blob: 24fadb6003fdd323b6824934b396510128d6dde2 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnere96fda32003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Owen Andersonfa5cbd62009-07-03 19:42:02 +000030#include "llvm/LLVMContext.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000032#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000033#include "llvm/Support/CFG.h"
Reid Spencer9133fe22007-02-05 23:32:05 +000034#include "llvm/Support/Compiler.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000035#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000036#include "llvm/Support/ValueHandle.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000037#include "llvm/ADT/PostOrderIterator.h"
38#include "llvm/ADT/Statistic.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000039#include <algorithm>
Dan Gohmanc9235d22008-03-21 23:51:57 +000040#include <map>
Chris Lattnerd7456022004-01-09 06:02:20 +000041using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000042
Chris Lattner0e5f4992006-12-19 21:40:18 +000043STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000047
Chris Lattner0e5f4992006-12-19 21:40:18 +000048namespace {
Reid Spencer9133fe22007-02-05 23:32:05 +000049 struct VISIBILITY_HIDDEN ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000050 unsigned Rank;
51 Value *Op;
52 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53 };
54 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
56 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000057}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000058
Devang Patel50cacb22008-11-21 21:00:20 +000059#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000060/// PrintOps - Print out the expression identified in the Ops list.
61///
62static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
63 Module *M = I->getParent()->getParent()->getParent();
Bill Wendling832171c2006-12-07 20:04:42 +000064 cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner7de3b5d2008-08-19 04:45:19 +000065 << *Ops[0].Op->getType();
66 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
67 WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
68 cerr << "," << Ops[i].Rank;
69 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000070}
Devang Patel59500c82008-11-21 20:00:59 +000071#endif
Chris Lattnere5022fe2006-03-04 09:31:13 +000072
Dan Gohman844731a2008-05-13 00:00:25 +000073namespace {
Reid Spencer9133fe22007-02-05 23:32:05 +000074 class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
Chris Lattner0c0edf82002-07-25 06:17:51 +000075 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattnerd3c7b732009-03-31 22:13:29 +000076 std::map<AssertingVH<>, unsigned> ValueRankMap;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000077 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000078 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000079 static char ID; // Pass identification, replacement for typeid
Dan Gohmanae73dc12008-09-04 17:05:41 +000080 Reassociate() : FunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000081
Chris Lattner7e708292002-06-25 16:13:24 +000082 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000083
84 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000085 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000086 }
87 private:
Chris Lattner7e708292002-06-25 16:13:24 +000088 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000089 unsigned getRank(Value *V);
Chris Lattner895b3922006-03-14 07:11:11 +000090 void ReassociateExpression(BinaryOperator *I);
Chris Lattnere9efecb2006-03-14 16:04:29 +000091 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
92 unsigned Idx = 0);
Chris Lattnere5022fe2006-03-04 09:31:13 +000093 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000094 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
95 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +000096 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000097 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +000098
99 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000100 };
101}
102
Dan Gohman844731a2008-05-13 00:00:25 +0000103char Reassociate::ID = 0;
104static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
105
Brian Gaeked0fde302003-11-11 22:41:34 +0000106// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000107FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000108
Chris Lattnere5022fe2006-03-04 09:31:13 +0000109void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000110 Instruction *Op = dyn_cast<Instruction>(V);
111 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
112 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000113
Reid Spencere4d87aa2006-12-23 06:05:41 +0000114 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000115 RemoveDeadBinaryOp(LHS);
116 RemoveDeadBinaryOp(RHS);
117}
118
Chris Lattner9c723192005-05-08 20:57:04 +0000119
120static bool isUnmovableInstruction(Instruction *I) {
121 if (I->getOpcode() == Instruction::PHI ||
122 I->getOpcode() == Instruction::Alloca ||
123 I->getOpcode() == Instruction::Load ||
124 I->getOpcode() == Instruction::Malloc ||
125 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000126 (I->getOpcode() == Instruction::Call &&
127 !isa<DbgInfoIntrinsic>(I)) ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000128 I->getOpcode() == Instruction::UDiv ||
129 I->getOpcode() == Instruction::SDiv ||
130 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000131 I->getOpcode() == Instruction::URem ||
132 I->getOpcode() == Instruction::SRem ||
133 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000134 return true;
135 return false;
136}
137
Chris Lattner7e708292002-06-25 16:13:24 +0000138void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000139 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000140
141 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000142 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000143 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000144
Chris Lattner7e708292002-06-25 16:13:24 +0000145 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000146 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000147 E = RPOT.end(); I != E; ++I) {
148 BasicBlock *BB = *I;
149 unsigned BBRank = RankMap[BB] = ++i << 16;
150
151 // Walk the basic block, adding precomputed ranks for any instructions that
152 // we cannot move. This ensures that the ranks for these instructions are
153 // all different in the block.
154 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
155 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000156 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000157 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000158}
159
160unsigned Reassociate::getRank(Value *V) {
Chris Lattnerfb5be092003-08-13 16:16:26 +0000161 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
162
Chris Lattner08b43922005-05-07 04:08:02 +0000163 Instruction *I = dyn_cast<Instruction>(V);
164 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattner4fd56002002-05-08 22:19:27 +0000165
Chris Lattner08b43922005-05-07 04:08:02 +0000166 unsigned &CachedRank = ValueRankMap[I];
167 if (CachedRank) return CachedRank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000168
Chris Lattner08b43922005-05-07 04:08:02 +0000169 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
170 // we can reassociate expressions for code motion! Since we do not recurse
171 // for PHI nodes, we cannot have infinite recursion here, because there
172 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000173 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
174 for (unsigned i = 0, e = I->getNumOperands();
175 i != e && Rank != MaxRank; ++i)
176 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000177
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000178 // If this is a not or neg instruction, do not count it for rank. This
179 // assures us that X and ~X will have the same rank.
Chris Lattner42a75512007-01-15 02:27:26 +0000180 if (!I->getType()->isInteger() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000181 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000182 ++Rank;
183
Bill Wendling832171c2006-12-07 20:04:42 +0000184 //DOUT << "Calculated Rank[" << V->getName() << "] = "
185 // << Rank << "\n";
Jeff Cohen00b168892005-07-27 06:12:32 +0000186
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000187 return CachedRank = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000188}
189
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000190/// isReassociableOp - Return true if V is an instruction of the specified
191/// opcode and if it only has one use.
192static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000193 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000194 cast<Instruction>(V)->getOpcode() == Opcode)
195 return cast<BinaryOperator>(V);
196 return 0;
197}
Chris Lattner4fd56002002-05-08 22:19:27 +0000198
Chris Lattnerf33151a2005-05-08 21:28:52 +0000199/// LowerNegateToMultiply - Replace 0-X with X*-1.
200///
Dale Johannesenf4978e22009-03-19 17:22:53 +0000201static Instruction *LowerNegateToMultiply(Instruction *Neg,
Owen Andersonfa5cbd62009-07-03 19:42:02 +0000202 std::map<AssertingVH<>, unsigned> &ValueRankMap,
Owen Andersone922c022009-07-22 00:24:57 +0000203 LLVMContext &Context) {
204 Constant *Cst = Neg->getContext().getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000205
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000206 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000207 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000208 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000209 Neg->replaceAllUsesWith(Res);
210 Neg->eraseFromParent();
211 return Res;
212}
213
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000214// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
215// Note that if D is also part of the expression tree that we recurse to
216// linearize it as well. Besides that case, this does not recurse into A,B, or
217// C.
218void Reassociate::LinearizeExpr(BinaryOperator *I) {
219 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
220 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000221 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000222 isReassociableOp(RHS, I->getOpcode()) &&
223 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000224
Bill Wendling832171c2006-12-07 20:04:42 +0000225 DOUT << "Linear" << *LHS << *RHS << *I;
Chris Lattner4fd56002002-05-08 22:19:27 +0000226
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000227 // Move the RHS instruction to live immediately before I, avoiding breaking
228 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000229 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000230
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000231 // Move operands around to do the linearization.
232 I->setOperand(1, RHS->getOperand(0));
233 RHS->setOperand(0, LHS);
234 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000235
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000236 ++NumLinear;
237 MadeChange = true;
Bill Wendling832171c2006-12-07 20:04:42 +0000238 DOUT << "Linearized: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000239
240 // If D is part of this expression tree, tail recurse.
241 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
242 LinearizeExpr(I);
243}
244
245
246/// LinearizeExprTree - Given an associative binary expression tree, traverse
247/// all of the uses putting it into canonical form. This forces a left-linear
248/// form of the the expression (((a+b)+c)+d), and collects information about the
249/// rank of the non-tree operands.
250///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000251/// NOTE: These intentionally destroys the expression tree operands (turning
252/// them into undef values) to reduce #uses of the values. This means that the
253/// caller MUST use something like RewriteExprTree to put the values back in.
254///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000255void Reassociate::LinearizeExprTree(BinaryOperator *I,
256 std::vector<ValueEntry> &Ops) {
257 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
258 unsigned Opcode = I->getOpcode();
Owen Andersone922c022009-07-22 00:24:57 +0000259 LLVMContext &Context = I->getContext();
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000260
261 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
262 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
263 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
264
Chris Lattnerf33151a2005-05-08 21:28:52 +0000265 // If this is a multiply expression tree and it contains internal negations,
266 // transform them into multiplies by -1 so they can be reassociated.
267 if (I->getOpcode() == Instruction::Mul) {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000268 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Owen Andersonfa5cbd62009-07-03 19:42:02 +0000269 LHS = LowerNegateToMultiply(cast<Instruction>(LHS),
270 ValueRankMap, Context);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000271 LHSBO = isReassociableOp(LHS, Opcode);
272 }
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000273 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Owen Andersonfa5cbd62009-07-03 19:42:02 +0000274 RHS = LowerNegateToMultiply(cast<Instruction>(RHS),
275 ValueRankMap, Context);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000276 RHSBO = isReassociableOp(RHS, Opcode);
277 }
278 }
279
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000280 if (!LHSBO) {
281 if (!RHSBO) {
282 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
283 // such, just remember these operands and their rank.
284 Ops.push_back(ValueEntry(getRank(LHS), LHS));
285 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000286
287 // Clear the leaves out.
Owen Andersone922c022009-07-22 00:24:57 +0000288 I->setOperand(0, Context.getUndef(I->getType()));
289 I->setOperand(1, Context.getUndef(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000290 return;
291 } else {
292 // Turn X+(Y+Z) -> (Y+Z)+X
293 std::swap(LHSBO, RHSBO);
294 std::swap(LHS, RHS);
295 bool Success = !I->swapOperands();
296 assert(Success && "swapOperands failed");
Devang Patel59500c82008-11-21 20:00:59 +0000297 Success = false;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000298 MadeChange = true;
299 }
300 } else if (RHSBO) {
301 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
302 // part of the expression tree.
303 LinearizeExpr(I);
304 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
305 RHS = I->getOperand(1);
306 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000307 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000308
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000309 // Okay, now we know that the LHS is a nested expression and that the RHS is
310 // not. Perform reassociation.
311 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000312
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000313 // Move LHS right before I to make sure that the tree expression dominates all
314 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000315 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000316
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000317 // Linearize the expression tree on the LHS.
318 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000319
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000320 // Remember the RHS operand and its rank.
321 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000322
323 // Clear the RHS leaf out.
Owen Andersone922c022009-07-22 00:24:57 +0000324 I->setOperand(1, Context.getUndef(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000325}
326
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000327// RewriteExprTree - Now that the operands for this expression tree are
328// linearized and optimized, emit them in-order. This function is written to be
329// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000330void Reassociate::RewriteExprTree(BinaryOperator *I,
331 std::vector<ValueEntry> &Ops,
332 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000333 if (i+2 == Ops.size()) {
334 if (I->getOperand(0) != Ops[i].Op ||
335 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000336 Value *OldLHS = I->getOperand(0);
Bill Wendling832171c2006-12-07 20:04:42 +0000337 DOUT << "RA: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000338 I->setOperand(0, Ops[i].Op);
339 I->setOperand(1, Ops[i+1].Op);
Bill Wendling832171c2006-12-07 20:04:42 +0000340 DOUT << "TO: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000341 MadeChange = true;
342 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000343
344 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
345 // delete the extra, now dead, nodes.
346 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000347 }
348 return;
349 }
350 assert(i+2 < Ops.size() && "Ops index out of range!");
351
352 if (I->getOperand(1) != Ops[i].Op) {
Bill Wendling832171c2006-12-07 20:04:42 +0000353 DOUT << "RA: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000354 I->setOperand(1, Ops[i].Op);
Bill Wendling832171c2006-12-07 20:04:42 +0000355 DOUT << "TO: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000356 MadeChange = true;
357 ++NumChanged;
358 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000359
360 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
361 assert(LHS->getOpcode() == I->getOpcode() &&
362 "Improper expression tree!");
363
364 // Compactify the tree instructions together with each other to guarantee
365 // that the expression tree is dominated by all of Ops.
366 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000367 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000368}
369
370
Chris Lattner4fd56002002-05-08 22:19:27 +0000371
Chris Lattnera36e6c82002-05-16 04:37:07 +0000372// NegateValue - Insert instructions before the instruction pointed to by BI,
373// that computes the negative version of the value specified. The negative
374// version of the value is returned, and BI is left pointing at the instruction
375// that should be processed next by the reassociation pass.
376//
Owen Andersone922c022009-07-22 00:24:57 +0000377static Value *NegateValue(LLVMContext &Context, Value *V, Instruction *BI) {
Chris Lattnera36e6c82002-05-16 04:37:07 +0000378 // We are trying to expose opportunity for reassociation. One of the things
379 // that we want to do to achieve this is to push a negation as deep into an
380 // expression chain as possible, to expose the add instructions. In practice,
381 // this means that we turn this:
382 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
383 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
384 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman5560c9d2003-08-18 14:43:39 +0000385 // we introduce tons of unnecessary negation instructions...
Chris Lattnera36e6c82002-05-16 04:37:07 +0000386 //
387 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000388 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000389 // Push the negates through the add.
Owen Anderson0a5372e2009-07-13 04:09:18 +0000390 I->setOperand(0, NegateValue(Context, I->getOperand(0), BI));
391 I->setOperand(1, NegateValue(Context, I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000392
Chris Lattner2cd85da2005-09-02 06:38:04 +0000393 // We must move the add instruction here, because the neg instructions do
394 // not dominate the old add instruction in general. By moving it, we are
395 // assured that the neg instructions we just inserted dominate the
396 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000397 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000398 I->moveBefore(BI);
399 I->setName(I->getName()+".neg");
400 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000401 }
402
403 // Insert a 'neg' instruction that subtracts the value from zero to get the
404 // negation.
405 //
Owen Andersone922c022009-07-22 00:24:57 +0000406 return BinaryOperator::CreateNeg(Context, V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000407}
408
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000409/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
410/// X-Y into (X + -Y).
Owen Andersone922c022009-07-22 00:24:57 +0000411static bool ShouldBreakUpSubtract(LLVMContext &Context, Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000412 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000413 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000414 return false;
415
416 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000417 // subtract or if this is only used by one.
418 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
419 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000420 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000421 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000422 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000423 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000424 if (Sub->hasOneUse() &&
425 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
426 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000427 return true;
428
429 return false;
430}
431
Chris Lattner08b43922005-05-07 04:08:02 +0000432/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
433/// only used by an add, transform this into (X+(0-Y)) to promote better
434/// reassociation.
Owen Andersone922c022009-07-22 00:24:57 +0000435static Instruction *BreakUpSubtract(LLVMContext &Context, Instruction *Sub,
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000436 std::map<AssertingVH<>, unsigned> &ValueRankMap) {
Chris Lattner08b43922005-05-07 04:08:02 +0000437 // Convert a subtract into an add and a neg instruction... so that sub
438 // instructions can be commuted with other add instructions...
439 //
440 // Calculate the negative value of Operand 1 of the sub instruction...
441 // and set it as the RHS of the add instruction we just made...
442 //
Owen Anderson0a5372e2009-07-13 04:09:18 +0000443 Value *NegVal = NegateValue(Context, Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000444 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000445 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000446 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000447
448 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000449 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000450 Sub->replaceAllUsesWith(New);
451 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000452
Bill Wendling832171c2006-12-07 20:04:42 +0000453 DOUT << "Negated: " << *New;
Chris Lattner08b43922005-05-07 04:08:02 +0000454 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000455}
456
Chris Lattner0975ed52005-05-07 04:24:13 +0000457/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
458/// by one, change this into a multiply by a constant to assist with further
459/// reassociation.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000460static Instruction *ConvertShiftToMul(Instruction *Shl,
Owen Andersonfa5cbd62009-07-03 19:42:02 +0000461 std::map<AssertingVH<>, unsigned> &ValueRankMap,
Owen Andersone922c022009-07-22 00:24:57 +0000462 LLVMContext &Context) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000463 // If an operand of this shift is a reassociable multiply, or if the shift
464 // is used by a reassociable multiply or add, turn into a multiply.
465 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
466 (Shl->hasOneUse() &&
467 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
468 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000469 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Owen Andersonfa5cbd62009-07-03 19:42:02 +0000470 MulCst =
Owen Andersonbaf3c402009-07-29 18:55:55 +0000471 ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Chris Lattner22a66c42006-03-14 06:55:18 +0000472
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000473 Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
Chris Lattner6934a042007-02-11 01:23:03 +0000474 "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000475 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000476 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000477 Shl->replaceAllUsesWith(Mul);
478 Shl->eraseFromParent();
479 return Mul;
480 }
481 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000482}
483
Chris Lattner109d34d2005-05-08 18:59:37 +0000484// Scan backwards and forwards among values with the same rank as element i to
485// see if X exists. If X does not exist, return i.
486static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
487 Value *X) {
488 unsigned XRank = Ops[i].Rank;
489 unsigned e = Ops.size();
490 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
491 if (Ops[j].Op == X)
492 return j;
493 // Scan backwards
494 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
495 if (Ops[j].Op == X)
496 return j;
497 return i;
498}
499
Chris Lattnere5022fe2006-03-04 09:31:13 +0000500/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
501/// and returning the result. Insert the tree before I.
502static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
503 if (Ops.size() == 1) return Ops.back();
504
505 Value *V1 = Ops.back();
506 Ops.pop_back();
507 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000508 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000509}
510
511/// RemoveFactorFromExpression - If V is an expression tree that is a
512/// multiplication sequence, and if this sequence contains a multiply by Factor,
513/// remove Factor from the tree and return the new tree.
514Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
515 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
516 if (!BO) return 0;
517
518 std::vector<ValueEntry> Factors;
519 LinearizeExprTree(BO, Factors);
520
521 bool FoundFactor = false;
522 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
523 if (Factors[i].Op == Factor) {
524 FoundFactor = true;
525 Factors.erase(Factors.begin()+i);
526 break;
527 }
Chris Lattnere9efecb2006-03-14 16:04:29 +0000528 if (!FoundFactor) {
529 // Make sure to restore the operands to the expression tree.
530 RewriteExprTree(BO, Factors);
531 return 0;
532 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000533
534 if (Factors.size() == 1) return Factors[0].Op;
535
Chris Lattnere9efecb2006-03-14 16:04:29 +0000536 RewriteExprTree(BO, Factors);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000537 return BO;
538}
539
Chris Lattnere9efecb2006-03-14 16:04:29 +0000540/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
541/// add its operands as factors, otherwise add V to the list of factors.
542static void FindSingleUseMultiplyFactors(Value *V,
543 std::vector<Value*> &Factors) {
544 BinaryOperator *BO;
545 if ((!V->hasOneUse() && !V->use_empty()) ||
546 !(BO = dyn_cast<BinaryOperator>(V)) ||
547 BO->getOpcode() != Instruction::Mul) {
548 Factors.push_back(V);
549 return;
550 }
551
552 // Otherwise, add the LHS and RHS to the list of factors.
553 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
554 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
555}
556
557
Chris Lattnere5022fe2006-03-04 09:31:13 +0000558
559Value *Reassociate::OptimizeExpression(BinaryOperator *I,
560 std::vector<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000561 // Now that we have the linearized expression tree, try to optimize it.
562 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000563 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000564 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000565
Owen Andersone922c022009-07-22 00:24:57 +0000566 LLVMContext &Context = I->getContext();
567
Chris Lattnere5022fe2006-03-04 09:31:13 +0000568 unsigned Opcode = I->getOpcode();
569
Chris Lattner46900102005-05-08 00:19:31 +0000570 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
571 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
572 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +0000573 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000574 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000575 }
576
577 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000578 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +0000579 switch (Opcode) {
580 default: break;
581 case Instruction::And:
Reid Spencercae57542007-03-02 00:28:52 +0000582 if (CstVal->isZero()) { // ... & 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000583 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000584 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000585 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
586 Ops.pop_back();
587 }
588 break;
589 case Instruction::Mul:
Reid Spencercae57542007-03-02 00:28:52 +0000590 if (CstVal->isZero()) { // ... * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000591 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000592 return CstVal;
Reid Spencercae57542007-03-02 00:28:52 +0000593 } else if (cast<ConstantInt>(CstVal)->isOne()) {
Chris Lattner46900102005-05-08 00:19:31 +0000594 Ops.pop_back(); // ... * 1 -> ...
595 }
596 break;
597 case Instruction::Or:
598 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
Chris Lattner109d34d2005-05-08 18:59:37 +0000599 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000600 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000601 }
602 // FALLTHROUGH!
603 case Instruction::Add:
604 case Instruction::Xor:
Reid Spencercae57542007-03-02 00:28:52 +0000605 if (CstVal->isZero()) // ... [|^+] 0 -> ...
Chris Lattner46900102005-05-08 00:19:31 +0000606 Ops.pop_back();
607 break;
608 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000609 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000610
611 // Handle destructive annihilation do to identities between elements in the
612 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000613 switch (Opcode) {
614 default: break;
615 case Instruction::And:
616 case Instruction::Or:
617 case Instruction::Xor:
618 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
619 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
620 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
621 // First, check for X and ~X in the operand list.
Chris Lattner368a3aa2005-09-02 05:23:22 +0000622 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000623 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
624 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
625 unsigned FoundX = FindInOperandList(Ops, i, X);
626 if (FoundX != i) {
627 if (Opcode == Instruction::And) { // ...&X&~X = 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000628 ++NumAnnihil;
Owen Andersone922c022009-07-22 00:24:57 +0000629 return Context.getNullValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000630 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
Chris Lattner109d34d2005-05-08 18:59:37 +0000631 ++NumAnnihil;
Owen Andersone922c022009-07-22 00:24:57 +0000632 return Context.getAllOnesValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000633 }
634 }
635 }
636
637 // Next, check for duplicate pairs of values, which we assume are next to
638 // each other, due to our sorting criteria.
Chris Lattner368a3aa2005-09-02 05:23:22 +0000639 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000640 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
641 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
642 // Drop duplicate values.
643 Ops.erase(Ops.begin()+i);
644 --i; --e;
645 IterateOptimization = true;
646 ++NumAnnihil;
647 } else {
648 assert(Opcode == Instruction::Xor);
Chris Lattnerac83b032005-08-24 17:55:32 +0000649 if (e == 2) {
Chris Lattnerac83b032005-08-24 17:55:32 +0000650 ++NumAnnihil;
Owen Andersone922c022009-07-22 00:24:57 +0000651 return Context.getNullValue(Ops[0].Op->getType());
Chris Lattnerac83b032005-08-24 17:55:32 +0000652 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000653 // ... X^X -> ...
654 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
Chris Lattnerac83b032005-08-24 17:55:32 +0000655 i -= 1; e -= 2;
Chris Lattner109d34d2005-05-08 18:59:37 +0000656 IterateOptimization = true;
657 ++NumAnnihil;
658 }
659 }
660 }
661 break;
662
663 case Instruction::Add:
664 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattnere5022fe2006-03-04 09:31:13 +0000665 // can simplify the expression. X+-X == 0.
Chris Lattner109d34d2005-05-08 18:59:37 +0000666 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner368a3aa2005-09-02 05:23:22 +0000667 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000668 // Check for X and -X in the operand list.
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000669 if (BinaryOperator::isNeg(Ops[i].Op)) {
Chris Lattner109d34d2005-05-08 18:59:37 +0000670 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
671 unsigned FoundX = FindInOperandList(Ops, i, X);
672 if (FoundX != i) {
673 // Remove X and -X from the operand list.
674 if (Ops.size() == 2) {
Chris Lattner109d34d2005-05-08 18:59:37 +0000675 ++NumAnnihil;
Owen Andersone922c022009-07-22 00:24:57 +0000676 return Context.getNullValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000677 } else {
678 Ops.erase(Ops.begin()+i);
Chris Lattner368a3aa2005-09-02 05:23:22 +0000679 if (i < FoundX)
680 --FoundX;
681 else
682 --i; // Need to back up an extra one.
Chris Lattner109d34d2005-05-08 18:59:37 +0000683 Ops.erase(Ops.begin()+FoundX);
684 IterateOptimization = true;
685 ++NumAnnihil;
Chris Lattner368a3aa2005-09-02 05:23:22 +0000686 --i; // Revisit element.
687 e -= 2; // Removed two elements.
Chris Lattner109d34d2005-05-08 18:59:37 +0000688 }
689 }
690 }
691 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000692
693
694 // Scan the operand list, checking to see if there are any common factors
695 // between operands. Consider something like A*A+A*B*C+D. We would like to
696 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
697 // To efficiently find this, we count the number of times a factor occurs
698 // for any ADD operands that are MULs.
699 std::map<Value*, unsigned> FactorOccurrences;
700 unsigned MaxOcc = 0;
701 Value *MaxOccVal = 0;
Reid Spencer24d6da52007-01-21 00:29:26 +0000702 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
703 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
704 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
705 // Compute all of the factors of this added value.
706 std::vector<Value*> Factors;
707 FindSingleUseMultiplyFactors(BOp, Factors);
708 assert(Factors.size() > 1 && "Bad linearize!");
709
710 // Add one to FactorOccurrences for each unique factor in this op.
711 if (Factors.size() == 2) {
712 unsigned Occ = ++FactorOccurrences[Factors[0]];
713 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
714 if (Factors[0] != Factors[1]) { // Don't double count A*A.
715 Occ = ++FactorOccurrences[Factors[1]];
716 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
717 }
718 } else {
719 std::set<Value*> Duplicates;
720 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
721 if (Duplicates.insert(Factors[i]).second) {
722 unsigned Occ = ++FactorOccurrences[Factors[i]];
723 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000724 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000725 }
726 }
Reid Spencer24d6da52007-01-21 00:29:26 +0000727 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000728 }
729 }
730
731 // If any factor occurred more than one time, we can pull it out.
732 if (MaxOcc > 1) {
Bill Wendling832171c2006-12-07 20:04:42 +0000733 DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
Chris Lattnere5022fe2006-03-04 09:31:13 +0000734
735 // Create a new instruction that uses the MaxOccVal twice. If we don't do
736 // this, we could otherwise run into situations where removing a factor
737 // from an expression will drop a use of maxocc, and this can cause
738 // RemoveFactorFromExpression on successive values to behave differently.
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000739 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000740 std::vector<Value*> NewMulOps;
741 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
742 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
743 NewMulOps.push_back(V);
744 Ops.erase(Ops.begin()+i);
745 --i; --e;
746 }
747 }
748
749 // No need for extra uses anymore.
750 delete DummyInst;
751
Chris Lattnere9efecb2006-03-14 16:04:29 +0000752 unsigned NumAddedValues = NewMulOps.size();
Chris Lattnere5022fe2006-03-04 09:31:13 +0000753 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000754 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000755
Chris Lattnere9efecb2006-03-14 16:04:29 +0000756 // Now that we have inserted V and its sole use, optimize it. This allows
757 // us to handle cases that require multiple factoring steps, such as this:
758 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
759 if (NumAddedValues > 1)
760 ReassociateExpression(cast<BinaryOperator>(V));
761
Chris Lattnere5022fe2006-03-04 09:31:13 +0000762 ++NumFactor;
763
Dan Gohman30359592008-01-29 13:02:09 +0000764 if (Ops.empty())
Chris Lattnere9efecb2006-03-14 16:04:29 +0000765 return V2;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000766
767 // Add the new value to the list of things being added.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000768 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
Chris Lattnere5022fe2006-03-04 09:31:13 +0000769
770 // Rewrite the tree so that there is now a use of V.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000771 RewriteExprTree(I, Ops);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000772 return OptimizeExpression(I, Ops);
773 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000774 break;
775 //case Instruction::Mul:
776 }
777
Jeff Cohen00b168892005-07-27 06:12:32 +0000778 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000779 return OptimizeExpression(I, Ops);
780 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000781}
782
Chris Lattnera36e6c82002-05-16 04:37:07 +0000783
Chris Lattner08b43922005-05-07 04:08:02 +0000784/// ReassociateBB - Inspect all of the instructions in this basic block,
785/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000786void Reassociate::ReassociateBB(BasicBlock *BB) {
Owen Andersone922c022009-07-22 00:24:57 +0000787 LLVMContext &Context = BB->getContext();
788
Chris Lattnere5022fe2006-03-04 09:31:13 +0000789 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
790 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000791 if (BI->getOpcode() == Instruction::Shl &&
792 isa<ConstantInt>(BI->getOperand(1)))
Owen Andersonfa5cbd62009-07-03 19:42:02 +0000793 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap, Context)) {
Chris Lattner641f02f2005-05-10 03:39:25 +0000794 MadeChange = true;
795 BI = NI;
796 }
797
Chris Lattner6f156852005-05-08 21:33:47 +0000798 // Reject cases where it is pointless to do this.
Reid Spencere4d87aa2006-12-23 06:05:41 +0000799 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
Reid Spencer9d6565a2007-02-15 02:26:10 +0000800 isa<VectorType>(BI->getType()))
Chris Lattner6f156852005-05-08 21:33:47 +0000801 continue; // Floating point ops are not associative.
802
Chris Lattner08b43922005-05-07 04:08:02 +0000803 // If this is a subtract instruction which is not already in negate form,
804 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000805 if (BI->getOpcode() == Instruction::Sub) {
Owen Anderson0a5372e2009-07-13 04:09:18 +0000806 if (ShouldBreakUpSubtract(Context, BI)) {
807 BI = BreakUpSubtract(Context, BI, ValueRankMap);
Chris Lattnerd5b8d922008-02-18 02:18:25 +0000808 MadeChange = true;
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000809 } else if (BinaryOperator::isNeg(BI)) {
Chris Lattnerf33151a2005-05-08 21:28:52 +0000810 // Otherwise, this is a negation. See if the operand is a multiply tree
811 // and if this is not an inner node of a multiply tree.
812 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
813 (!BI->hasOneUse() ||
814 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
Owen Andersonfa5cbd62009-07-03 19:42:02 +0000815 BI = LowerNegateToMultiply(BI, ValueRankMap, Context);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000816 MadeChange = true;
817 }
Chris Lattner08b43922005-05-07 04:08:02 +0000818 }
Chris Lattnerf33151a2005-05-08 21:28:52 +0000819 }
Chris Lattnere4b73042002-10-31 17:12:59 +0000820
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000821 // If this instruction is a commutative binary operator, process it.
822 if (!BI->isAssociative()) continue;
823 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +0000824
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000825 // If this is an interior node of a reassociable tree, ignore it until we
826 // get to the root of the tree, to avoid N^2 analysis.
827 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
828 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000829
Chris Lattner7b4ad942005-09-02 07:07:58 +0000830 // If this is an add tree that is used by a sub instruction, ignore it
831 // until we process the subtract.
832 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
833 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
834 continue;
835
Chris Lattner895b3922006-03-14 07:11:11 +0000836 ReassociateExpression(I);
837 }
838}
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000839
Chris Lattner895b3922006-03-14 07:11:11 +0000840void Reassociate::ReassociateExpression(BinaryOperator *I) {
841
842 // First, walk the expression tree, linearizing the tree, collecting
843 std::vector<ValueEntry> Ops;
844 LinearizeExprTree(I, Ops);
845
Bill Wendling832171c2006-12-07 20:04:42 +0000846 DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
Chris Lattner895b3922006-03-14 07:11:11 +0000847
848 // Now that we have linearized the tree to a list and have gathered all of
849 // the operands and their ranks, sort the operands by their rank. Use a
850 // stable_sort so that values with equal ranks will have their relative
851 // positions maintained (and so the compiler is deterministic). Note that
852 // this sorts so that the highest ranking values end up at the beginning of
853 // the vector.
854 std::stable_sort(Ops.begin(), Ops.end());
855
856 // OptimizeExpression - Now that we have the expression tree in a convenient
857 // sorted form, optimize it globally if possible.
858 if (Value *V = OptimizeExpression(I, Ops)) {
859 // This expression tree simplified to something that isn't a tree,
860 // eliminate it.
Bill Wendling832171c2006-12-07 20:04:42 +0000861 DOUT << "Reassoc to scalar: " << *V << "\n";
Chris Lattner895b3922006-03-14 07:11:11 +0000862 I->replaceAllUsesWith(V);
863 RemoveDeadBinaryOp(I);
864 return;
865 }
866
867 // We want to sink immediates as deeply as possible except in the case where
868 // this is a multiply tree used only by an add, and the immediate is a -1.
869 // In this case we reassociate to put the negation on the outside so that we
870 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
871 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
872 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
873 isa<ConstantInt>(Ops.back().Op) &&
874 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
875 Ops.insert(Ops.begin(), Ops.back());
876 Ops.pop_back();
877 }
878
Bill Wendling832171c2006-12-07 20:04:42 +0000879 DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
Chris Lattner895b3922006-03-14 07:11:11 +0000880
881 if (Ops.size() == 1) {
882 // This expression tree simplified to something that isn't a tree,
883 // eliminate it.
884 I->replaceAllUsesWith(Ops[0].Op);
885 RemoveDeadBinaryOp(I);
886 } else {
887 // Now that we ordered and optimized the expressions, splat them back into
888 // the expression tree, removing any unneeded nodes.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000889 RewriteExprTree(I, Ops);
Chris Lattner4fd56002002-05-08 22:19:27 +0000890 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000891}
892
893
Chris Lattner7e708292002-06-25 16:13:24 +0000894bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +0000895 // Recalculate the rank map for F
896 BuildRankMap(F);
897
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000898 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +0000899 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000900 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +0000901
902 // We are done with the rank map...
903 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +0000904 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000905 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000906}
Brian Gaeked0fde302003-11-11 22:41:34 +0000907