blob: 5fa7b82299de8edf7790b30f297e6fab0fd7e88b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which converts floating point instructions from
11// virtual registers into register stack instructions. This pass uses live
12// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
15// This pass is hampered by the lack of decent CFG manipulation routines for
16// machine code. In particular, this wants to be able to split critical edges
17// as necessary, traverse the machine basic block CFG in depth-first order, and
18// allow there to be multiple machine basic blocks for each LLVM basicblock
19// (needed for critical edge splitting).
20//
21// In particular, this pass currently barfs on critical edges. Because of this,
22// it requires the instruction selector to insert FP_REG_KILL instructions on
23// the exits of any basic block that has critical edges going from it, or which
24// branch to a critical basic block.
25//
26// FIXME: this is not implemented yet. The stackifier pass only works on local
27// basic blocks.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "x86-codegen"
32#include "X86.h"
33#include "X86InstrInfo.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000036#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/CodeGen/Passes.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/Debug.h"
Edwin Török675d5622009-07-11 20:10:48 +000041#include "llvm/Support/ErrorHandling.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000042#include "llvm/Support/Compiler.h"
43#include "llvm/ADT/DepthFirstIterator.h"
Owen Anderson43ada1d2008-08-14 21:01:00 +000044#include "llvm/ADT/SmallPtrSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000045#include "llvm/ADT/SmallVector.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/STLExtras.h"
48#include <algorithm>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049using namespace llvm;
50
51STATISTIC(NumFXCH, "Number of fxch instructions inserted");
52STATISTIC(NumFP , "Number of floating point instructions");
53
54namespace {
55 struct VISIBILITY_HIDDEN FPS : public MachineFunctionPass {
56 static char ID;
Dan Gohman26f8c272008-09-04 17:05:41 +000057 FPS() : MachineFunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058
Evan Cheng465a66e2008-09-22 20:58:04 +000059 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohman15468d72009-08-01 00:26:16 +000060 AU.setPreservesCFG();
Evan Cheng1b42ac12008-09-22 22:21:38 +000061 AU.addPreservedID(MachineLoopInfoID);
62 AU.addPreservedID(MachineDominatorsID);
Evan Cheng465a66e2008-09-22 20:58:04 +000063 MachineFunctionPass::getAnalysisUsage(AU);
64 }
65
Dan Gohmanf17a25c2007-07-18 16:29:46 +000066 virtual bool runOnMachineFunction(MachineFunction &MF);
67
68 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
69
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070 private:
71 const TargetInstrInfo *TII; // Machine instruction info.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000072 MachineBasicBlock *MBB; // Current basic block
73 unsigned Stack[8]; // FP<n> Registers in each stack slot...
74 unsigned RegMap[8]; // Track which stack slot contains each register
75 unsigned StackTop; // The current top of the FP stack.
76
77 void dumpStack() const {
78 cerr << "Stack contents:";
79 for (unsigned i = 0; i != StackTop; ++i) {
80 cerr << " FP" << Stack[i];
81 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
82 }
83 cerr << "\n";
84 }
85 private:
Chris Lattnerb56cc342008-03-11 03:23:40 +000086 /// isStackEmpty - Return true if the FP stack is empty.
87 bool isStackEmpty() const {
88 return StackTop == 0;
89 }
90
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091 // getSlot - Return the stack slot number a particular register number is
Chris Lattnerb56cc342008-03-11 03:23:40 +000092 // in.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000093 unsigned getSlot(unsigned RegNo) const {
94 assert(RegNo < 8 && "Regno out of range!");
95 return RegMap[RegNo];
96 }
97
Chris Lattnerb56cc342008-03-11 03:23:40 +000098 // getStackEntry - Return the X86::FP<n> register in register ST(i).
Dan Gohmanf17a25c2007-07-18 16:29:46 +000099 unsigned getStackEntry(unsigned STi) const {
100 assert(STi < StackTop && "Access past stack top!");
101 return Stack[StackTop-1-STi];
102 }
103
104 // getSTReg - Return the X86::ST(i) register which contains the specified
Chris Lattnerb56cc342008-03-11 03:23:40 +0000105 // FP<RegNo> register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000106 unsigned getSTReg(unsigned RegNo) const {
107 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
108 }
109
Chris Lattnerb56cc342008-03-11 03:23:40 +0000110 // pushReg - Push the specified FP<n> register onto the stack.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000111 void pushReg(unsigned Reg) {
112 assert(Reg < 8 && "Register number out of range!");
113 assert(StackTop < 8 && "Stack overflow!");
114 Stack[StackTop] = Reg;
115 RegMap[Reg] = StackTop++;
116 }
117
118 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattnerb56cc342008-03-11 03:23:40 +0000119 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Dale Johannesen960bfbd2009-02-13 02:33:27 +0000120 MachineInstr *MI = I;
121 DebugLoc dl = MI->getDebugLoc();
Chris Lattnerb56cc342008-03-11 03:23:40 +0000122 if (isAtTop(RegNo)) return;
123
124 unsigned STReg = getSTReg(RegNo);
125 unsigned RegOnTop = getStackEntry(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126
Chris Lattnerb56cc342008-03-11 03:23:40 +0000127 // Swap the slots the regs are in.
128 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000129
Chris Lattnerb56cc342008-03-11 03:23:40 +0000130 // Swap stack slot contents.
131 assert(RegMap[RegOnTop] < StackTop);
132 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000133
Chris Lattnerb56cc342008-03-11 03:23:40 +0000134 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen960bfbd2009-02-13 02:33:27 +0000135 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Chris Lattnerb56cc342008-03-11 03:23:40 +0000136 NumFXCH++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137 }
138
139 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Dale Johannesen960bfbd2009-02-13 02:33:27 +0000140 DebugLoc dl = I->getDebugLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 unsigned STReg = getSTReg(RegNo);
142 pushReg(AsReg); // New register on top of stack
143
Dale Johannesen960bfbd2009-02-13 02:33:27 +0000144 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 }
146
147 // popStackAfter - Pop the current value off of the top of the FP stack
148 // after the specified instruction.
149 void popStackAfter(MachineBasicBlock::iterator &I);
150
151 // freeStackSlotAfter - Free the specified register from the register stack,
152 // so that it is no longer in a register. If the register is currently at
153 // the top of the stack, we just pop the current instruction, otherwise we
154 // store the current top-of-stack into the specified slot, then pop the top
155 // of stack.
156 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
157
158 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
159
160 void handleZeroArgFP(MachineBasicBlock::iterator &I);
161 void handleOneArgFP(MachineBasicBlock::iterator &I);
162 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
163 void handleTwoArgFP(MachineBasicBlock::iterator &I);
164 void handleCompareFP(MachineBasicBlock::iterator &I);
165 void handleCondMovFP(MachineBasicBlock::iterator &I);
166 void handleSpecialFP(MachineBasicBlock::iterator &I);
167 };
168 char FPS::ID = 0;
169}
170
171FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
172
Chris Lattner4b7054f2008-01-14 06:41:29 +0000173/// getFPReg - Return the X86::FPx register number for the specified operand.
174/// For example, this returns 3 for X86::FP3.
175static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000176 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner4b7054f2008-01-14 06:41:29 +0000177 unsigned Reg = MO.getReg();
178 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
179 return Reg - X86::FP0;
180}
181
182
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000183/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
184/// register references into FP stack references.
185///
186bool FPS::runOnMachineFunction(MachineFunction &MF) {
187 // We only need to run this pass if there are any FP registers used in this
188 // function. If it is all integer, there is nothing for us to do!
189 bool FPIsUsed = false;
190
191 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
192 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner1b989192007-12-31 04:13:23 +0000193 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000194 FPIsUsed = true;
195 break;
196 }
197
198 // Early exit.
199 if (!FPIsUsed) return false;
200
201 TII = MF.getTarget().getInstrInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000202 StackTop = 0;
203
204 // Process the function in depth first order so that we process at least one
205 // of the predecessors for every reachable block in the function.
Owen Anderson43ada1d2008-08-14 21:01:00 +0000206 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000207 MachineBasicBlock *Entry = MF.begin();
208
209 bool Changed = false;
Owen Anderson43ada1d2008-08-14 21:01:00 +0000210 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000211 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
212 I != E; ++I)
213 Changed |= processBasicBlock(MF, **I);
214
215 return Changed;
216}
217
218/// processBasicBlock - Loop over all of the instructions in the basic block,
219/// transforming FP instructions into their stack form.
220///
221bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
222 bool Changed = false;
223 MBB = &BB;
224
225 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
226 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000227 unsigned Flags = MI->getDesc().TSFlags;
Chris Lattner45b527c2008-03-11 19:50:13 +0000228
229 unsigned FPInstClass = Flags & X86II::FPTypeMask;
230 if (MI->getOpcode() == TargetInstrInfo::INLINEASM)
231 FPInstClass = X86II::SpecialFP;
232
233 if (FPInstClass == X86II::NotFP)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000234 continue; // Efficiently ignore non-fp insts!
235
236 MachineInstr *PrevMI = 0;
237 if (I != BB.begin())
Chris Lattner5d294e52008-03-09 07:05:32 +0000238 PrevMI = prior(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000239
240 ++NumFP; // Keep track of # of pseudo instrs
241 DOUT << "\nFPInst:\t" << *MI;
242
243 // Get dead variables list now because the MI pointer may be deleted as part
244 // of processing!
245 SmallVector<unsigned, 8> DeadRegs;
246 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
247 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000248 if (MO.isReg() && MO.isDead())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000249 DeadRegs.push_back(MO.getReg());
250 }
251
Chris Lattner45b527c2008-03-11 19:50:13 +0000252 switch (FPInstClass) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000253 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
254 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
255 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
256 case X86II::TwoArgFP: handleTwoArgFP(I); break;
257 case X86II::CompareFP: handleCompareFP(I); break;
258 case X86II::CondMovFP: handleCondMovFP(I); break;
259 case X86II::SpecialFP: handleSpecialFP(I); break;
Edwin Törökbd448e32009-07-14 16:55:14 +0000260 default: llvm_unreachable("Unknown FP Type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000261 }
262
263 // Check to see if any of the values defined by this instruction are dead
264 // after definition. If so, pop them.
265 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
266 unsigned Reg = DeadRegs[i];
267 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
268 DOUT << "Register FP#" << Reg-X86::FP0 << " is dead!\n";
269 freeStackSlotAfter(I, Reg-X86::FP0);
270 }
271 }
272
273 // Print out all of the instructions expanded to if -debug
274 DEBUG(
275 MachineBasicBlock::iterator PrevI(PrevMI);
276 if (I == PrevI) {
277 cerr << "Just deleted pseudo instruction\n";
278 } else {
279 MachineBasicBlock::iterator Start = I;
280 // Rewind to first instruction newly inserted.
281 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
282 cerr << "Inserted instructions:\n\t";
283 Start->print(*cerr.stream(), &MF.getTarget());
Duncan Sandsfe279782007-09-11 12:30:25 +0000284 while (++Start != next(I)) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000285 }
286 dumpStack();
287 );
288
289 Changed = true;
290 }
291
Chris Lattnerb56cc342008-03-11 03:23:40 +0000292 assert(isStackEmpty() && "Stack not empty at end of basic block?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000293 return Changed;
294}
295
296//===----------------------------------------------------------------------===//
297// Efficient Lookup Table Support
298//===----------------------------------------------------------------------===//
299
300namespace {
301 struct TableEntry {
302 unsigned from;
303 unsigned to;
304 bool operator<(const TableEntry &TE) const { return from < TE.from; }
305 friend bool operator<(const TableEntry &TE, unsigned V) {
306 return TE.from < V;
307 }
308 friend bool operator<(unsigned V, const TableEntry &TE) {
309 return V < TE.from;
310 }
311 };
312}
313
Evan Chengf86fee62008-07-21 20:02:45 +0000314#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000315static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
316 for (unsigned i = 0; i != NumEntries-1; ++i)
317 if (!(Table[i] < Table[i+1])) return false;
318 return true;
319}
Evan Chengf86fee62008-07-21 20:02:45 +0000320#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000321
322static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
323 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
324 if (I != Table+N && I->from == Opcode)
325 return I->to;
326 return -1;
327}
328
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000329#ifdef NDEBUG
330#define ASSERT_SORTED(TABLE)
331#else
332#define ASSERT_SORTED(TABLE) \
333 { static bool TABLE##Checked = false; \
334 if (!TABLE##Checked) { \
Owen Anderson1636de92007-09-07 04:06:50 +0000335 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336 "All lookup tables must be sorted for efficient access!"); \
337 TABLE##Checked = true; \
338 } \
339 }
340#endif
341
342//===----------------------------------------------------------------------===//
343// Register File -> Register Stack Mapping Methods
344//===----------------------------------------------------------------------===//
345
346// OpcodeTable - Sorted map of register instructions to their stack version.
347// The first element is an register file pseudo instruction, the second is the
348// concrete X86 instruction which uses the register stack.
349//
350static const TableEntry OpcodeTable[] = {
351 { X86::ABS_Fp32 , X86::ABS_F },
352 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000353 { X86::ABS_Fp80 , X86::ABS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000354 { X86::ADD_Fp32m , X86::ADD_F32m },
355 { X86::ADD_Fp64m , X86::ADD_F64m },
356 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000357 { X86::ADD_Fp80m32 , X86::ADD_F32m },
358 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000359 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
360 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000361 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
363 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000364 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000365 { X86::CHS_Fp32 , X86::CHS_F },
366 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000367 { X86::CHS_Fp80 , X86::CHS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000368 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
369 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000370 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000371 { X86::CMOVB_Fp32 , X86::CMOVB_F },
372 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000373 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000374 { X86::CMOVE_Fp32 , X86::CMOVE_F },
375 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000376 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000377 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
378 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000379 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000380 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
381 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000382 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000383 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
384 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000385 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000386 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
387 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000388 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000389 { X86::CMOVP_Fp32 , X86::CMOVP_F },
390 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000391 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000392 { X86::COS_Fp32 , X86::COS_F },
393 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000394 { X86::COS_Fp80 , X86::COS_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000395 { X86::DIVR_Fp32m , X86::DIVR_F32m },
396 { X86::DIVR_Fp64m , X86::DIVR_F64m },
397 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000398 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
399 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000400 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
401 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000402 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
404 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000405 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000406 { X86::DIV_Fp32m , X86::DIV_F32m },
407 { X86::DIV_Fp64m , X86::DIV_F64m },
408 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000409 { X86::DIV_Fp80m32 , X86::DIV_F32m },
410 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000411 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
412 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000413 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
415 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000416 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417 { X86::ILD_Fp16m32 , X86::ILD_F16m },
418 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000419 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000420 { X86::ILD_Fp32m32 , X86::ILD_F32m },
421 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000422 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 { X86::ILD_Fp64m32 , X86::ILD_F64m },
424 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000425 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
427 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000428 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
430 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000431 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
433 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000434 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435 { X86::IST_Fp16m32 , X86::IST_F16m },
436 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000437 { X86::IST_Fp16m80 , X86::IST_F16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000438 { X86::IST_Fp32m32 , X86::IST_F32m },
439 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000440 { X86::IST_Fp32m80 , X86::IST_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441 { X86::IST_Fp64m32 , X86::IST_FP64m },
442 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000443 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000444 { X86::LD_Fp032 , X86::LD_F0 },
445 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000446 { X86::LD_Fp080 , X86::LD_F0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000447 { X86::LD_Fp132 , X86::LD_F1 },
448 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000449 { X86::LD_Fp180 , X86::LD_F1 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000451 { X86::LD_Fp32m64 , X86::LD_F32m },
452 { X86::LD_Fp32m80 , X86::LD_F32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesenc428e0f2007-08-07 20:29:26 +0000454 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000455 { X86::LD_Fp80m , X86::LD_F80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456 { X86::MUL_Fp32m , X86::MUL_F32m },
457 { X86::MUL_Fp64m , X86::MUL_F64m },
458 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000459 { X86::MUL_Fp80m32 , X86::MUL_F32m },
460 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000461 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
462 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000463 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
465 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000466 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000467 { X86::SIN_Fp32 , X86::SIN_F },
468 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000469 { X86::SIN_Fp80 , X86::SIN_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000470 { X86::SQRT_Fp32 , X86::SQRT_F },
471 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000472 { X86::SQRT_Fp80 , X86::SQRT_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000473 { X86::ST_Fp32m , X86::ST_F32m },
474 { X86::ST_Fp64m , X86::ST_F64m },
475 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000476 { X86::ST_Fp80m32 , X86::ST_F32m },
477 { X86::ST_Fp80m64 , X86::ST_F64m },
478 { X86::ST_FpP80m , X86::ST_FP80m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000479 { X86::SUBR_Fp32m , X86::SUBR_F32m },
480 { X86::SUBR_Fp64m , X86::SUBR_F64m },
481 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000482 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
483 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000484 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
485 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000486 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000487 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
488 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000489 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000490 { X86::SUB_Fp32m , X86::SUB_F32m },
491 { X86::SUB_Fp64m , X86::SUB_F64m },
492 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000493 { X86::SUB_Fp80m32 , X86::SUB_F32m },
494 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000495 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
496 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000497 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000498 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
499 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000500 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000501 { X86::TST_Fp32 , X86::TST_F },
502 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000503 { X86::TST_Fp80 , X86::TST_F },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
505 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000506 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
508 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000509 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000510};
511
512static unsigned getConcreteOpcode(unsigned Opcode) {
513 ASSERT_SORTED(OpcodeTable);
Owen Anderson1636de92007-09-07 04:06:50 +0000514 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000515 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
516 return Opc;
517}
518
519//===----------------------------------------------------------------------===//
520// Helper Methods
521//===----------------------------------------------------------------------===//
522
523// PopTable - Sorted map of instructions to their popping version. The first
524// element is an instruction, the second is the version which pops.
525//
526static const TableEntry PopTable[] = {
527 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
528
529 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
530 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
531
532 { X86::IST_F16m , X86::IST_FP16m },
533 { X86::IST_F32m , X86::IST_FP32m },
534
535 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
536
537 { X86::ST_F32m , X86::ST_FP32m },
538 { X86::ST_F64m , X86::ST_FP64m },
539 { X86::ST_Frr , X86::ST_FPrr },
540
541 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
542 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
543
544 { X86::UCOM_FIr , X86::UCOM_FIPr },
545
546 { X86::UCOM_FPr , X86::UCOM_FPPr },
547 { X86::UCOM_Fr , X86::UCOM_FPr },
548};
549
550/// popStackAfter - Pop the current value off of the top of the FP stack after
551/// the specified instruction. This attempts to be sneaky and combine the pop
552/// into the instruction itself if possible. The iterator is left pointing to
553/// the last instruction, be it a new pop instruction inserted, or the old
554/// instruction if it was modified in place.
555///
556void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen960bfbd2009-02-13 02:33:27 +0000557 MachineInstr* MI = I;
558 DebugLoc dl = MI->getDebugLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000559 ASSERT_SORTED(PopTable);
560 assert(StackTop > 0 && "Cannot pop empty stack!");
561 RegMap[Stack[--StackTop]] = ~0; // Update state
562
563 // Check to see if there is a popping version of this instruction...
Owen Anderson1636de92007-09-07 04:06:50 +0000564 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000565 if (Opcode != -1) {
Chris Lattner86bb02f2008-01-11 18:10:50 +0000566 I->setDesc(TII->get(Opcode));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000567 if (Opcode == X86::UCOM_FPPr)
568 I->RemoveOperand(0);
569 } else { // Insert an explicit pop
Dale Johannesen960bfbd2009-02-13 02:33:27 +0000570 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000571 }
572}
573
574/// freeStackSlotAfter - Free the specified register from the register stack, so
575/// that it is no longer in a register. If the register is currently at the top
576/// of the stack, we just pop the current instruction, otherwise we store the
577/// current top-of-stack into the specified slot, then pop the top of stack.
578void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
579 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
580 popStackAfter(I);
581 return;
582 }
583
584 // Otherwise, store the top of stack into the dead slot, killing the operand
585 // without having to add in an explicit xchg then pop.
586 //
587 unsigned STReg = getSTReg(FPRegNo);
588 unsigned OldSlot = getSlot(FPRegNo);
589 unsigned TopReg = Stack[StackTop-1];
590 Stack[OldSlot] = TopReg;
591 RegMap[TopReg] = OldSlot;
592 RegMap[FPRegNo] = ~0;
593 Stack[--StackTop] = ~0;
Dale Johannesen960bfbd2009-02-13 02:33:27 +0000594 MachineInstr *MI = I;
595 DebugLoc dl = MI->getDebugLoc();
596 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000597}
598
599
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000600//===----------------------------------------------------------------------===//
601// Instruction transformation implementation
602//===----------------------------------------------------------------------===//
603
604/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
605///
606void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
607 MachineInstr *MI = I;
608 unsigned DestReg = getFPReg(MI->getOperand(0));
609
610 // Change from the pseudo instruction to the concrete instruction.
611 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner86bb02f2008-01-11 18:10:50 +0000612 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000613
614 // Result gets pushed on the stack.
615 pushReg(DestReg);
616}
617
618/// handleOneArgFP - fst <mem>, ST(0)
619///
620void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
621 MachineInstr *MI = I;
Chris Lattner5b930372008-01-07 07:27:27 +0000622 unsigned NumOps = MI->getDesc().getNumOperands();
Rafael Espindola7f69c042009-03-28 17:03:24 +0000623 assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000624 "Can only handle fst* & ftst instructions!");
625
626 // Is this the last use of the source register?
627 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000628 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000629
630 // FISTP64m is strange because there isn't a non-popping versions.
631 // If we have one _and_ we don't want to pop the operand, duplicate the value
632 // on the stack instead of moving it. This ensure that popping the value is
633 // always ok.
Dale Johannesenb1064a52007-09-17 20:15:38 +0000634 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000635 //
636 if (!KillsSrc &&
637 (MI->getOpcode() == X86::IST_Fp64m32 ||
638 MI->getOpcode() == X86::ISTT_Fp16m32 ||
639 MI->getOpcode() == X86::ISTT_Fp32m32 ||
640 MI->getOpcode() == X86::ISTT_Fp64m32 ||
641 MI->getOpcode() == X86::IST_Fp64m64 ||
642 MI->getOpcode() == X86::ISTT_Fp16m64 ||
643 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000644 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen0a6bdef2007-09-20 01:27:54 +0000645 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesen6d0e36a2007-08-07 01:17:37 +0000646 MI->getOpcode() == X86::ISTT_Fp16m80 ||
647 MI->getOpcode() == X86::ISTT_Fp32m80 ||
648 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000649 MI->getOpcode() == X86::ST_FpP80m)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650 duplicateToTop(Reg, 7 /*temp register*/, I);
651 } else {
652 moveToTop(Reg, I); // Move to the top of the stack...
653 }
654
655 // Convert from the pseudo instruction to the concrete instruction.
656 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner86bb02f2008-01-11 18:10:50 +0000657 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000658
659 if (MI->getOpcode() == X86::IST_FP64m ||
660 MI->getOpcode() == X86::ISTT_FP16m ||
661 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesenb71720f2007-08-06 19:50:32 +0000662 MI->getOpcode() == X86::ISTT_FP64m ||
663 MI->getOpcode() == X86::ST_FP80m) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000664 assert(StackTop > 0 && "Stack empty??");
665 --StackTop;
666 } else if (KillsSrc) { // Last use of operand?
667 popStackAfter(I);
668 }
669}
670
671
672/// handleOneArgFPRW: Handle instructions that read from the top of stack and
673/// replace the value with a newly computed value. These instructions may have
674/// non-fp operands after their FP operands.
675///
676/// Examples:
677/// R1 = fchs R2
678/// R1 = fadd R2, [mem]
679///
680void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
681 MachineInstr *MI = I;
Evan Chengf86fee62008-07-21 20:02:45 +0000682#ifndef NDEBUG
Chris Lattner5b930372008-01-07 07:27:27 +0000683 unsigned NumOps = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000684 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chengf86fee62008-07-21 20:02:45 +0000685#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000686
687 // Is this the last use of the source register?
688 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000689 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000690
691 if (KillsSrc) {
692 // If this is the last use of the source register, just make sure it's on
693 // the top of the stack.
694 moveToTop(Reg, I);
695 assert(StackTop > 0 && "Stack cannot be empty!");
696 --StackTop;
697 pushReg(getFPReg(MI->getOperand(0)));
698 } else {
699 // If this is not the last use of the source register, _copy_ it to the top
700 // of the stack.
701 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
702 }
703
704 // Change from the pseudo instruction to the concrete instruction.
705 MI->RemoveOperand(1); // Drop the source operand.
706 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner86bb02f2008-01-11 18:10:50 +0000707 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000708}
709
710
711//===----------------------------------------------------------------------===//
712// Define tables of various ways to map pseudo instructions
713//
714
715// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
716static const TableEntry ForwardST0Table[] = {
717 { X86::ADD_Fp32 , X86::ADD_FST0r },
718 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000719 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 { X86::DIV_Fp32 , X86::DIV_FST0r },
721 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000722 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000723 { X86::MUL_Fp32 , X86::MUL_FST0r },
724 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000725 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000726 { X86::SUB_Fp32 , X86::SUB_FST0r },
727 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000728 { X86::SUB_Fp80 , X86::SUB_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000729};
730
731// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
732static const TableEntry ReverseST0Table[] = {
733 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
734 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000735 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000736 { X86::DIV_Fp32 , X86::DIVR_FST0r },
737 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000738 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000739 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
740 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000741 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000742 { X86::SUB_Fp32 , X86::SUBR_FST0r },
743 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000744 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000745};
746
747// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
748static const TableEntry ForwardSTiTable[] = {
749 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
750 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000751 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000752 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
753 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000754 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
756 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen19f781d2007-08-06 21:31:06 +0000757 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
759 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000760 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000761};
762
763// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
764static const TableEntry ReverseSTiTable[] = {
765 { X86::ADD_Fp32 , X86::ADD_FrST0 },
766 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000767 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000768 { X86::DIV_Fp32 , X86::DIV_FrST0 },
769 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000770 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000771 { X86::MUL_Fp32 , X86::MUL_FrST0 },
772 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000773 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000774 { X86::SUB_Fp32 , X86::SUB_FrST0 },
775 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen19f781d2007-08-06 21:31:06 +0000776 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000777};
778
779
780/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
781/// instructions which need to be simplified and possibly transformed.
782///
783/// Result: ST(0) = fsub ST(0), ST(i)
784/// ST(i) = fsub ST(0), ST(i)
785/// ST(0) = fsubr ST(0), ST(i)
786/// ST(i) = fsubr ST(0), ST(i)
787///
788void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
789 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
790 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
791 MachineInstr *MI = I;
792
Chris Lattner5b930372008-01-07 07:27:27 +0000793 unsigned NumOperands = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000794 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
795 unsigned Dest = getFPReg(MI->getOperand(0));
796 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
797 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000798 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
799 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen960bfbd2009-02-13 02:33:27 +0000800 DebugLoc dl = MI->getDebugLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000801
802 unsigned TOS = getStackEntry(0);
803
804 // One of our operands must be on the top of the stack. If neither is yet, we
805 // need to move one.
806 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
807 // We can choose to move either operand to the top of the stack. If one of
808 // the operands is killed by this instruction, we want that one so that we
809 // can update right on top of the old version.
810 if (KillsOp0) {
811 moveToTop(Op0, I); // Move dead operand to TOS.
812 TOS = Op0;
813 } else if (KillsOp1) {
814 moveToTop(Op1, I);
815 TOS = Op1;
816 } else {
817 // All of the operands are live after this instruction executes, so we
818 // cannot update on top of any operand. Because of this, we must
819 // duplicate one of the stack elements to the top. It doesn't matter
820 // which one we pick.
821 //
822 duplicateToTop(Op0, Dest, I);
823 Op0 = TOS = Dest;
824 KillsOp0 = true;
825 }
826 } else if (!KillsOp0 && !KillsOp1) {
827 // If we DO have one of our operands at the top of the stack, but we don't
828 // have a dead operand, we must duplicate one of the operands to a new slot
829 // on the stack.
830 duplicateToTop(Op0, Dest, I);
831 Op0 = TOS = Dest;
832 KillsOp0 = true;
833 }
834
835 // Now we know that one of our operands is on the top of the stack, and at
836 // least one of our operands is killed by this instruction.
837 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
838 "Stack conditions not set up right!");
839
840 // We decide which form to use based on what is on the top of the stack, and
841 // which operand is killed by this instruction.
842 const TableEntry *InstTable;
843 bool isForward = TOS == Op0;
844 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
845 if (updateST0) {
846 if (isForward)
847 InstTable = ForwardST0Table;
848 else
849 InstTable = ReverseST0Table;
850 } else {
851 if (isForward)
852 InstTable = ForwardSTiTable;
853 else
854 InstTable = ReverseSTiTable;
855 }
856
Owen Anderson1636de92007-09-07 04:06:50 +0000857 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
858 MI->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000859 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
860
861 // NotTOS - The register which is not on the top of stack...
862 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
863
864 // Replace the old instruction with a new instruction
865 MBB->remove(I++);
Dale Johannesen960bfbd2009-02-13 02:33:27 +0000866 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000867
868 // If both operands are killed, pop one off of the stack in addition to
869 // overwriting the other one.
870 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
871 assert(!updateST0 && "Should have updated other operand!");
872 popStackAfter(I); // Pop the top of stack
873 }
874
875 // Update stack information so that we know the destination register is now on
876 // the stack.
877 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
878 assert(UpdatedSlot < StackTop && Dest < 7);
879 Stack[UpdatedSlot] = Dest;
880 RegMap[Dest] = UpdatedSlot;
Dan Gohman221a4372008-07-07 23:14:23 +0000881 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000882}
883
884/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
885/// register arguments and no explicit destinations.
886///
887void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
888 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
889 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
890 MachineInstr *MI = I;
891
Chris Lattner5b930372008-01-07 07:27:27 +0000892 unsigned NumOperands = MI->getDesc().getNumOperands();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000893 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
894 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
895 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000896 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
897 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000898
899 // Make sure the first operand is on the top of stack, the other one can be
900 // anywhere.
901 moveToTop(Op0, I);
902
903 // Change from the pseudo instruction to the concrete instruction.
904 MI->getOperand(0).setReg(getSTReg(Op1));
905 MI->RemoveOperand(1);
Chris Lattner86bb02f2008-01-11 18:10:50 +0000906 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000907
908 // If any of the operands are killed by this instruction, free them.
909 if (KillsOp0) freeStackSlotAfter(I, Op0);
910 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
911}
912
913/// handleCondMovFP - Handle two address conditional move instructions. These
914/// instructions move a st(i) register to st(0) iff a condition is true. These
915/// instructions require that the first operand is at the top of the stack, but
916/// otherwise don't modify the stack at all.
917void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
918 MachineInstr *MI = I;
919
920 unsigned Op0 = getFPReg(MI->getOperand(0));
921 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Chengc7daf1f2008-03-05 00:59:57 +0000922 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000923
924 // The first operand *must* be on the top of the stack.
925 moveToTop(Op0, I);
926
927 // Change the second operand to the stack register that the operand is in.
928 // Change from the pseudo instruction to the concrete instruction.
929 MI->RemoveOperand(0);
930 MI->RemoveOperand(1);
931 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner86bb02f2008-01-11 18:10:50 +0000932 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933
934 // If we kill the second operand, make sure to pop it from the stack.
935 if (Op0 != Op1 && KillsOp1) {
936 // Get this value off of the register stack.
937 freeStackSlotAfter(I, Op1);
938 }
939}
940
941
942/// handleSpecialFP - Handle special instructions which behave unlike other
943/// floating point instructions. This is primarily intended for use by pseudo
944/// instructions.
945///
946void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
947 MachineInstr *MI = I;
Dale Johannesen960bfbd2009-02-13 02:33:27 +0000948 DebugLoc dl = MI->getDebugLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000949 switch (MI->getOpcode()) {
Edwin Törökbd448e32009-07-14 16:55:14 +0000950 default: llvm_unreachable("Unknown SpecialFP instruction!");
Chris Lattner5d294e52008-03-09 07:05:32 +0000951 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
952 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
953 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 assert(StackTop == 0 && "Stack should be empty after a call!");
955 pushReg(getFPReg(MI->getOperand(0)));
956 break;
Chris Lattner60d14d82008-03-21 06:38:26 +0000957 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
958 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
959 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
960 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
961 // The pattern we expect is:
962 // CALL
963 // FP1 = FpGET_ST0
964 // FP4 = FpGET_ST1
965 //
966 // At this point, we've pushed FP1 on the top of stack, so it should be
967 // present if it isn't dead. If it was dead, we already emitted a pop to
968 // remove it from the stack and StackTop = 0.
969
970 // Push FP4 as top of stack next.
971 pushReg(getFPReg(MI->getOperand(0)));
972
973 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
974 // dead. In this case, the ST(1) value is the only thing that is live, so
975 // it should be on the TOS (after the pop that was emitted) and is. Just
976 // continue in this case.
977 if (StackTop == 1)
978 break;
979
980 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
981 // elements so that our accounting is correct.
982 unsigned RegOnTop = getStackEntry(0);
983 unsigned RegNo = getStackEntry(1);
984
985 // Swap the slots the regs are in.
986 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
987
988 // Swap stack slot contents.
989 assert(RegMap[RegOnTop] < StackTop);
990 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
991 break;
992 }
Chris Lattneraaef8dc2008-03-09 07:08:44 +0000993 case X86::FpSET_ST0_32:
994 case X86::FpSET_ST0_64:
Rafael Espindola0b3b53a2009-06-30 12:18:16 +0000995 case X86::FpSET_ST0_80: {
Rafael Espindolacabaa942009-06-30 16:40:03 +0000996 unsigned Op0 = getFPReg(MI->getOperand(0));
997
Rafael Espindola84dcc012009-06-21 12:02:51 +0000998 // FpSET_ST0_80 is generated by copyRegToReg for both function return
999 // and inline assembly with the "st" constrain. In the latter case,
Rafael Espindola0b3b53a2009-06-30 12:18:16 +00001000 // it is possible for ST(0) to be alive after this instruction.
Rafael Espindolacabaa942009-06-30 16:40:03 +00001001 if (!MI->killsRegister(X86::FP0 + Op0)) {
1002 // Duplicate Op0
Rafael Espindola6d7e76f2009-06-29 20:29:59 +00001003 duplicateToTop(0, 7 /*temp register*/, I);
Rafael Espindolacabaa942009-06-30 16:40:03 +00001004 } else {
1005 moveToTop(Op0, I);
Rafael Espindola84dcc012009-06-21 12:02:51 +00001006 }
Evan Cheng307a72e2009-02-09 23:32:07 +00001007 --StackTop; // "Forget" we have something on the top of stack!
1008 break;
Rafael Espindola0b3b53a2009-06-30 12:18:16 +00001009 }
Evan Cheng307a72e2009-02-09 23:32:07 +00001010 case X86::FpSET_ST1_32:
1011 case X86::FpSET_ST1_64:
1012 case X86::FpSET_ST1_80:
1013 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1014 if (StackTop == 1) {
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001015 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
Evan Cheng307a72e2009-02-09 23:32:07 +00001016 NumFXCH++;
1017 StackTop = 0;
1018 break;
1019 }
1020 assert(StackTop == 2 && "Stack should have two element on it to return!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 --StackTop; // "Forget" we have something on the top of stack!
1022 break;
1023 case X86::MOV_Fp3232:
1024 case X86::MOV_Fp3264:
1025 case X86::MOV_Fp6432:
Dale Johannesen4ab00bd2007-08-05 18:49:15 +00001026 case X86::MOV_Fp6464:
1027 case X86::MOV_Fp3280:
1028 case X86::MOV_Fp6480:
1029 case X86::MOV_Fp8032:
1030 case X86::MOV_Fp8064:
1031 case X86::MOV_Fp8080: {
Evan Cheng2682ea02009-03-23 08:01:15 +00001032 const MachineOperand &MO1 = MI->getOperand(1);
1033 unsigned SrcReg = getFPReg(MO1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001034
Evan Cheng2682ea02009-03-23 08:01:15 +00001035 const MachineOperand &MO0 = MI->getOperand(0);
1036 // These can be created due to inline asm. Two address pass can introduce
1037 // copies from RFP registers to virtual registers.
1038 if (MO0.getReg() == X86::ST0 && SrcReg == 0) {
1039 assert(MO1.isKill());
1040 // Treat %ST0<def> = MOV_Fp8080 %FP0<kill>
1041 // like FpSET_ST0_80 %FP0<kill>, %ST0<imp-def>
1042 assert((StackTop == 1 || StackTop == 2)
1043 && "Stack should have one or two element on it to return!");
1044 --StackTop; // "Forget" we have something on the top of stack!
1045 break;
1046 } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) {
1047 assert(MO1.isKill());
1048 // Treat %ST1<def> = MOV_Fp8080 %FP1<kill>
1049 // like FpSET_ST1_80 %FP0<kill>, %ST1<imp-def>
1050 // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them.
1051 if (StackTop == 1) {
1052 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1);
1053 NumFXCH++;
1054 StackTop = 0;
1055 break;
1056 }
1057 assert(StackTop == 2 && "Stack should have two element on it to return!");
1058 --StackTop; // "Forget" we have something on the top of stack!
1059 break;
1060 }
1061
1062 unsigned DestReg = getFPReg(MO0);
Evan Chengc7daf1f2008-03-05 00:59:57 +00001063 if (MI->killsRegister(X86::FP0+SrcReg)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001064 // If the input operand is killed, we can just change the owner of the
1065 // incoming stack slot into the result.
1066 unsigned Slot = getSlot(SrcReg);
1067 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1068 Stack[Slot] = DestReg;
1069 RegMap[DestReg] = Slot;
1070
1071 } else {
1072 // For FMOV we just duplicate the specified value to a new stack slot.
1073 // This could be made better, but would require substantial changes.
1074 duplicateToTop(SrcReg, DestReg, I);
1075 }
Nick Lewycky052a31f2008-03-11 05:56:09 +00001076 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001077 break;
Chris Lattner45b527c2008-03-11 19:50:13 +00001078 case TargetInstrInfo::INLINEASM: {
1079 // The inline asm MachineInstr currently only *uses* FP registers for the
1080 // 'f' constraint. These should be turned into the current ST(x) register
1081 // in the machine instr. Also, any kills should be explicitly popped after
1082 // the inline asm.
1083 unsigned Kills[7];
1084 unsigned NumKills = 0;
1085 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1086 MachineOperand &Op = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001087 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner45b527c2008-03-11 19:50:13 +00001088 continue;
1089 assert(Op.isUse() && "Only handle inline asm uses right now");
1090
1091 unsigned FPReg = getFPReg(Op);
1092 Op.setReg(getSTReg(FPReg));
1093
1094 // If we kill this operand, make sure to pop it from the stack after the
1095 // asm. We just remember it for now, and pop them all off at the end in
1096 // a batch.
1097 if (Op.isKill())
1098 Kills[NumKills++] = FPReg;
1099 }
1100
1101 // If this asm kills any FP registers (is the last use of them) we must
1102 // explicitly emit pop instructions for them. Do this now after the asm has
1103 // executed so that the ST(x) numbers are not off (which would happen if we
1104 // did this inline with operand rewriting).
1105 //
1106 // Note: this might be a non-optimal pop sequence. We might be able to do
1107 // better by trying to pop in stack order or something.
1108 MachineBasicBlock::iterator InsertPt = MI;
1109 while (NumKills)
1110 freeStackSlotAfter(InsertPt, Kills[--NumKills]);
1111
1112 // Don't delete the inline asm!
1113 return;
1114 }
1115
Chris Lattnerb56cc342008-03-11 03:23:40 +00001116 case X86::RET:
1117 case X86::RETI:
1118 // If RET has an FP register use operand, pass the first one in ST(0) and
1119 // the second one in ST(1).
1120 if (isStackEmpty()) return; // Quick check to see if any are possible.
1121
1122 // Find the register operands.
1123 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1124
1125 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1126 MachineOperand &Op = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001127 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnerb56cc342008-03-11 03:23:40 +00001128 continue;
Chris Lattnerba4f8f12008-03-21 20:41:27 +00001129 // FP Register uses must be kills unless there are two uses of the same
1130 // register, in which case only one will be a kill.
1131 assert(Op.isUse() &&
1132 (Op.isKill() || // Marked kill.
1133 getFPReg(Op) == FirstFPRegOp || // Second instance.
1134 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1135 "Ret only defs operands, and values aren't live beyond it");
Chris Lattnerb56cc342008-03-11 03:23:40 +00001136
1137 if (FirstFPRegOp == ~0U)
1138 FirstFPRegOp = getFPReg(Op);
1139 else {
1140 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1141 SecondFPRegOp = getFPReg(Op);
1142 }
1143
1144 // Remove the operand so that later passes don't see it.
1145 MI->RemoveOperand(i);
1146 --i, --e;
1147 }
1148
1149 // There are only four possibilities here:
1150 // 1) we are returning a single FP value. In this case, it has to be in
1151 // ST(0) already, so just declare success by removing the value from the
1152 // FP Stack.
1153 if (SecondFPRegOp == ~0U) {
1154 // Assert that the top of stack contains the right FP register.
1155 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1156 "Top of stack not the right register for RET!");
1157
1158 // Ok, everything is good, mark the value as not being on the stack
1159 // anymore so that our assertion about the stack being empty at end of
1160 // block doesn't fire.
1161 StackTop = 0;
1162 return;
1163 }
1164
Chris Lattnerb56cc342008-03-11 03:23:40 +00001165 // Otherwise, we are returning two values:
1166 // 2) If returning the same value for both, we only have one thing in the FP
1167 // stack. Consider: RET FP1, FP1
1168 if (StackTop == 1) {
1169 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1170 "Stack misconfiguration for RET!");
1171
1172 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1173 // register to hold it.
1174 unsigned NewReg = (FirstFPRegOp+1)%7;
1175 duplicateToTop(FirstFPRegOp, NewReg, MI);
1176 FirstFPRegOp = NewReg;
1177 }
1178
1179 /// Okay we know we have two different FPx operands now:
1180 assert(StackTop == 2 && "Must have two values live!");
1181
1182 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1183 /// in ST(1). In this case, emit an fxch.
1184 if (getStackEntry(0) == SecondFPRegOp) {
1185 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1186 moveToTop(FirstFPRegOp, MI);
1187 }
1188
1189 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1190 /// ST(1). Just remove both from our understanding of the stack and return.
1191 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner6bac50e2008-03-21 05:57:20 +00001192 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattnerb56cc342008-03-11 03:23:40 +00001193 StackTop = 0;
1194 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001195 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001196
1197 I = MBB->erase(I); // Remove the pseudo instruction
1198 --I;
1199}