a post-increment use, so that it can
2939 // perform an advantageous expansion.
Dan Gohman448db1c2010-04-07 22:27:08 +00002940 Rewriter.setPostInc(LF.PostIncLoops);
Dan Gohman572645c2010-02-12 10:34:29 +00002941
2942 // This is the type that the user actually needs.
2943 const Type *OpTy = LF.OperandValToReplace->getType();
2944 // This will be the type that we'll initially expand to.
2945 const Type *Ty = F.getType();
2946 if (!Ty)
2947 // No type known; just expand directly to the ultimate type.
2948 Ty = OpTy;
2949 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
2950 // Expand directly to the ultimate type if it's the right size.
2951 Ty = OpTy;
2952 // This is the type to do integer arithmetic in.
2953 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
2954
2955 // Build up a list of operands to add together to form the full base.
2956 SmallVector<const SCEV *, 8> Ops;
2957
2958 // Expand the BaseRegs portion.
2959 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2960 E = F.BaseRegs.end(); I != E; ++I) {
2961 const SCEV *Reg = *I;
2962 assert(!Reg->isZero() && "Zero allocated in a base register!");
2963
Dan Gohman448db1c2010-04-07 22:27:08 +00002964 // If we're expanding for a post-inc user, make the post-inc adjustment.
2965 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
2966 Reg = TransformForPostIncUse(Denormalize, Reg,
2967 LF.UserInst, LF.OperandValToReplace,
2968 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00002969
2970 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
2971 }
2972
Dan Gohman087bd1e2010-03-03 05:29:13 +00002973 // Flush the operand list to suppress SCEVExpander hoisting.
2974 if (!Ops.empty()) {
2975 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
2976 Ops.clear();
2977 Ops.push_back(SE.getUnknown(FullV));
2978 }
2979
Dan Gohman572645c2010-02-12 10:34:29 +00002980 // Expand the ScaledReg portion.
2981 Value *ICmpScaledV = 0;
2982 if (F.AM.Scale != 0) {
2983 const SCEV *ScaledS = F.ScaledReg;
2984
Dan Gohman448db1c2010-04-07 22:27:08 +00002985 // If we're expanding for a post-inc user, make the post-inc adjustment.
2986 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
2987 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
2988 LF.UserInst, LF.OperandValToReplace,
2989 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00002990
2991 if (LU.Kind == LSRUse::ICmpZero) {
2992 // An interesting way of "folding" with an icmp is to use a negated
2993 // scale, which we'll implement by inserting it into the other operand
2994 // of the icmp.
2995 assert(F.AM.Scale == -1 &&
2996 "The only scale supported by ICmpZero uses is -1!");
2997 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
2998 } else {
2999 // Otherwise just expand the scaled register and an explicit scale,
3000 // which is expected to be matched as part of the address.
3001 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3002 ScaledS = SE.getMulExpr(ScaledS,
3003 SE.getIntegerSCEV(F.AM.Scale,
3004 ScaledS->getType()));
3005 Ops.push_back(ScaledS);
Dan Gohman087bd1e2010-03-03 05:29:13 +00003006
3007 // Flush the operand list to suppress SCEVExpander hoisting.
3008 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3009 Ops.clear();
3010 Ops.push_back(SE.getUnknown(FullV));
Dan Gohman572645c2010-02-12 10:34:29 +00003011 }
3012 }
3013
Dan Gohman087bd1e2010-03-03 05:29:13 +00003014 // Expand the GV portion.
3015 if (F.AM.BaseGV) {
3016 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3017
3018 // Flush the operand list to suppress SCEVExpander hoisting.
3019 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3020 Ops.clear();
3021 Ops.push_back(SE.getUnknown(FullV));
3022 }
3023
3024 // Expand the immediate portion.
Dan Gohman572645c2010-02-12 10:34:29 +00003025 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3026 if (Offset != 0) {
3027 if (LU.Kind == LSRUse::ICmpZero) {
3028 // The other interesting way of "folding" with an ICmpZero is to use a
3029 // negated immediate.
3030 if (!ICmpScaledV)
3031 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3032 else {
3033 Ops.push_back(SE.getUnknown(ICmpScaledV));
3034 ICmpScaledV = ConstantInt::get(IntTy, Offset);
3035 }
3036 } else {
3037 // Just add the immediate values. These again are expected to be matched
3038 // as part of the address.
Dan Gohman087bd1e2010-03-03 05:29:13 +00003039 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
Dan Gohman572645c2010-02-12 10:34:29 +00003040 }
3041 }
3042
3043 // Emit instructions summing all the operands.
3044 const SCEV *FullS = Ops.empty() ?
3045 SE.getIntegerSCEV(0, IntTy) :
3046 SE.getAddExpr(Ops);
3047 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3048
3049 // We're done expanding now, so reset the rewriter.
Dan Gohman448db1c2010-04-07 22:27:08 +00003050 Rewriter.clearPostInc();
Dan Gohman572645c2010-02-12 10:34:29 +00003051
3052 // An ICmpZero Formula represents an ICmp which we're handling as a
3053 // comparison against zero. Now that we've expanded an expression for that
3054 // form, update the ICmp's other operand.
3055 if (LU.Kind == LSRUse::ICmpZero) {
3056 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3057 DeadInsts.push_back(CI->getOperand(1));
3058 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3059 "a scale at the same time!");
3060 if (F.AM.Scale == -1) {
3061 if (ICmpScaledV->getType() != OpTy) {
3062 Instruction *Cast =
3063 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3064 OpTy, false),
3065 ICmpScaledV, OpTy, "tmp", CI);
3066 ICmpScaledV = Cast;
3067 }
3068 CI->setOperand(1, ICmpScaledV);
3069 } else {
3070 assert(F.AM.Scale == 0 &&
3071 "ICmp does not support folding a global value and "
3072 "a scale at the same time!");
3073 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3074 -(uint64_t)Offset);
3075 if (C->getType() != OpTy)
3076 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3077 OpTy, false),
3078 C, OpTy);
3079
3080 CI->setOperand(1, C);
3081 }
3082 }
3083
3084 return FullV;
3085}
3086
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003087/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3088/// of their operands effectively happens in their predecessor blocks, so the
3089/// expression may need to be expanded in multiple places.
3090void LSRInstance::RewriteForPHI(PHINode *PN,
3091 const LSRFixup &LF,
3092 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003093 SCEVExpander &Rewriter,
3094 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003095 Pass *P) const {
3096 DenseMap<BasicBlock *, Value *> Inserted;
3097 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3098 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3099 BasicBlock *BB = PN->getIncomingBlock(i);
3100
3101 // If this is a critical edge, split the edge so that we do not insert
3102 // the code on all predecessor/successor paths. We do this unless this
3103 // is the canonical backedge for this loop, which complicates post-inc
3104 // users.
3105 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3106 !isa<IndirectBrInst>(BB->getTerminator()) &&
3107 (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3108 // Split the critical edge.
3109 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3110
3111 // If PN is outside of the loop and BB is in the loop, we want to
3112 // move the block to be immediately before the PHI block, not
3113 // immediately after BB.
3114 if (L->contains(BB) && !L->contains(PN))
3115 NewBB->moveBefore(PN->getParent());
3116
3117 // Splitting the edge can reduce the number of PHI entries we have.
3118 e = PN->getNumIncomingValues();
3119 BB = NewBB;
3120 i = PN->getBasicBlockIndex(BB);
3121 }
3122
3123 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3124 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3125 if (!Pair.second)
3126 PN->setIncomingValue(i, Pair.first->second);
3127 else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003128 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003129
3130 // If this is reuse-by-noop-cast, insert the noop cast.
3131 const Type *OpTy = LF.OperandValToReplace->getType();
3132 if (FullV->getType() != OpTy)
3133 FullV =
3134 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3135 OpTy, false),
3136 FullV, LF.OperandValToReplace->getType(),
3137 "tmp", BB->getTerminator());
3138
3139 PN->setIncomingValue(i, FullV);
3140 Pair.first->second = FullV;
3141 }
3142 }
3143}
3144
Dan Gohman572645c2010-02-12 10:34:29 +00003145/// Rewrite - Emit instructions for the leading candidate expression for this
3146/// LSRUse (this is called "expanding"), and update the UserInst to reference
3147/// the newly expanded value.
3148void LSRInstance::Rewrite(const LSRFixup &LF,
3149 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00003150 SCEVExpander &Rewriter,
3151 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00003152 Pass *P) const {
Dan Gohman572645c2010-02-12 10:34:29 +00003153 // First, find an insertion point that dominates UserInst. For PHI nodes,
3154 // find the nearest block which dominates all the relevant uses.
3155 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
Dan Gohman454d26d2010-02-22 04:11:59 +00003156 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003157 } else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003158 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
Dan Gohman572645c2010-02-12 10:34:29 +00003159
3160 // If this is reuse-by-noop-cast, insert the noop cast.
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003161 const Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003162 if (FullV->getType() != OpTy) {
3163 Instruction *Cast =
3164 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3165 FullV, OpTy, "tmp", LF.UserInst);
3166 FullV = Cast;
3167 }
3168
3169 // Update the user. ICmpZero is handled specially here (for now) because
3170 // Expand may have updated one of the operands of the icmp already, and
3171 // its new value may happen to be equal to LF.OperandValToReplace, in
3172 // which case doing replaceUsesOfWith leads to replacing both operands
3173 // with the same value. TODO: Reorganize this.
3174 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3175 LF.UserInst->setOperand(0, FullV);
3176 else
3177 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3178 }
3179
3180 DeadInsts.push_back(LF.OperandValToReplace);
3181}
3182
3183void
3184LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3185 Pass *P) {
3186 // Keep track of instructions we may have made dead, so that
3187 // we can remove them after we are done working.
3188 SmallVector<WeakVH, 16> DeadInsts;
3189
3190 SCEVExpander Rewriter(SE);
3191 Rewriter.disableCanonicalMode();
3192 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3193
3194 // Expand the new value definitions and update the users.
3195 for (size_t i = 0, e = Fixups.size(); i != e; ++i) {
3196 size_t LUIdx = Fixups[i].LUIdx;
3197
Dan Gohman454d26d2010-02-22 04:11:59 +00003198 Rewrite(Fixups[i], *Solution[LUIdx], Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003199
3200 Changed = true;
3201 }
3202
3203 // Clean up after ourselves. This must be done before deleting any
3204 // instructions.
3205 Rewriter.clear();
3206
3207 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3208}
3209
3210LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3211 : IU(P->getAnalysis<IVUsers>()),
3212 SE(P->getAnalysis<ScalarEvolution>()),
3213 DT(P->getAnalysis<DominatorTree>()),
Dan Gohmane5f76872010-04-09 22:07:05 +00003214 LI(P->getAnalysis<LoopInfo>()),
Dan Gohman572645c2010-02-12 10:34:29 +00003215 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
Devang Patel0f54dcb2007-03-06 21:14:09 +00003216
Dan Gohman03e896b2009-11-05 21:11:53 +00003217 // If LoopSimplify form is not available, stay out of trouble.
Dan Gohman572645c2010-02-12 10:34:29 +00003218 if (!L->isLoopSimplifyForm()) return;
Dan Gohman03e896b2009-11-05 21:11:53 +00003219
Dan Gohman572645c2010-02-12 10:34:29 +00003220 // If there's no interesting work to be done, bail early.
3221 if (IU.empty()) return;
Dan Gohman80b0f8c2009-03-09 20:34:59 +00003222
Dan Gohman572645c2010-02-12 10:34:29 +00003223 DEBUG(dbgs() << "\nLSR on loop ";
3224 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3225 dbgs() << ":\n");
Dan Gohmanf7912df2009-03-09 20:46:50 +00003226
Dan Gohman572645c2010-02-12 10:34:29 +00003227 /// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003228 /// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00003229 OptimizeShadowIV();
Chris Lattner010de252005-08-08 05:28:22 +00003230
Dan Gohman572645c2010-02-12 10:34:29 +00003231 // Change loop terminating condition to use the postinc iv when possible.
3232 Changed |= OptimizeLoopTermCond();
Evan Cheng5792f512009-05-11 22:33:01 +00003233
Dan Gohman572645c2010-02-12 10:34:29 +00003234 CollectInterestingTypesAndFactors();
3235 CollectFixupsAndInitialFormulae();
3236 CollectLoopInvariantFixupsAndFormulae();
Chris Lattner010de252005-08-08 05:28:22 +00003237
Dan Gohman572645c2010-02-12 10:34:29 +00003238 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3239 print_uses(dbgs()));
Misha Brukmanfd939082005-04-21 23:48:37 +00003240
Dan Gohman572645c2010-02-12 10:34:29 +00003241 // Now use the reuse data to generate a bunch of interesting ways
3242 // to formulate the values needed for the uses.
3243 GenerateAllReuseFormulae();
Evan Chengd1d6b5c2006-03-16 21:53:05 +00003244
Dan Gohman572645c2010-02-12 10:34:29 +00003245 DEBUG(dbgs() << "\n"
3246 "After generating reuse formulae:\n";
3247 print_uses(dbgs()));
Nate Begemaneaa13852004-10-18 21:08:22 +00003248
Dan Gohman572645c2010-02-12 10:34:29 +00003249 FilterOutUndesirableDedicatedRegisters();
3250 NarrowSearchSpaceUsingHeuristics();
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003251
Dan Gohman572645c2010-02-12 10:34:29 +00003252 SmallVector<const Formula *, 8> Solution;
3253 Solve(Solution);
3254 assert(Solution.size() == Uses.size() && "Malformed solution!");
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003255
Dan Gohman572645c2010-02-12 10:34:29 +00003256 // Release memory that is no longer needed.
3257 Factors.clear();
3258 Types.clear();
3259 RegUses.clear();
3260
3261#ifndef NDEBUG
3262 // Formulae should be legal.
3263 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3264 E = Uses.end(); I != E; ++I) {
3265 const LSRUse &LU = *I;
3266 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3267 JE = LU.Formulae.end(); J != JE; ++J)
3268 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3269 LU.Kind, LU.AccessTy, TLI) &&
3270 "Illegal formula generated!");
3271 };
3272#endif
3273
3274 // Now that we've decided what we want, make it so.
3275 ImplementSolution(Solution, P);
3276}
3277
3278void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3279 if (Factors.empty() && Types.empty()) return;
3280
3281 OS << "LSR has identified the following interesting factors and types: ";
3282 bool First = true;
3283
3284 for (SmallSetVector<int64_t, 8>::const_iterator
3285 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3286 if (!First) OS << ", ";
3287 First = false;
3288 OS << '*' << *I;
Evan Cheng81ebdcf2009-11-10 21:14:05 +00003289 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00003290
Dan Gohman572645c2010-02-12 10:34:29 +00003291 for (SmallSetVector<const Type *, 4>::const_iterator
3292 I = Types.begin(), E = Types.end(); I != E; ++I) {
3293 if (!First) OS << ", ";
3294 First = false;
3295 OS << '(' << **I << ')';
3296 }
3297 OS << '\n';
3298}
3299
3300void LSRInstance::print_fixups(raw_ostream &OS) const {
3301 OS << "LSR is examining the following fixup sites:\n";
3302 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3303 E = Fixups.end(); I != E; ++I) {
3304 const LSRFixup &LF = *I;
3305 dbgs() << " ";
3306 LF.print(OS);
3307 OS << '\n';
3308 }
3309}
3310
3311void LSRInstance::print_uses(raw_ostream &OS) const {
3312 OS << "LSR is examining the following uses:\n";
3313 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3314 E = Uses.end(); I != E; ++I) {
3315 const LSRUse &LU = *I;
3316 dbgs() << " ";
3317 LU.print(OS);
3318 OS << '\n';
3319 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3320 JE = LU.Formulae.end(); J != JE; ++J) {
3321 OS << " ";
3322 J->print(OS);
3323 OS << '\n';
3324 }
3325 }
3326}
3327
3328void LSRInstance::print(raw_ostream &OS) const {
3329 print_factors_and_types(OS);
3330 print_fixups(OS);
3331 print_uses(OS);
3332}
3333
3334void LSRInstance::dump() const {
3335 print(errs()); errs() << '\n';
3336}
3337
3338namespace {
3339
3340class LoopStrengthReduce : public LoopPass {
3341 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3342 /// transformation profitability.
3343 const TargetLowering *const TLI;
3344
3345public:
3346 static char ID; // Pass ID, replacement for typeid
3347 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3348
3349private:
3350 bool runOnLoop(Loop *L, LPPassManager &LPM);
3351 void getAnalysisUsage(AnalysisUsage &AU) const;
3352};
3353
3354}
3355
3356char LoopStrengthReduce::ID = 0;
3357static RegisterPass<LoopStrengthReduce>
3358X("loop-reduce", "Loop Strength Reduction");
3359
3360Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3361 return new LoopStrengthReduce(TLI);
3362}
3363
3364LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3365 : LoopPass(&ID), TLI(tli) {}
3366
3367void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3368 // We split critical edges, so we change the CFG. However, we do update
3369 // many analyses if they are around.
3370 AU.addPreservedID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00003371 AU.addPreserved("domfrontier");
3372
Dan Gohmane5f76872010-04-09 22:07:05 +00003373 AU.addRequired<LoopInfo>();
3374 AU.addPreserved<LoopInfo>();
Dan Gohman572645c2010-02-12 10:34:29 +00003375 AU.addRequiredID(LoopSimplifyID);
3376 AU.addRequired<DominatorTree>();
3377 AU.addPreserved<DominatorTree>();
3378 AU.addRequired<ScalarEvolution>();
3379 AU.addPreserved<ScalarEvolution>();
3380 AU.addRequired<IVUsers>();
3381 AU.addPreserved<IVUsers>();
3382}
3383
3384bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3385 bool Changed = false;
3386
3387 // Run the main LSR transformation.
3388 Changed |= LSRInstance(TLI, L, this).getChanged();
3389
Dan Gohmanafc36a92009-05-02 18:29:22 +00003390 // At this point, it is worth checking to see if any recurrence PHIs are also
Dan Gohman35738ac2009-05-04 22:30:44 +00003391 // dead, so that we can remove them as well.
Dan Gohman9fff2182010-01-05 16:31:45 +00003392 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohmanafc36a92009-05-02 18:29:22 +00003393
Evan Cheng1ce75dc2008-07-07 19:51:32 +00003394 return Changed;
Nate Begemaneaa13852004-10-18 21:08:22 +00003395}