blob: ffcf97c62e4387f6287bdb9b0361757dc69c74c6 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +000025#include "llvm/Transforms/Utils/Local.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000026#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000027#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000028#include "llvm/Function.h"
Chandler Carruth06cb8ed2012-06-29 12:38:19 +000029#include "llvm/IRBuilder.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000030#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000031#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000032#include "llvm/Pass.h"
Chandler Carruth06cb8ed2012-06-29 12:38:19 +000033#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/Statistic.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000038#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000039#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000040#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000041#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000042#include "llvm/Support/raw_ostream.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000043#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000044using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000045
Chris Lattner0e5f4992006-12-19 21:40:18 +000046STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000049
Chris Lattner0e5f4992006-12-19 21:40:18 +000050namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000051 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000052 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000059}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000060
Devang Patel50cacb22008-11-21 21:00:20 +000061#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000062/// PrintOps - Print out the expression identified in the Ops list.
63///
Chris Lattner9f7b7082009-12-31 18:40:32 +000064static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000065 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000067 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000069 dbgs() << "[ ";
70 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000072 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000073}
Devang Patel59500c82008-11-21 20:00:59 +000074#endif
Bill Wendlinge8cd3f22012-05-02 23:43:23 +000075
Dan Gohman844731a2008-05-13 00:00:25 +000076namespace {
Chandler Carruth464bda32012-04-26 05:30:30 +000077 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
113}
114
115namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +0000116 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000117 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topperf1d0f772012-03-26 06:58:25 +0000118 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Duncan Sands841f4262012-06-08 20:15:33 +0000119 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000120 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000121 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +0000122 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +0000123 Reassociate() : FunctionPass(ID) {
124 initializeReassociatePass(*PassRegistry::getPassRegistry());
125 }
Devang Patel794fd752007-05-01 21:15:47 +0000126
Chris Lattner7e708292002-06-25 16:13:24 +0000127 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000128
129 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +0000130 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +0000131 }
132 private:
Chris Lattner7e708292002-06-25 16:13:24 +0000133 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000134 unsigned getRank(Value *V);
Duncan Sandscd117f72012-06-15 08:37:50 +0000135 void ReassociateExpression(BinaryOperator *I);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000136 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000137 Value *OptimizeExpression(BinaryOperator *I,
138 SmallVectorImpl<ValueEntry> &Ops);
139 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Chandler Carruth464bda32012-04-26 05:30:30 +0000140 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
141 SmallVectorImpl<Factor> &Factors);
142 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
143 SmallVectorImpl<Factor> &Factors);
144 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000145 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands841f4262012-06-08 20:15:33 +0000146 void EraseInst(Instruction *I);
147 void OptimizeInst(Instruction *I);
Chris Lattner4fd56002002-05-08 22:19:27 +0000148 };
149}
150
Dan Gohman844731a2008-05-13 00:00:25 +0000151char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000152INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000153 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000154
Brian Gaeked0fde302003-11-11 22:41:34 +0000155// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000156FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000157
Duncan Sands0fd120b2012-05-25 12:03:02 +0000158/// isReassociableOp - Return true if V is an instruction of the specified
159/// opcode and if it only has one use.
160static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
161 if (V->hasOneUse() && isa<Instruction>(V) &&
162 cast<Instruction>(V)->getOpcode() == Opcode)
163 return cast<BinaryOperator>(V);
164 return 0;
165}
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000166
Chris Lattner9c723192005-05-08 20:57:04 +0000167static bool isUnmovableInstruction(Instruction *I) {
168 if (I->getOpcode() == Instruction::PHI ||
Bill Wendling98bda3d2012-05-04 04:22:32 +0000169 I->getOpcode() == Instruction::LandingPad ||
Chris Lattner9c723192005-05-08 20:57:04 +0000170 I->getOpcode() == Instruction::Alloca ||
171 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000172 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000173 (I->getOpcode() == Instruction::Call &&
174 !isa<DbgInfoIntrinsic>(I)) ||
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000175 I->getOpcode() == Instruction::UDiv ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000176 I->getOpcode() == Instruction::SDiv ||
177 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000178 I->getOpcode() == Instruction::URem ||
179 I->getOpcode() == Instruction::SRem ||
180 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000181 return true;
182 return false;
183}
184
Chris Lattner7e708292002-06-25 16:13:24 +0000185void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000186 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000187
188 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000189 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000190 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000191
Chris Lattner7e708292002-06-25 16:13:24 +0000192 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000193 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000194 E = RPOT.end(); I != E; ++I) {
195 BasicBlock *BB = *I;
196 unsigned BBRank = RankMap[BB] = ++i << 16;
197
198 // Walk the basic block, adding precomputed ranks for any instructions that
199 // we cannot move. This ensures that the ranks for these instructions are
200 // all different in the block.
201 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
202 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000203 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000204 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000205}
206
207unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000208 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000209 if (I == 0) {
210 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
211 return 0; // Otherwise it's a global or constant, rank 0.
212 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000213
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000214 if (unsigned Rank = ValueRankMap[I])
215 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000216
Chris Lattner08b43922005-05-07 04:08:02 +0000217 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
218 // we can reassociate expressions for code motion! Since we do not recurse
219 // for PHI nodes, we cannot have infinite recursion here, because there
220 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000221 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
222 for (unsigned i = 0, e = I->getNumOperands();
223 i != e && Rank != MaxRank; ++i)
224 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000225
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000226 // If this is a not or neg instruction, do not count it for rank. This
227 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000228 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000229 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000230 ++Rank;
231
David Greenea1fa76c2010-01-05 01:27:24 +0000232 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000233 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000234
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000235 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000236}
237
Chris Lattnerf33151a2005-05-08 21:28:52 +0000238/// LowerNegateToMultiply - Replace 0-X with X*-1.
239///
Duncan Sands841f4262012-06-08 20:15:33 +0000240static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000241 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000242
Duncan Sands0fd120b2012-05-25 12:03:02 +0000243 BinaryOperator *Res =
244 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Duncan Sands841f4262012-06-08 20:15:33 +0000245 Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
Chris Lattner6934a042007-02-11 01:23:03 +0000246 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000247 Neg->replaceAllUsesWith(Res);
Devang Patel5367b232011-04-28 22:48:14 +0000248 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000249 return Res;
250}
251
Duncan Sandsc038a782012-06-12 14:33:56 +0000252/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
253/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
254/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
255/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
256/// even x in Bitwidth-bit arithmetic.
257static unsigned CarmichaelShift(unsigned Bitwidth) {
258 if (Bitwidth < 3)
259 return Bitwidth - 1;
260 return Bitwidth - 2;
261}
262
263/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
264/// reducing the combined weight using any special properties of the operation.
265/// The existing weight LHS represents the computation X op X op ... op X where
266/// X occurs LHS times. The combined weight represents X op X op ... op X with
267/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
268/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
269/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
270static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
271 // If we were working with infinite precision arithmetic then the combined
272 // weight would be LHS + RHS. But we are using finite precision arithmetic,
273 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
274 // for nilpotent operations and addition, but not for idempotent operations
275 // and multiplication), so it is important to correctly reduce the combined
276 // weight back into range if wrapping would be wrong.
277
278 // If RHS is zero then the weight didn't change.
279 if (RHS.isMinValue())
280 return;
281 // If LHS is zero then the combined weight is RHS.
282 if (LHS.isMinValue()) {
283 LHS = RHS;
284 return;
285 }
286 // From this point on we know that neither LHS nor RHS is zero.
287
288 if (Instruction::isIdempotent(Opcode)) {
289 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
290 // weight of 1. Keeping weights at zero or one also means that wrapping is
291 // not a problem.
292 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
293 return; // Return a weight of 1.
294 }
295 if (Instruction::isNilpotent(Opcode)) {
296 // Nilpotent means X op X === 0, so reduce weights modulo 2.
297 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
298 LHS = 0; // 1 + 1 === 0 modulo 2.
299 return;
300 }
301 if (Opcode == Instruction::Add) {
302 // TODO: Reduce the weight by exploiting nsw/nuw?
303 LHS += RHS;
304 return;
305 }
306
307 assert(Opcode == Instruction::Mul && "Unknown associative operation!");
308 unsigned Bitwidth = LHS.getBitWidth();
309 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
310 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
311 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
312 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
313 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
314 // which by a happy accident means that they can always be represented using
315 // Bitwidth bits.
316 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
317 // the Carmichael number).
318 if (Bitwidth > 3) {
319 /// CM - The value of Carmichael's lambda function.
320 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
321 // Any weight W >= Threshold can be replaced with W - CM.
322 APInt Threshold = CM + Bitwidth;
323 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
324 // For Bitwidth 4 or more the following sum does not overflow.
325 LHS += RHS;
326 while (LHS.uge(Threshold))
327 LHS -= CM;
328 } else {
329 // To avoid problems with overflow do everything the same as above but using
330 // a larger type.
331 unsigned CM = 1U << CarmichaelShift(Bitwidth);
332 unsigned Threshold = CM + Bitwidth;
333 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
334 "Weights not reduced!");
335 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
336 while (Total >= Threshold)
337 Total -= CM;
338 LHS = Total;
339 }
340}
341
342/// EvaluateRepeatedConstant - Compute C op C op ... op C where the constant C
343/// is repeated Weight times.
344static Constant *EvaluateRepeatedConstant(unsigned Opcode, Constant *C,
345 APInt Weight) {
346 // For addition the result can be efficiently computed as the product of the
347 // constant and the weight.
348 if (Opcode == Instruction::Add)
349 return ConstantExpr::getMul(C, ConstantInt::get(C->getContext(), Weight));
350
351 // The weight might be huge, so compute by repeated squaring to ensure that
352 // compile time is proportional to the logarithm of the weight.
353 Constant *Result = 0;
354 Constant *Power = C; // Successively C, C op C, (C op C) op (C op C) etc.
355 // Visit the bits in Weight.
356 while (Weight != 0) {
357 // If the current bit in Weight is non-zero do Result = Result op Power.
358 if (Weight[0])
359 Result = Result ? ConstantExpr::get(Opcode, Result, Power) : Power;
360 // Move on to the next bit if any more are non-zero.
361 Weight = Weight.lshr(1);
362 if (Weight.isMinValue())
363 break;
364 // Square the power.
365 Power = ConstantExpr::get(Opcode, Power, Power);
366 }
367
368 assert(Result && "Only positive weights supported!");
369 return Result;
370}
371
372typedef std::pair<Value*, APInt> RepeatedValue;
373
Duncan Sands0fd120b2012-05-25 12:03:02 +0000374/// LinearizeExprTree - Given an associative binary expression, return the leaf
Duncan Sandsc038a782012-06-12 14:33:56 +0000375/// nodes in Ops along with their weights (how many times the leaf occurs). The
376/// original expression is the same as
377/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotema94d6e82012-07-24 10:51:42 +0000378/// op
Duncan Sandsc038a782012-06-12 14:33:56 +0000379/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
380/// op
381/// ...
382/// op
383/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
384///
385/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct, and
386/// they are all non-constant except possibly for the last one, which if it is
387/// constant will have weight one (Ops[N].second === 1).
388///
389/// This routine may modify the function, in which case it returns 'true'. The
390/// changes it makes may well be destructive, changing the value computed by 'I'
391/// to something completely different. Thus if the routine returns 'true' then
392/// you MUST either replace I with a new expression computed from the Ops array,
393/// or use RewriteExprTree to put the values back in.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000394///
Duncan Sands0fd120b2012-05-25 12:03:02 +0000395/// A leaf node is either not a binary operation of the same kind as the root
396/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
397/// opcode), or is the same kind of binary operator but has a use which either
398/// does not belong to the expression, or does belong to the expression but is
399/// a leaf node. Every leaf node has at least one use that is a non-leaf node
400/// of the expression, while for non-leaf nodes (except for the root 'I') every
401/// use is a non-leaf node of the expression.
402///
403/// For example:
404/// expression graph node names
405///
406/// + | I
407/// / \ |
408/// + + | A, B
409/// / \ / \ |
410/// * + * | C, D, E
411/// / \ / \ / \ |
412/// + * | F, G
413///
414/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsc038a782012-06-12 14:33:56 +0000415/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sands0fd120b2012-05-25 12:03:02 +0000416///
417/// The expression is maximal: if some instruction is a binary operator of the
418/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
419/// then the instruction also belongs to the expression, is not a leaf node of
420/// it, and its operands also belong to the expression (but may be leaf nodes).
421///
422/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
423/// order to ensure that every non-root node in the expression has *exactly one*
424/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sandseacc31a2012-05-26 16:42:52 +0000425/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsc038a782012-06-12 14:33:56 +0000426/// RewriteExprTree to put the values back in if the routine indicates that it
427/// made a change by returning 'true'.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000428///
Duncan Sands0fd120b2012-05-25 12:03:02 +0000429/// In the above example either the right operand of A or the left operand of B
430/// will be replaced by undef. If it is B's operand then this gives:
431///
432/// + | I
433/// / \ |
434/// + + | A, B - operand of B replaced with undef
435/// / \ \ |
436/// * + * | C, D, E
437/// / \ / \ / \ |
438/// + * | F, G
439///
Duncan Sandseacc31a2012-05-26 16:42:52 +0000440/// Note that such undef operands can only be reached by passing through 'I'.
441/// For example, if you visit operands recursively starting from a leaf node
442/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sands0fd120b2012-05-25 12:03:02 +0000443/// which requires passing through a phi node.
444///
445/// Note that this routine may also mutate binary operators of the wrong type
446/// that have all uses inside the expression (i.e. only used by non-leaf nodes
447/// of the expression) if it can turn them into binary operators of the right
448/// type and thus make the expression bigger.
449
Duncan Sandsc038a782012-06-12 14:33:56 +0000450static bool LinearizeExprTree(BinaryOperator *I,
451 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sands0fd120b2012-05-25 12:03:02 +0000452 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsc038a782012-06-12 14:33:56 +0000453 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
454 unsigned Opcode = I->getOpcode();
455 assert(Instruction::isAssociative(Opcode) &&
456 Instruction::isCommutative(Opcode) &&
457 "Expected an associative and commutative operation!");
Duncan Sandsee5a0942012-06-13 09:42:13 +0000458 // If we see an absorbing element then the entire expression must be equal to
459 // it. For example, if this is a multiplication expression and zero occurs as
460 // an operand somewhere in it then the result of the expression must be zero.
461 Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
Duncan Sands0fd120b2012-05-25 12:03:02 +0000462
463 // Visit all operands of the expression, keeping track of their weight (the
464 // number of paths from the expression root to the operand, or if you like
465 // the number of times that operand occurs in the linearized expression).
466 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
467 // while A has weight two.
468
469 // Worklist of non-leaf nodes (their operands are in the expression too) along
470 // with their weights, representing a certain number of paths to the operator.
471 // If an operator occurs in the worklist multiple times then we found multiple
472 // ways to get to it.
Duncan Sandsc038a782012-06-12 14:33:56 +0000473 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
474 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
475 bool MadeChange = false;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000476
Duncan Sands0fd120b2012-05-25 12:03:02 +0000477 // Leaves of the expression are values that either aren't the right kind of
478 // operation (eg: a constant, or a multiply in an add tree), or are, but have
479 // some uses that are not inside the expression. For example, in I = X + X,
480 // X = A + B, the value X has two uses (by I) that are in the expression. If
481 // X has any other uses, for example in a return instruction, then we consider
482 // X to be a leaf, and won't analyze it further. When we first visit a value,
483 // if it has more than one use then at first we conservatively consider it to
484 // be a leaf. Later, as the expression is explored, we may discover some more
485 // uses of the value from inside the expression. If all uses turn out to be
486 // from within the expression (and the value is a binary operator of the right
487 // kind) then the value is no longer considered to be a leaf, and its operands
488 // are explored.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000489
Duncan Sands0fd120b2012-05-25 12:03:02 +0000490 // Leaves - Keeps track of the set of putative leaves as well as the number of
491 // paths to each leaf seen so far.
Duncan Sands5f9e4c12012-06-12 20:26:43 +0000492 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000493 LeafMap Leaves; // Leaf -> Total weight so far.
494 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
495
496#ifndef NDEBUG
497 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
498#endif
499 while (!Worklist.empty()) {
Duncan Sandsc038a782012-06-12 14:33:56 +0000500 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sands0fd120b2012-05-25 12:03:02 +0000501 I = P.first; // We examine the operands of this binary operator.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000502
503 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
504 Value *Op = I->getOperand(OpIdx);
Duncan Sandsc038a782012-06-12 14:33:56 +0000505 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000506 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
507 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
508
Duncan Sandsee5a0942012-06-13 09:42:13 +0000509 // If the expression contains an absorbing element then there is no need
510 // to analyze it further: it must evaluate to the absorbing element.
511 if (Op == Absorber && !Weight.isMinValue()) {
512 Ops.push_back(std::make_pair(Absorber, APInt(Bitwidth, 1)));
513 return MadeChange;
514 }
515
Duncan Sands0fd120b2012-05-25 12:03:02 +0000516 // If this is a binary operation of the right kind with only one use then
517 // add its operands to the expression.
518 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
519 assert(Visited.insert(Op) && "Not first visit!");
520 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
521 Worklist.push_back(std::make_pair(BO, Weight));
522 continue;
523 }
524
525 // Appears to be a leaf. Is the operand already in the set of leaves?
526 LeafMap::iterator It = Leaves.find(Op);
527 if (It == Leaves.end()) {
528 // Not in the leaf map. Must be the first time we saw this operand.
529 assert(Visited.insert(Op) && "Not first visit!");
530 if (!Op->hasOneUse()) {
531 // This value has uses not accounted for by the expression, so it is
532 // not safe to modify. Mark it as being a leaf.
533 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
534 LeafOrder.push_back(Op);
535 Leaves[Op] = Weight;
536 continue;
537 }
538 // No uses outside the expression, try morphing it.
539 } else if (It != Leaves.end()) {
540 // Already in the leaf map.
541 assert(Visited.count(Op) && "In leaf map but not visited!");
542
543 // Update the number of paths to the leaf.
Duncan Sandsc038a782012-06-12 14:33:56 +0000544 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000545
546 // The leaf already has one use from inside the expression. As we want
547 // exactly one such use, drop this new use of the leaf.
548 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
549 I->setOperand(OpIdx, UndefValue::get(I->getType()));
550 MadeChange = true;
551
552 // If the leaf is a binary operation of the right kind and we now see
553 // that its multiple original uses were in fact all by nodes belonging
554 // to the expression, then no longer consider it to be a leaf and add
555 // its operands to the expression.
556 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
557 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
558 Worklist.push_back(std::make_pair(BO, It->second));
559 Leaves.erase(It);
560 continue;
561 }
562
563 // If we still have uses that are not accounted for by the expression
564 // then it is not safe to modify the value.
565 if (!Op->hasOneUse())
566 continue;
567
568 // No uses outside the expression, try morphing it.
569 Weight = It->second;
570 Leaves.erase(It); // Since the value may be morphed below.
571 }
572
573 // At this point we have a value which, first of all, is not a binary
574 // expression of the right kind, and secondly, is only used inside the
575 // expression. This means that it can safely be modified. See if we
576 // can usefully morph it into an expression of the right kind.
577 assert((!isa<Instruction>(Op) ||
578 cast<Instruction>(Op)->getOpcode() != Opcode) &&
579 "Should have been handled above!");
580 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
581
582 // If this is a multiply expression, turn any internal negations into
583 // multiplies by -1 so they can be reassociated.
584 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
585 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
586 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
Duncan Sands841f4262012-06-08 20:15:33 +0000587 BO = LowerNegateToMultiply(BO);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000588 DEBUG(dbgs() << *BO << 'n');
589 Worklist.push_back(std::make_pair(BO, Weight));
590 MadeChange = true;
591 continue;
592 }
593
594 // Failed to morph into an expression of the right type. This really is
595 // a leaf.
596 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
597 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
598 LeafOrder.push_back(Op);
599 Leaves[Op] = Weight;
Chris Lattnerf33151a2005-05-08 21:28:52 +0000600 }
601 }
602
Duncan Sands0fd120b2012-05-25 12:03:02 +0000603 // The leaves, repeated according to their weights, represent the linearized
604 // form of the expression.
Duncan Sandsc038a782012-06-12 14:33:56 +0000605 Constant *Cst = 0; // Accumulate constants here.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000606 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
607 Value *V = LeafOrder[i];
608 LeafMap::iterator It = Leaves.find(V);
609 if (It == Leaves.end())
Duncan Sandsc038a782012-06-12 14:33:56 +0000610 // Node initially thought to be a leaf wasn't.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000611 continue;
612 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsc038a782012-06-12 14:33:56 +0000613 APInt Weight = It->second;
614 if (Weight.isMinValue())
615 // Leaf already output or weight reduction eliminated it.
616 continue;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000617 // Ensure the leaf is only output once.
Duncan Sandsc038a782012-06-12 14:33:56 +0000618 It->second = 0;
619 // Glob all constants together into Cst.
620 if (Constant *C = dyn_cast<Constant>(V)) {
621 C = EvaluateRepeatedConstant(Opcode, C, Weight);
622 Cst = Cst ? ConstantExpr::get(Opcode, Cst, C) : C;
623 continue;
624 }
625 // Add non-constant
626 Ops.push_back(std::make_pair(V, Weight));
Chris Lattner4fd56002002-05-08 22:19:27 +0000627 }
Duncan Sandsc038a782012-06-12 14:33:56 +0000628
629 // Add any constants back into Ops, all globbed together and reduced to having
630 // weight 1 for the convenience of users.
Duncan Sandsee5a0942012-06-13 09:42:13 +0000631 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sandsd34491f2012-06-13 12:15:56 +0000632 if (Cst && Cst != Identity) {
633 // If combining multiple constants resulted in the absorber then the entire
634 // expression must evaluate to the absorber.
635 if (Cst == Absorber)
636 Ops.clear();
Duncan Sandsc038a782012-06-12 14:33:56 +0000637 Ops.push_back(std::make_pair(Cst, APInt(Bitwidth, 1)));
Duncan Sandsd34491f2012-06-13 12:15:56 +0000638 }
Duncan Sandsc038a782012-06-12 14:33:56 +0000639
640 // For nilpotent operations or addition there may be no operands, for example
641 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
642 // in both cases the weight reduces to 0 causing the value to be skipped.
643 if (Ops.empty()) {
Duncan Sandsee5a0942012-06-13 09:42:13 +0000644 assert(Identity && "Associative operation without identity!");
Duncan Sandsc038a782012-06-12 14:33:56 +0000645 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
646 }
647
648 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000649}
650
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000651// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sands0fd120b2012-05-25 12:03:02 +0000652// linearized and optimized, emit them in-order.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000653void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sands0fd120b2012-05-25 12:03:02 +0000654 SmallVectorImpl<ValueEntry> &Ops) {
655 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman46985a12011-02-02 02:02:34 +0000656
Duncan Sands0fd120b2012-05-25 12:03:02 +0000657 // Since our optimizations never increase the number of operations, the new
658 // expression can always be written by reusing the existing binary operators
659 // from the original expression tree, without creating any new instructions,
660 // though the rewritten expression may have a completely different topology.
661 // We take care to not change anything if the new expression will be the same
662 // as the original. If more than trivial changes (like commuting operands)
663 // were made then we are obliged to clear out any optional subclass data like
664 // nsw flags.
Dan Gohman46985a12011-02-02 02:02:34 +0000665
Duncan Sands0fd120b2012-05-25 12:03:02 +0000666 /// NodesToRewrite - Nodes from the original expression available for writing
667 /// the new expression into.
668 SmallVector<BinaryOperator*, 8> NodesToRewrite;
669 unsigned Opcode = I->getOpcode();
Duncan Sands2923bca2012-06-29 19:03:05 +0000670 BinaryOperator *Op = I;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000671
Duncan Sandseacc31a2012-05-26 16:42:52 +0000672 // ExpressionChanged - Non-null if the rewritten expression differs from the
673 // original in some non-trivial way, requiring the clearing of optional flags.
674 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
675 BinaryOperator *ExpressionChanged = 0;
Duncan Sands2d5f8ca2012-06-27 14:19:00 +0000676 for (unsigned i = 0; ; ++i) {
Duncan Sands0fd120b2012-05-25 12:03:02 +0000677 // The last operation (which comes earliest in the IR) is special as both
678 // operands will come from Ops, rather than just one with the other being
679 // a subexpression.
680 if (i+2 == Ops.size()) {
681 Value *NewLHS = Ops[i].Op;
682 Value *NewRHS = Ops[i+1].Op;
683 Value *OldLHS = Op->getOperand(0);
684 Value *OldRHS = Op->getOperand(1);
685
686 if (NewLHS == OldLHS && NewRHS == OldRHS)
687 // Nothing changed, leave it alone.
688 break;
689
690 if (NewLHS == OldRHS && NewRHS == OldLHS) {
691 // The order of the operands was reversed. Swap them.
692 DEBUG(dbgs() << "RA: " << *Op << '\n');
693 Op->swapOperands();
694 DEBUG(dbgs() << "TO: " << *Op << '\n');
695 MadeChange = true;
696 ++NumChanged;
697 break;
698 }
699
700 // The new operation differs non-trivially from the original. Overwrite
701 // the old operands with the new ones.
702 DEBUG(dbgs() << "RA: " << *Op << '\n');
703 if (NewLHS != OldLHS) {
704 if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
705 NodesToRewrite.push_back(BO);
706 Op->setOperand(0, NewLHS);
707 }
708 if (NewRHS != OldRHS) {
709 if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
710 NodesToRewrite.push_back(BO);
711 Op->setOperand(1, NewRHS);
712 }
713 DEBUG(dbgs() << "TO: " << *Op << '\n');
714
Duncan Sandseacc31a2012-05-26 16:42:52 +0000715 ExpressionChanged = Op;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000716 MadeChange = true;
717 ++NumChanged;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000718
Duncan Sands0fd120b2012-05-25 12:03:02 +0000719 break;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000720 }
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000721
Duncan Sands0fd120b2012-05-25 12:03:02 +0000722 // Not the last operation. The left-hand side will be a sub-expression
723 // while the right-hand side will be the current element of Ops.
724 Value *NewRHS = Ops[i].Op;
725 if (NewRHS != Op->getOperand(1)) {
726 DEBUG(dbgs() << "RA: " << *Op << '\n');
727 if (NewRHS == Op->getOperand(0)) {
728 // The new right-hand side was already present as the left operand. If
729 // we are lucky then swapping the operands will sort out both of them.
730 Op->swapOperands();
731 } else {
732 // Overwrite with the new right-hand side.
733 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
734 NodesToRewrite.push_back(BO);
735 Op->setOperand(1, NewRHS);
Duncan Sandseacc31a2012-05-26 16:42:52 +0000736 ExpressionChanged = Op;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000737 }
738 DEBUG(dbgs() << "TO: " << *Op << '\n');
739 MadeChange = true;
740 ++NumChanged;
741 }
Dan Gohman46985a12011-02-02 02:02:34 +0000742
Duncan Sands0fd120b2012-05-25 12:03:02 +0000743 // Now deal with the left-hand side. If this is already an operation node
744 // from the original expression then just rewrite the rest of the expression
745 // into it.
746 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
Duncan Sands2923bca2012-06-29 19:03:05 +0000747 Op = BO;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000748 continue;
749 }
Dan Gohman46985a12011-02-02 02:02:34 +0000750
Duncan Sands0fd120b2012-05-25 12:03:02 +0000751 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands96d2eff2012-06-29 13:25:06 +0000752 // the left-hand side. If there are no nodes left then the optimizers made
753 // an expression with more nodes than the original! This usually means that
754 // they did something stupid but it might mean that the problem was just too
755 // hard (finding the mimimal number of multiplications needed to realize a
756 // multiplication expression is NP-complete). Whatever the reason, smart or
757 // stupid, create a new node if there are none left.
Duncan Sands2923bca2012-06-29 19:03:05 +0000758 BinaryOperator *NewOp;
Duncan Sands96d2eff2012-06-29 13:25:06 +0000759 if (NodesToRewrite.empty()) {
760 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands2923bca2012-06-29 19:03:05 +0000761 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
762 Undef, Undef, "", I);
763 } else {
764 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands96d2eff2012-06-29 13:25:06 +0000765 }
766
Duncan Sands0fd120b2012-05-25 12:03:02 +0000767 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands2923bca2012-06-29 19:03:05 +0000768 Op->setOperand(0, NewOp);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000769 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandseacc31a2012-05-26 16:42:52 +0000770 ExpressionChanged = Op;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000771 MadeChange = true;
772 ++NumChanged;
Duncan Sands2923bca2012-06-29 19:03:05 +0000773 Op = NewOp;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000774 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000775
Duncan Sandseacc31a2012-05-26 16:42:52 +0000776 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands2d5f8ca2012-06-27 14:19:00 +0000777 // starting from the operator specified in ExpressionChanged, and compactify
778 // the operators to just before the expression root to guarantee that the
779 // expression tree is dominated by all of Ops.
780 if (ExpressionChanged)
Duncan Sands0fd120b2012-05-25 12:03:02 +0000781 do {
Duncan Sandseacc31a2012-05-26 16:42:52 +0000782 ExpressionChanged->clearSubclassOptionalData();
783 if (ExpressionChanged == I)
Duncan Sands0fd120b2012-05-25 12:03:02 +0000784 break;
Duncan Sands2d5f8ca2012-06-27 14:19:00 +0000785 ExpressionChanged->moveBefore(I);
Duncan Sandseacc31a2012-05-26 16:42:52 +0000786 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
Duncan Sands0fd120b2012-05-25 12:03:02 +0000787 } while (1);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000788
Duncan Sands0fd120b2012-05-25 12:03:02 +0000789 // Throw away any left over nodes from the original expression.
790 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands841f4262012-06-08 20:15:33 +0000791 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000792}
793
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000794/// NegateValue - Insert instructions before the instruction pointed to by BI,
795/// that computes the negative version of the value specified. The negative
796/// version of the value is returned, and BI is left pointing at the instruction
797/// that should be processed next by the reassociation pass.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000798static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000799 if (Constant *C = dyn_cast<Constant>(V))
800 return ConstantExpr::getNeg(C);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000801
Chris Lattnera36e6c82002-05-16 04:37:07 +0000802 // We are trying to expose opportunity for reassociation. One of the things
803 // that we want to do to achieve this is to push a negation as deep into an
804 // expression chain as possible, to expose the add instructions. In practice,
805 // this means that we turn this:
806 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
807 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
808 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000809 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000810 //
Duncan Sands0fd120b2012-05-25 12:03:02 +0000811 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
812 // Push the negates through the add.
813 I->setOperand(0, NegateValue(I->getOperand(0), BI));
814 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000815
Duncan Sands0fd120b2012-05-25 12:03:02 +0000816 // We must move the add instruction here, because the neg instructions do
817 // not dominate the old add instruction in general. By moving it, we are
818 // assured that the neg instructions we just inserted dominate the
819 // instruction we are about to insert after them.
820 //
821 I->moveBefore(BI);
822 I->setName(I->getName()+".neg");
823 return I;
824 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000825
Chris Lattner35239932009-12-31 20:34:32 +0000826 // Okay, we need to materialize a negated version of V with an instruction.
827 // Scan the use lists of V to see if we have one already.
828 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000829 User *U = *UI;
830 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000831
832 // We found one! Now we have to make sure that the definition dominates
833 // this use. We do this by moving it to the entry block (if it is a
834 // non-instruction value) or right after the definition. These negates will
835 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000836 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000837
838 // Verify that the negate is in this function, V might be a constant expr.
839 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
840 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000841
Chris Lattner35239932009-12-31 20:34:32 +0000842 BasicBlock::iterator InsertPt;
843 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
844 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
845 InsertPt = II->getNormalDest()->begin();
846 } else {
847 InsertPt = InstInput;
848 ++InsertPt;
849 }
850 while (isa<PHINode>(InsertPt)) ++InsertPt;
851 } else {
852 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
853 }
854 TheNeg->moveBefore(InsertPt);
855 return TheNeg;
856 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000857
858 // Insert a 'neg' instruction that subtracts the value from zero to get the
859 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000860 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000861}
862
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000863/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
864/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000865static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000866 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000867 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000868 return false;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000869
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000870 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000871 // subtract or if this is only used by one.
872 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
873 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000874 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000875 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000876 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000877 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000878 if (Sub->hasOneUse() &&
Chris Lattner0b0803a2008-02-17 20:51:26 +0000879 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
880 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000881 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000882
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000883 return false;
884}
885
Chris Lattner08b43922005-05-07 04:08:02 +0000886/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
887/// only used by an add, transform this into (X+(0-Y)) to promote better
888/// reassociation.
Duncan Sands841f4262012-06-08 20:15:33 +0000889static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattner90461932010-01-01 00:04:26 +0000890 // Convert a subtract into an add and a neg instruction. This allows sub
891 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000892 //
Chris Lattner90461932010-01-01 00:04:26 +0000893 // Calculate the negative value of Operand 1 of the sub instruction,
894 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000895 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000896 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Duncan Sands841f4262012-06-08 20:15:33 +0000897 BinaryOperator *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000898 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Duncan Sands841f4262012-06-08 20:15:33 +0000899 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
900 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6934a042007-02-11 01:23:03 +0000901 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000902
903 // Everyone now refers to the add instruction.
904 Sub->replaceAllUsesWith(New);
Devang Patel5367b232011-04-28 22:48:14 +0000905 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen00b168892005-07-27 06:12:32 +0000906
David Greenea1fa76c2010-01-05 01:27:24 +0000907 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000908 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000909}
910
Chris Lattner0975ed52005-05-07 04:24:13 +0000911/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
912/// by one, change this into a multiply by a constant to assist with further
913/// reassociation.
Duncan Sands841f4262012-06-08 20:15:33 +0000914static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
915 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
916 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000917
Duncan Sands841f4262012-06-08 20:15:33 +0000918 BinaryOperator *Mul =
919 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
920 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
921 Mul->takeName(Shl);
922 Shl->replaceAllUsesWith(Mul);
923 Mul->setDebugLoc(Shl->getDebugLoc());
924 return Mul;
Chris Lattner0975ed52005-05-07 04:24:13 +0000925}
926
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000927/// FindInOperandList - Scan backwards and forwards among values with the same
928/// rank as element i to see if X exists. If X does not exist, return i. This
929/// is useful when scanning for 'x' when we see '-x' because they both get the
930/// same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000931static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000932 Value *X) {
933 unsigned XRank = Ops[i].Rank;
934 unsigned e = Ops.size();
935 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
936 if (Ops[j].Op == X)
937 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000938 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000939 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
940 if (Ops[j].Op == X)
941 return j;
942 return i;
943}
944
Chris Lattnere5022fe2006-03-04 09:31:13 +0000945/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
946/// and returning the result. Insert the tree before I.
Bill Wendling55e70982012-05-02 09:59:45 +0000947static Value *EmitAddTreeOfValues(Instruction *I,
948 SmallVectorImpl<WeakVH> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000949 if (Ops.size() == 1) return Ops.back();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000950
Chris Lattnere5022fe2006-03-04 09:31:13 +0000951 Value *V1 = Ops.back();
952 Ops.pop_back();
953 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000954 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000955}
956
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000957/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattnere5022fe2006-03-04 09:31:13 +0000958/// multiplication sequence, and if this sequence contains a multiply by Factor,
959/// remove Factor from the tree and return the new tree.
960Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
961 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
962 if (!BO) return 0;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000963
Duncan Sandsc038a782012-06-12 14:33:56 +0000964 SmallVector<RepeatedValue, 8> Tree;
965 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000966 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsc038a782012-06-12 14:33:56 +0000967 Factors.reserve(Tree.size());
968 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
969 RepeatedValue E = Tree[i];
970 Factors.append(E.second.getZExtValue(),
971 ValueEntry(getRank(E.first), E.first));
972 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000973
974 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000975 bool NeedsNegate = false;
976 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000977 if (Factors[i].Op == Factor) {
978 FoundFactor = true;
979 Factors.erase(Factors.begin()+i);
980 break;
981 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000982
Chris Lattner9506c932010-01-01 01:13:15 +0000983 // If this is a negative version of this factor, remove it.
984 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
985 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
986 if (FC1->getValue() == -FC2->getValue()) {
987 FoundFactor = NeedsNegate = true;
988 Factors.erase(Factors.begin()+i);
989 break;
990 }
991 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000992
Chris Lattnere9efecb2006-03-14 16:04:29 +0000993 if (!FoundFactor) {
994 // Make sure to restore the operands to the expression tree.
995 RewriteExprTree(BO, Factors);
996 return 0;
997 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000998
Chris Lattner9506c932010-01-01 01:13:15 +0000999 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001000
Chris Lattner1e7558b2009-12-31 19:34:45 +00001001 // If this was just a single multiply, remove the multiply and return the only
1002 // remaining operand.
1003 if (Factors.size() == 1) {
Duncan Sands841f4262012-06-08 20:15:33 +00001004 RedoInsts.insert(BO);
Chris Lattner9506c932010-01-01 01:13:15 +00001005 V = Factors[0].Op;
1006 } else {
1007 RewriteExprTree(BO, Factors);
1008 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +00001009 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001010
Chris Lattner9506c932010-01-01 01:13:15 +00001011 if (NeedsNegate)
1012 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001013
Chris Lattner9506c932010-01-01 01:13:15 +00001014 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +00001015}
1016
Chris Lattnere9efecb2006-03-14 16:04:29 +00001017/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1018/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +00001019///
1020/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +00001021static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +00001022 SmallVectorImpl<Value*> &Factors,
Duncan Sands0fd120b2012-05-25 12:03:02 +00001023 const SmallVectorImpl<ValueEntry> &Ops) {
1024 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1025 if (!BO) {
Chris Lattnere9efecb2006-03-14 16:04:29 +00001026 Factors.push_back(V);
1027 return;
1028 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001029
Chris Lattnere9efecb2006-03-14 16:04:29 +00001030 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001031 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1032 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnere9efecb2006-03-14 16:04:29 +00001033}
1034
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001035/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1036/// instruction. This optimizes based on identities. If it can be reduced to
1037/// a single Value, it is returned, otherwise the Ops list is mutated as
1038/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001039static Value *OptimizeAndOrXor(unsigned Opcode,
1040 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001041 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1042 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1043 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1044 // First, check for X and ~X in the operand list.
1045 assert(i < Ops.size());
1046 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1047 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1048 unsigned FoundX = FindInOperandList(Ops, i, X);
1049 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001050 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001051 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001052
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001053 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001054 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001055 }
1056 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001057
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001058 // Next, check for duplicate pairs of values, which we assume are next to
1059 // each other, due to our sorting criteria.
1060 assert(i < Ops.size());
1061 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1062 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001063 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001064 Ops.erase(Ops.begin()+i);
1065 --i; --e;
1066 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001067 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001068 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001069
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001070 // Drop pairs of values for Xor.
1071 assert(Opcode == Instruction::Xor);
1072 if (e == 2)
1073 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001074
Chris Lattner90461932010-01-01 00:04:26 +00001075 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001076 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1077 i -= 1; e -= 2;
1078 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001079 }
1080 }
1081 return 0;
1082}
Chris Lattnere9efecb2006-03-14 16:04:29 +00001083
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001084/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1085/// optimizes based on identities. If it can be reduced to a single Value, it
1086/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001087Value *Reassociate::OptimizeAdd(Instruction *I,
1088 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001089 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +00001090 // can simplify the expression. X+-X == 0. While we're at it, scan for any
1091 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +00001092 //
1093 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1094 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001095 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +00001096 Value *TheOp = Ops[i].Op;
1097 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001098 // instances of the operand together. Due to our sorting criteria, we know
1099 // that these need to be next to each other in the vector.
1100 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1101 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +00001102 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001103 do {
1104 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +00001105 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001106 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001107
Chris Lattnerf8a447d2009-12-31 19:25:19 +00001108 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +00001109 ++NumFactor;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001110
Chris Lattner69e98e22009-12-31 19:24:52 +00001111 // Insert a new multiply.
1112 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1113 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001114
Chris Lattner69e98e22009-12-31 19:24:52 +00001115 // Now that we have inserted a multiply, optimize it. This allows us to
1116 // handle cases that require multiple factoring steps, such as this:
1117 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Duncan Sands841f4262012-06-08 20:15:33 +00001118 RedoInsts.insert(cast<Instruction>(Mul));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001119
Chris Lattner69e98e22009-12-31 19:24:52 +00001120 // If every add operand was a duplicate, return the multiply.
1121 if (Ops.empty())
1122 return Mul;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001123
Chris Lattner69e98e22009-12-31 19:24:52 +00001124 // Otherwise, we had some input that didn't have the dupe, such as
1125 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1126 // things being added by this operation.
1127 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001128
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001129 --i;
1130 e = Ops.size();
1131 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +00001132 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001133
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001134 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +00001135 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001136 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001137
Chris Lattner69e98e22009-12-31 19:24:52 +00001138 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001139 unsigned FoundX = FindInOperandList(Ops, i, X);
1140 if (FoundX == i)
1141 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001142
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001143 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001144 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001145 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001146
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001147 Ops.erase(Ops.begin()+i);
1148 if (i < FoundX)
1149 --FoundX;
1150 else
1151 --i; // Need to back up an extra one.
1152 Ops.erase(Ops.begin()+FoundX);
1153 ++NumAnnihil;
1154 --i; // Revisit element.
1155 e -= 2; // Removed two elements.
1156 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001157
Chris Lattner94285e62009-12-31 18:17:13 +00001158 // Scan the operand list, checking to see if there are any common factors
1159 // between operands. Consider something like A*A+A*B*C+D. We would like to
1160 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1161 // To efficiently find this, we count the number of times a factor occurs
1162 // for any ADD operands that are MULs.
1163 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001164
Chris Lattner94285e62009-12-31 18:17:13 +00001165 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1166 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +00001167 unsigned MaxOcc = 0;
1168 Value *MaxOccVal = 0;
1169 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Duncan Sands0fd120b2012-05-25 12:03:02 +00001170 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1171 if (!BOp)
Chris Lattner94285e62009-12-31 18:17:13 +00001172 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001173
Chris Lattner94285e62009-12-31 18:17:13 +00001174 // Compute all of the factors of this added value.
1175 SmallVector<Value*, 8> Factors;
Duncan Sands0fd120b2012-05-25 12:03:02 +00001176 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner94285e62009-12-31 18:17:13 +00001177 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001178
Chris Lattner94285e62009-12-31 18:17:13 +00001179 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +00001180 SmallPtrSet<Value*, 8> Duplicates;
1181 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1182 Value *Factor = Factors[i];
1183 if (!Duplicates.insert(Factor)) continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001184
Chris Lattner9506c932010-01-01 01:13:15 +00001185 unsigned Occ = ++FactorOccurrences[Factor];
1186 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001187
Chris Lattner9506c932010-01-01 01:13:15 +00001188 // If Factor is a negative constant, add the negated value as a factor
1189 // because we can percolate the negate out. Watch for minint, which
1190 // cannot be positivified.
1191 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001192 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner9506c932010-01-01 01:13:15 +00001193 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1194 assert(!Duplicates.count(Factor) &&
1195 "Shouldn't have two constant factors, missed a canonicalize");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001196
Chris Lattner9506c932010-01-01 01:13:15 +00001197 unsigned Occ = ++FactorOccurrences[Factor];
1198 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1199 }
Chris Lattner94285e62009-12-31 18:17:13 +00001200 }
1201 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001202
Chris Lattner94285e62009-12-31 18:17:13 +00001203 // If any factor occurred more than one time, we can pull it out.
1204 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +00001205 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +00001206 ++NumFactor;
1207
1208 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1209 // this, we could otherwise run into situations where removing a factor
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001210 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner94285e62009-12-31 18:17:13 +00001211 // RemoveFactorFromExpression on successive values to behave differently.
1212 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Bill Wendling55e70982012-05-02 09:59:45 +00001213 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands37f87c72011-01-26 10:08:38 +00001214 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +00001215 // Only try to remove factors from expressions we're allowed to.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001216 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1217 if (!BOp)
Chris Lattnerc2d1b692010-01-09 06:01:36 +00001218 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001219
Chris Lattner94285e62009-12-31 18:17:13 +00001220 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands37f87c72011-01-26 10:08:38 +00001221 // The factorized operand may occur several times. Convert them all in
1222 // one fell swoop.
1223 for (unsigned j = Ops.size(); j != i;) {
1224 --j;
1225 if (Ops[j].Op == Ops[i].Op) {
1226 NewMulOps.push_back(V);
1227 Ops.erase(Ops.begin()+j);
1228 }
1229 }
1230 --i;
Chris Lattner94285e62009-12-31 18:17:13 +00001231 }
1232 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001233
Chris Lattner94285e62009-12-31 18:17:13 +00001234 // No need for extra uses anymore.
1235 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +00001236
Chris Lattner94285e62009-12-31 18:17:13 +00001237 unsigned NumAddedValues = NewMulOps.size();
1238 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +00001239
Chris Lattner69e98e22009-12-31 19:24:52 +00001240 // Now that we have inserted the add tree, optimize it. This allows us to
1241 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +00001242 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001243 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +00001244 (void)NumAddedValues;
Duncan Sands841f4262012-06-08 20:15:33 +00001245 if (Instruction *VI = dyn_cast<Instruction>(V))
1246 RedoInsts.insert(VI);
Chris Lattner69e98e22009-12-31 19:24:52 +00001247
1248 // Create the multiply.
Duncan Sands841f4262012-06-08 20:15:33 +00001249 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001250
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001251 // Rerun associate on the multiply in case the inner expression turned into
1252 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands841f4262012-06-08 20:15:33 +00001253 RedoInsts.insert(V2);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001254
Chris Lattner94285e62009-12-31 18:17:13 +00001255 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1256 // entire result expression is just the multiply "A*(B+C)".
1257 if (Ops.empty())
1258 return V2;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001259
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001260 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +00001261 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001262 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +00001263 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1264 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001265
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001266 return 0;
1267}
Chris Lattnere5022fe2006-03-04 09:31:13 +00001268
Chandler Carruth464bda32012-04-26 05:30:30 +00001269namespace {
1270 /// \brief Predicate tests whether a ValueEntry's op is in a map.
1271 struct IsValueInMap {
1272 const DenseMap<Value *, unsigned> &Map;
1273
1274 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1275
1276 bool operator()(const ValueEntry &Entry) {
1277 return Map.find(Entry.Op) != Map.end();
1278 }
1279 };
1280}
1281
1282/// \brief Build up a vector of value/power pairs factoring a product.
1283///
1284/// Given a series of multiplication operands, build a vector of factors and
1285/// the powers each is raised to when forming the final product. Sort them in
1286/// the order of descending power.
1287///
1288/// (x*x) -> [(x, 2)]
1289/// ((x*x)*x) -> [(x, 3)]
1290/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1291///
1292/// \returns Whether any factors have a power greater than one.
1293bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1294 SmallVectorImpl<Factor> &Factors) {
Duncan Sands0fd120b2012-05-25 12:03:02 +00001295 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1296 // Compute the sum of powers of simplifiable factors.
Chandler Carruth464bda32012-04-26 05:30:30 +00001297 unsigned FactorPowerSum = 0;
Duncan Sands0fd120b2012-05-25 12:03:02 +00001298 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1299 Value *Op = Ops[Idx-1].Op;
1300
1301 // Count the number of occurrences of this value.
1302 unsigned Count = 1;
1303 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1304 ++Count;
Chandler Carruth464bda32012-04-26 05:30:30 +00001305 // Track for simplification all factors which occur 2 or more times.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001306 if (Count > 1)
1307 FactorPowerSum += Count;
Chandler Carruth464bda32012-04-26 05:30:30 +00001308 }
Duncan Sands0fd120b2012-05-25 12:03:02 +00001309
Chandler Carruth464bda32012-04-26 05:30:30 +00001310 // We can only simplify factors if the sum of the powers of our simplifiable
1311 // factors is 4 or higher. When that is the case, we will *always* have
1312 // a simplification. This is an important invariant to prevent cyclicly
1313 // trying to simplify already minimal formations.
1314 if (FactorPowerSum < 4)
1315 return false;
1316
Duncan Sands0fd120b2012-05-25 12:03:02 +00001317 // Now gather the simplifiable factors, removing them from Ops.
1318 FactorPowerSum = 0;
1319 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1320 Value *Op = Ops[Idx-1].Op;
Chandler Carruth464bda32012-04-26 05:30:30 +00001321
Duncan Sands0fd120b2012-05-25 12:03:02 +00001322 // Count the number of occurrences of this value.
1323 unsigned Count = 1;
1324 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1325 ++Count;
1326 if (Count == 1)
1327 continue;
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001328 // Move an even number of occurrences to Factors.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001329 Count &= ~1U;
1330 Idx -= Count;
1331 FactorPowerSum += Count;
1332 Factors.push_back(Factor(Op, Count));
1333 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth464bda32012-04-26 05:30:30 +00001334 }
Duncan Sands0fd120b2012-05-25 12:03:02 +00001335
Chandler Carruth464bda32012-04-26 05:30:30 +00001336 // None of the adjustments above should have reduced the sum of factor powers
1337 // below our mininum of '4'.
1338 assert(FactorPowerSum >= 4);
1339
Chandler Carruth464bda32012-04-26 05:30:30 +00001340 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1341 return true;
1342}
1343
1344/// \brief Build a tree of multiplies, computing the product of Ops.
1345static Value *buildMultiplyTree(IRBuilder<> &Builder,
1346 SmallVectorImpl<Value*> &Ops) {
1347 if (Ops.size() == 1)
1348 return Ops.back();
1349
1350 Value *LHS = Ops.pop_back_val();
1351 do {
1352 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1353 } while (!Ops.empty());
1354
1355 return LHS;
1356}
1357
1358/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1359///
1360/// Given a vector of values raised to various powers, where no two values are
1361/// equal and the powers are sorted in decreasing order, compute the minimal
1362/// DAG of multiplies to compute the final product, and return that product
1363/// value.
1364Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1365 SmallVectorImpl<Factor> &Factors) {
1366 assert(Factors[0].Power);
1367 SmallVector<Value *, 4> OuterProduct;
1368 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1369 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1370 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1371 LastIdx = Idx;
1372 continue;
1373 }
1374
1375 // We want to multiply across all the factors with the same power so that
1376 // we can raise them to that power as a single entity. Build a mini tree
1377 // for that.
1378 SmallVector<Value *, 4> InnerProduct;
1379 InnerProduct.push_back(Factors[LastIdx].Base);
1380 do {
1381 InnerProduct.push_back(Factors[Idx].Base);
1382 ++Idx;
1383 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1384
1385 // Reset the base value of the first factor to the new expression tree.
1386 // We'll remove all the factors with the same power in a second pass.
Duncan Sands841f4262012-06-08 20:15:33 +00001387 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1388 if (Instruction *MI = dyn_cast<Instruction>(M))
1389 RedoInsts.insert(MI);
Chandler Carruth464bda32012-04-26 05:30:30 +00001390
1391 LastIdx = Idx;
1392 }
1393 // Unique factors with equal powers -- we've folded them into the first one's
1394 // base.
1395 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1396 Factor::PowerEqual()),
1397 Factors.end());
1398
1399 // Iteratively collect the base of each factor with an add power into the
1400 // outer product, and halve each power in preparation for squaring the
1401 // expression.
1402 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1403 if (Factors[Idx].Power & 1)
1404 OuterProduct.push_back(Factors[Idx].Base);
1405 Factors[Idx].Power >>= 1;
1406 }
1407 if (Factors[0].Power) {
1408 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1409 OuterProduct.push_back(SquareRoot);
1410 OuterProduct.push_back(SquareRoot);
1411 }
1412 if (OuterProduct.size() == 1)
1413 return OuterProduct.front();
1414
Duncan Sandsa3370102012-05-08 12:16:05 +00001415 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sandsa3370102012-05-08 12:16:05 +00001416 return V;
Chandler Carruth464bda32012-04-26 05:30:30 +00001417}
1418
1419Value *Reassociate::OptimizeMul(BinaryOperator *I,
1420 SmallVectorImpl<ValueEntry> &Ops) {
1421 // We can only optimize the multiplies when there is a chain of more than
1422 // three, such that a balanced tree might require fewer total multiplies.
1423 if (Ops.size() < 4)
1424 return 0;
1425
1426 // Try to turn linear trees of multiplies without other uses of the
1427 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1428 // re-use.
1429 SmallVector<Factor, 4> Factors;
1430 if (!collectMultiplyFactors(Ops, Factors))
1431 return 0; // All distinct factors, so nothing left for us to do.
1432
1433 IRBuilder<> Builder(I);
1434 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1435 if (Ops.empty())
1436 return V;
1437
1438 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1439 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1440 return 0;
1441}
1442
Chris Lattnere5022fe2006-03-04 09:31:13 +00001443Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +00001444 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +00001445 // Now that we have the linearized expression tree, try to optimize it.
1446 // Start by folding any constants that we found.
Chris Lattnere5022fe2006-03-04 09:31:13 +00001447 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001448
Chris Lattnere5022fe2006-03-04 09:31:13 +00001449 unsigned Opcode = I->getOpcode();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001450
Chris Lattnerec531232009-12-31 07:33:14 +00001451 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +00001452 // argument list here.
Chandler Carruth464bda32012-04-26 05:30:30 +00001453 unsigned NumOps = Ops.size();
Chris Lattner109d34d2005-05-08 18:59:37 +00001454 switch (Opcode) {
1455 default: break;
1456 case Instruction::And:
1457 case Instruction::Or:
Chandler Carruth464bda32012-04-26 05:30:30 +00001458 case Instruction::Xor:
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001459 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1460 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001461 break;
1462
Chandler Carruth464bda32012-04-26 05:30:30 +00001463 case Instruction::Add:
Chris Lattner94285e62009-12-31 18:17:13 +00001464 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001465 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001466 break;
Chandler Carruth464bda32012-04-26 05:30:30 +00001467
1468 case Instruction::Mul:
1469 if (Value *Result = OptimizeMul(I, Ops))
1470 return Result;
1471 break;
Chris Lattner109d34d2005-05-08 18:59:37 +00001472 }
1473
Duncan Sands841f4262012-06-08 20:15:33 +00001474 if (Ops.size() != NumOps)
Chris Lattnere5022fe2006-03-04 09:31:13 +00001475 return OptimizeExpression(I, Ops);
1476 return 0;
Chris Lattner46900102005-05-08 00:19:31 +00001477}
1478
Duncan Sands841f4262012-06-08 20:15:33 +00001479/// EraseInst - Zap the given instruction, adding interesting operands to the
1480/// work list.
1481void Reassociate::EraseInst(Instruction *I) {
1482 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1483 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1484 // Erase the dead instruction.
1485 ValueRankMap.erase(I);
Nick Lewycky917f9932012-06-24 01:44:08 +00001486 RedoInsts.remove(I);
Duncan Sands841f4262012-06-08 20:15:33 +00001487 I->eraseFromParent();
1488 // Optimize its operands.
Duncan Sandscd117f72012-06-15 08:37:50 +00001489 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands841f4262012-06-08 20:15:33 +00001490 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1491 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1492 // If this is a node in an expression tree, climb to the expression root
1493 // and add that since that's where optimization actually happens.
1494 unsigned Opcode = Op->getOpcode();
Duncan Sandscd117f72012-06-15 08:37:50 +00001495 while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1496 Visited.insert(Op))
Duncan Sands841f4262012-06-08 20:15:33 +00001497 Op = Op->use_back();
1498 RedoInsts.insert(Op);
1499 }
1500}
1501
1502/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1503/// instructions is not allowed.
1504void Reassociate::OptimizeInst(Instruction *I) {
1505 // Only consider operations that we understand.
1506 if (!isa<BinaryOperator>(I))
1507 return;
1508
1509 if (I->getOpcode() == Instruction::Shl &&
1510 isa<ConstantInt>(I->getOperand(1)))
1511 // If an operand of this shift is a reassociable multiply, or if the shift
1512 // is used by a reassociable multiply or add, turn into a multiply.
1513 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1514 (I->hasOneUse() &&
1515 (isReassociableOp(I->use_back(), Instruction::Mul) ||
1516 isReassociableOp(I->use_back(), Instruction::Add)))) {
1517 Instruction *NI = ConvertShiftToMul(I);
1518 RedoInsts.insert(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001519 MadeChange = true;
Duncan Sands841f4262012-06-08 20:15:33 +00001520 I = NI;
Chris Lattnerf33151a2005-05-08 21:28:52 +00001521 }
Chris Lattnere4b73042002-10-31 17:12:59 +00001522
Owen Anderson423f19f2012-05-07 20:47:23 +00001523 // Floating point binary operators are not associative, but we can still
1524 // commute (some) of them, to canonicalize the order of their operands.
1525 // This can potentially expose more CSE opportunities, and makes writing
1526 // other transformations simpler.
Duncan Sands841f4262012-06-08 20:15:33 +00001527 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
Owen Anderson423f19f2012-05-07 20:47:23 +00001528 // FAdd and FMul can be commuted.
Duncan Sands841f4262012-06-08 20:15:33 +00001529 if (I->getOpcode() != Instruction::FMul &&
1530 I->getOpcode() != Instruction::FAdd)
Owen Anderson423f19f2012-05-07 20:47:23 +00001531 return;
1532
Duncan Sands841f4262012-06-08 20:15:33 +00001533 Value *LHS = I->getOperand(0);
1534 Value *RHS = I->getOperand(1);
Owen Anderson423f19f2012-05-07 20:47:23 +00001535 unsigned LHSRank = getRank(LHS);
1536 unsigned RHSRank = getRank(RHS);
1537
1538 // Sort the operands by rank.
1539 if (RHSRank < LHSRank) {
Duncan Sands841f4262012-06-08 20:15:33 +00001540 I->setOperand(0, RHS);
1541 I->setOperand(1, LHS);
Owen Anderson423f19f2012-05-07 20:47:23 +00001542 }
1543
1544 return;
1545 }
1546
Dan Gohmandac5dba2011-04-12 00:11:56 +00001547 // Do not reassociate boolean (i1) expressions. We want to preserve the
1548 // original order of evaluation for short-circuited comparisons that
1549 // SimplifyCFG has folded to AND/OR expressions. If the expression
1550 // is not further optimized, it is likely to be transformed back to a
1551 // short-circuited form for code gen, and the source order may have been
1552 // optimized for the most likely conditions.
Duncan Sands841f4262012-06-08 20:15:33 +00001553 if (I->getType()->isIntegerTy(1))
Dan Gohmandac5dba2011-04-12 00:11:56 +00001554 return;
Chris Lattnera36e6c82002-05-16 04:37:07 +00001555
Dan Gohmandac5dba2011-04-12 00:11:56 +00001556 // If this is a subtract instruction which is not already in negate form,
1557 // see if we can convert it to X+-Y.
Duncan Sands841f4262012-06-08 20:15:33 +00001558 if (I->getOpcode() == Instruction::Sub) {
1559 if (ShouldBreakUpSubtract(I)) {
1560 Instruction *NI = BreakUpSubtract(I);
1561 RedoInsts.insert(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001562 MadeChange = true;
Duncan Sands841f4262012-06-08 20:15:33 +00001563 I = NI;
1564 } else if (BinaryOperator::isNeg(I)) {
Dan Gohmandac5dba2011-04-12 00:11:56 +00001565 // Otherwise, this is a negation. See if the operand is a multiply tree
1566 // and if this is not an inner node of a multiply tree.
Duncan Sands841f4262012-06-08 20:15:33 +00001567 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1568 (!I->hasOneUse() ||
1569 !isReassociableOp(I->use_back(), Instruction::Mul))) {
1570 Instruction *NI = LowerNegateToMultiply(I);
1571 RedoInsts.insert(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001572 MadeChange = true;
Duncan Sands841f4262012-06-08 20:15:33 +00001573 I = NI;
Dan Gohmandac5dba2011-04-12 00:11:56 +00001574 }
1575 }
Chris Lattner895b3922006-03-14 07:11:11 +00001576 }
Dan Gohmandac5dba2011-04-12 00:11:56 +00001577
Duncan Sands841f4262012-06-08 20:15:33 +00001578 // If this instruction is an associative binary operator, process it.
1579 if (!I->isAssociative()) return;
1580 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001581
1582 // If this is an interior node of a reassociable tree, ignore it until we
1583 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotemc1deb672012-07-23 13:44:15 +00001584 unsigned Opcode = BO->getOpcode();
1585 if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
Dan Gohmandac5dba2011-04-12 00:11:56 +00001586 return;
1587
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001588 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohmandac5dba2011-04-12 00:11:56 +00001589 // until we process the subtract.
Duncan Sands841f4262012-06-08 20:15:33 +00001590 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1591 cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
Dan Gohmandac5dba2011-04-12 00:11:56 +00001592 return;
1593
Duncan Sands841f4262012-06-08 20:15:33 +00001594 ReassociateExpression(BO);
Chris Lattner895b3922006-03-14 07:11:11 +00001595}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001596
Duncan Sandscd117f72012-06-15 08:37:50 +00001597void Reassociate::ReassociateExpression(BinaryOperator *I) {
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001598
Chris Lattner69e98e22009-12-31 19:24:52 +00001599 // First, walk the expression tree, linearizing the tree, collecting the
1600 // operand information.
Duncan Sandsc038a782012-06-12 14:33:56 +00001601 SmallVector<RepeatedValue, 8> Tree;
1602 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner9f7b7082009-12-31 18:40:32 +00001603 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsc038a782012-06-12 14:33:56 +00001604 Ops.reserve(Tree.size());
1605 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1606 RepeatedValue E = Tree[i];
1607 Ops.append(E.second.getZExtValue(),
1608 ValueEntry(getRank(E.first), E.first));
1609 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001610
Duncan Sands24dfa522012-05-26 07:47:48 +00001611 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1612
Chris Lattner895b3922006-03-14 07:11:11 +00001613 // Now that we have linearized the tree to a list and have gathered all of
1614 // the operands and their ranks, sort the operands by their rank. Use a
1615 // stable_sort so that values with equal ranks will have their relative
1616 // positions maintained (and so the compiler is deterministic). Note that
1617 // this sorts so that the highest ranking values end up at the beginning of
1618 // the vector.
1619 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001620
Chris Lattner895b3922006-03-14 07:11:11 +00001621 // OptimizeExpression - Now that we have the expression tree in a convenient
1622 // sorted form, optimize it globally if possible.
1623 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sandscd117f72012-06-15 08:37:50 +00001624 if (V == I)
1625 // Self-referential expression in unreachable code.
1626 return;
Chris Lattner895b3922006-03-14 07:11:11 +00001627 // This expression tree simplified to something that isn't a tree,
1628 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001629 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001630 I->replaceAllUsesWith(V);
Devang Patel5367b232011-04-28 22:48:14 +00001631 if (Instruction *VI = dyn_cast<Instruction>(V))
1632 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands841f4262012-06-08 20:15:33 +00001633 RedoInsts.insert(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001634 ++NumAnnihil;
Duncan Sandscd117f72012-06-15 08:37:50 +00001635 return;
Chris Lattner895b3922006-03-14 07:11:11 +00001636 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001637
Chris Lattner895b3922006-03-14 07:11:11 +00001638 // We want to sink immediates as deeply as possible except in the case where
1639 // this is a multiply tree used only by an add, and the immediate is a -1.
1640 // In this case we reassociate to put the negation on the outside so that we
1641 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1642 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1643 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1644 isa<ConstantInt>(Ops.back().Op) &&
1645 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001646 ValueEntry Tmp = Ops.pop_back_val();
1647 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001648 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001649
David Greenea1fa76c2010-01-05 01:27:24 +00001650 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001651
Chris Lattner895b3922006-03-14 07:11:11 +00001652 if (Ops.size() == 1) {
Duncan Sandscd117f72012-06-15 08:37:50 +00001653 if (Ops[0].Op == I)
1654 // Self-referential expression in unreachable code.
1655 return;
1656
Chris Lattner895b3922006-03-14 07:11:11 +00001657 // This expression tree simplified to something that isn't a tree,
1658 // eliminate it.
1659 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel5367b232011-04-28 22:48:14 +00001660 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1661 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands841f4262012-06-08 20:15:33 +00001662 RedoInsts.insert(I);
Duncan Sandscd117f72012-06-15 08:37:50 +00001663 return;
Chris Lattner4fd56002002-05-08 22:19:27 +00001664 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001665
Chris Lattner69e98e22009-12-31 19:24:52 +00001666 // Now that we ordered and optimized the expressions, splat them back into
1667 // the expression tree, removing any unneeded nodes.
1668 RewriteExprTree(I, Ops);
Chris Lattner4fd56002002-05-08 22:19:27 +00001669}
1670
Chris Lattner7e708292002-06-25 16:13:24 +00001671bool Reassociate::runOnFunction(Function &F) {
Duncan Sands841f4262012-06-08 20:15:33 +00001672 // Calculate the rank map for F
Chris Lattner4fd56002002-05-08 22:19:27 +00001673 BuildRankMap(F);
1674
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001675 MadeChange = false;
Duncan Sands841f4262012-06-08 20:15:33 +00001676 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1677 // Optimize every instruction in the basic block.
1678 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1679 if (isInstructionTriviallyDead(II)) {
1680 EraseInst(II++);
1681 } else {
1682 OptimizeInst(II);
1683 assert(II->getParent() == BI && "Moved to a different block!");
1684 ++II;
1685 }
Duncan Sands69938a82012-06-08 13:37:30 +00001686
Duncan Sands841f4262012-06-08 20:15:33 +00001687 // If this produced extra instructions to optimize, handle them now.
1688 while (!RedoInsts.empty()) {
1689 Instruction *I = RedoInsts.pop_back_val();
1690 if (isInstructionTriviallyDead(I))
1691 EraseInst(I);
1692 else
1693 OptimizeInst(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001694 }
Duncan Sands841f4262012-06-08 20:15:33 +00001695 }
Chris Lattner4fd56002002-05-08 22:19:27 +00001696
Duncan Sands0fd120b2012-05-25 12:03:02 +00001697 // We are done with the rank map.
1698 RankMap.clear();
1699 ValueRankMap.clear();
1700
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001701 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001702}